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ABSTRACT Retinopathy of prematurity (ROP) has been one of the worldwide causes of blindness among
children. Grading and treatment guidelines of ROP are mainly based on zone, stage, and plus disease. For
serious ROP, identifying zone is more important than staging. However, identifying zone I from RetCam
fundus images is not accurate and subjective by ophthalmologists. To address it, we develop a new deep
learning framework to automatically identify zone I from RetCam images. Specifically, we train a deep
convolutional neural network (DCNN) algorithm based on the RetCam images. The disc and macular center
in terms of the threshold of intersection over union (IOU) were identified automatically. The algorithm is
validated on fundus images and results show that zone I identification accuracy of 91% is achieved when
the IOU threshold is 0.8. The obtained promising identification accuracy of zone I from the RetCam images
indicates the potential applications in ROP grading, monitoring, and prognosis for infants.

INDEX TERMS Retinopathy of prematurity, deep convolutional neural network, optic disc, macular center,

zone 1.

I. INTRODUCTION

Retinopathy of prematurity (ROP) is a vascular proliferative,
blindness-causing disease, and has become one of the world-
wide causes of childhood blindness [1]-[5]. ROP is one of
the most dangerous and serious complications of premature
infants’ eyes [6], which can be better prevented in countries
with high or middle income. The International Classification
of ROP (ICROP) divides ROP by zoning, staging, and grading
of plus disease [7]. The incidence of type 1 ROP is higher
in developing countries [4] but lower in developed coun-
tries. It is only 6.1% in the United States and Canada [8].
Type 1 ROP is more serious and mostly occurs in zone I.
zone I ROP occurs earlier and progresses more rapidly than
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zone II or IIT ROP [9], which is commonly found in the
tiniest babies. These infants are particularly vulnerable to the
severe stage of ROP. With the increasing number of high-risk
of tiniest babies, the number of infants with zone I ROP is
also increased [10]. This type of ROP may have different
mechanism and prognosis from traditional ROP and perform
more effectively treatment reaction to intravitreal injection
of anti-VEGF agents [1]. Current clinical experience shows
that the delay in diagnosis and treatment of zone I ROP may
lead to extensive traction retinal detachment [11] and even
endanger vision and lead to blindness. Early intervention and
frequent follow-up are essential for continued ROP treatment
and monitoring, which can significantly improve zone I ROP
prognosis of children [12]. Ophthalmologists can determine
the severity of ROP by observing whether the ROP symptoms
have progressed to zone I [13]. For this reason, identify zone
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I from the retinal images is of vital significance [14] for early
assessment and diagnosis of ROP severity.

In fact, the current status of ROP screening in China are
as follows: 1) With China’s two-children policy and the
development of the neonatal intensive care unit, the survival
rate of premature infants have been increasing as well as
the ROP incidence rate [15]. Accordingly, the number of
premature infants requiring screening has been increasing
year by year [3], [16], [17].2) ROP screening and diagnosis
require medical experience and a long training period for the
young ophthalmologists. Clinical assessment of ROP mainly
depends on the ophthalmologist’s subjective interpretation of
the symptoms, thus requires professional knowledge and it
is too time-consuming. The missing and incorrect screening
may lead to serious medical malpractice, which causes the
unlikeness of ophthalmologists doing this work [3], [16].
As a result, there is a shortage of professional ophthalmol-
ogists in many countries and regions. Current telemedicine
technology is under development and still unable to solve this
problem [3], [18]. 3) The existing ophthalmologists highly
rely on binocular indirect ophthalmoscope and wide-angle
digital retinal imaging system (RetCam) in the ROP diagno-
sis of the premature infants [9]. The ICROP provides only
qualitative signs rather than quantitative descriptions [19].
Since each ophthalmologist has his/her unique style of dis-
ease diagnosis knowledge and different level of experience,
the ROP diagnosis is highly subjective, especially the zon-
ing. To address it, automatic and consistent identification of
zone I from the retinal images via the popular deep learning
algorithm is highly desirable, which can also overcome the
limitation of the traditional methods.

It is known that the deep learning algorithm via DCNN
has been used to automatically diagnose cataract [20], glau-
coma [21], [22], macular degeneration [23], and diabetic
retinopathy [24]. Also, the deep learning algorithm has been
used to automatically diagnose the plus disease of ROP and
achieves satisfactory performance [16]. However, little rele-
vant literature has been reported on automatic identification
of zone I ROP. For this reason, we develop a new deep
learning algorithm to identify zone I from RetCam images
automatically. Ophthalmologists can identify zone I ROP
by observing whether the ROP symptoms are the location
inside zone I, which identified by the algorithm. Specifically,
we devise a new deep learning algorithm based on the latest
techniques. Our algorithm extracts image features via DCNN.
Since the target category is shown in each pixel, the category
detection, feature extraction, and image segmentation are
conducted [1]. Namely, our algorithm contains four main
parts: the DCNN, region proposal network (RPN), fully con-
volution network (FCN), and transfer learning. The DCNN is
used to extract the deep features of the images [26]. RPN
is employed to generate zone recommendations [27] for
the region of interest (ROI) detection. To extract the deep
feature map of the image, a deep residual network (ResNet)
is adopted. Meanwhile, FCN performs the binary-value seg-
mentation and classifies each pixel in each ROI to achieve
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target segmentation [28]. Furthermore, transfer learning is
also used for model pre-training, which transfers the trained
model parameters to the new model for performance boost-
ing [29]. Our algorithm obtains the expression of data layered
features via pre-trained models for high-level semantic classi-
fication. The low-level semantic features (e.g., edge, color) in
the bottom layer of the model are fixed in different classifica-
tion tasks [30]. Therefore, the learned model parameters can
be transferred to a new model in a specific way, which can
speed up and optimize the learning efficiency of the model
and save time than learning from scratch [31].

We validate our algorithm on the RetCam fundus images
from the premature infants screened in the Shenzhen
Screening for Retinopathy of Prematurity Cooperative
Group. The achieved the promising performance of our algo-
rithm indicates that the automatic identification of zone I
from fundus images has potential application in clinical prac-
tice to reduce the heavy workload of ROP screening and
reduce the rate of blindness caused by misdiagnosis or missed
diagnosis [3].

The rest of this paper is organized as follows. Section II
describes the general overview of the proposed algorithm and
detailed illustration of our dataset. Section III is dedicated
to experimental results and comparisons. Finally, Sections IV
and V present the discussions and conclusions, respectively.

Il. METHODOLOGY

A. OVERVIEW

According to the ICROP, zone I consists of a circle, the radius
of which extends from the center of the optic disc to twice
the distance from the center of the optic disc to the center of
the macula [7], [9]. In this study, an algorithm is designed
to automatically identify the center of optic disc and macula,
and then automatically identify zone I from RetCam images
according to the center of the optic disc and the center of the
macula. The study protocol was reviewed and approved by the
institutional review board of the Shenzhen Eye Hospital, and
written informed consent was obtained from the guardians of
all participants.

B. DATA SET

In our experiment, a total of 9800 RetCam images from
490 infants from January 2016 to May 2017 are collected
for the training. All the RetCam images are preprocessed
first before training. The preprocessing classifier developed
in [32] is used to remove the unqualified images. A total
of 90 images of highly blurred, dark or bright and non-fundus
photographs are excluded for training. Images present only
optic disc or macula are also excluded. Finally, we have a total
of 2849 images in our experiment. All the remaining images
contain both structures of optic disc and macula. A total
of 582 images of 97 children had ROP. Of these, 276 Retcam
images of 46 children were zone I ROP. The images are
then divided into three sets: the training set contains 2394
images, the validation set contains 355 images, and the test
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TABLE 1. Summary of datasets used in our experiments.

Training Dataset Validation Dataset Test Dataset
Label category Expert® Expert Standard® Expert Senior® Junior?
No. of Images 2394 355 100 100 100

“Expert indicates that the data set is labeled by an experienced ophthalmologist who has a professional level.

"Standard indicates that the data set is labeled by several professional ophthalmologists together, which is regarded as a validation standard.
“Senior indicates that the data set is labeled by a senior oculist-in-charge ophthalmologist who has a medium level.

4Junior indicates that the data set is labeled by a junior intern ophthalmologist or who has a primary level.

set contains 100 images. The training and validation set are
used to train and validate the algorithm, while the test set is
used to test the performance of the algorithm, respectively.
Each infant received a standard 10-position photo-
graph (disc-centered images, macular-centered images, nasal
images with the optic disc, lateral nasal image with optic disc
but close to serrated edge, temporal images with the optic
disc, temporal images without the optic disc, top image with
the optic disc, top image without the optic disc, bottom image
with the optic disc, and bottom image without the optic disc).
According to the characteristics of the ICROP, this study can
only select images with both disc and macular center. Each
image’s center of the optic disc and macula in the training set
is previously annotated by six ophthalmologists according to
the ICROP. All of the annotators have been engaged in ROP
diagnosis and treatments for more than 10 years. Two of the
annotators are the chief physicians and the remaining four are
visiting doctors. In the training set, the 6 ophthalmologists
annotated all the images individually. Each expert reviewed
all experts’ annotation and selected data with inconsistent
labels. They discussed and the final result was determined
by the most experienced expert. To facilitate the reignition of
optic disc center and macular center, a circular frame with fix
diameter to match the area of optic disc and macula rather
than a point is used for annotating in the labeling system.
According to the anatomical size of the optic disc and macula
(the diameter of the newborns’ optic disc is about 0.6 mm,
and the diameter of the macula is slightly larger than that
of the optic disc). The optic disc and macula of each image
are annotated in the labeling system with fix 120 pixels and
160 pixels of circular frames, respectively. According to
the center of the two circular frames, zone I of the fundus
images is automatically annotated by the labeling system. The
datasets used in this study are summarized in Table 1.

C. DEEP LEARNING ALGORITHM

For classification problem, deep features can enhance the
classification performance by extracting the in-depth and rep-
resentative feature maps. The deep features can be extracted
by the DCNN, where the parameters inside the network are
calculated according to the expression of the network features
of the upper layer. For example, after feeding an image into
the DCNN, the first convolutional layer uses internal param-
eters to calculate the expression of the input features, such as
edges, angles, curves. If the input of the second convolutional
layer is the output of the first layer, the convolution of this
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layer combines low-order features through calculation and
outputs high-order features, such as semicircle, quadrangle,
etc. Therefore, the increase in network convolutional layers
may extract more complex features. Deep learning uses back
propagation algorithms to determine how to adjust the inter-
nal parameters of these networks and learn the characteristics
of different network layers. The increasing network depth
enhances the network expression, which has been experi-
mentally demonstrated by Simonyan and Zisserman [33].
However, simply increasing the network depth can lead to
the degradation problem. Namely, the increase of network
depth will cause the saturation of accuracy, and its further
increase will lead to a decrease in accuracy. To address it,
we adopt the residual network (ResNet) to solve the problem
of decreasing accuracy due to increasing network depth [34].
ResNet scans with 3x3 sliding windows and considers nine
possible anchors in each sliding window location, which can
extract the feature effectively.

In this study, when a RetCam image is inputted into the
model, the deep convolutional layer of the model will extract
the deep image features based on the optic disc and mac-
ula. According to the extracted features, the RPN network
will predict the general position and category (belonging to
foreground or background) of optic disc and macula on the
feature map. Then, refined learning classifies the optic disc
and macula (optic disc, macula or background) [1]. The
bounding box regression suggested by fixed anchors obtains
the region of interests (ROI). Then, the ROIs of different
sizes selected for the ROI alignment operation are put into
the full connection layer to judge the target classification and
precise position. Meanwhile, FCN will conduct up-sampling
on the selected locations of RPN prediction [28], and enlarge
the selected area to the corresponding size in the original
image, and then classify each pixel (belonging to the optic
disc, macula or background), so as to separate optic disc
and macula. Finally, a circular frame matching the area of
the optic disc and macula was generated. Zone I was thus
labeled by the model based on the center of the two circular
frames according to ICROP. The transfer learning strategy
is also used to enhance the performance, where the weights
of the transfer learning are derived from the training results
of Microsoft COCO dataset (http://cocodataset.org/). In this
study, a multi-task loss function is defined for each sample in
a rectangular window (labeled optic disc or macula bound-
ary area). The loss function is composed of classification
loss (Lcls), boundary box regression loss (Lbox) and mask
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FIGURE 1. Block diagram of the proposed method. The position of optic disc and macula is identified firstly, and then the central point of optic disc and
macula are calculated. Finally, zone I of images is calculated according to the center of optic disc and macula.

loss (Lmask), which are used to calculate the error between
the output result of the model and the ground truth. The
process is iteratively repeated until the error is no longer
reduced, which means that the model output is closest to
the ground truth. Accordingly, the target detection process
is completed. After model training, the test set was used
to test the prediction effect of the model on the new input
data. The block diagram of the proposed method is shown
in Fig.1.

D. PERFORMANCE EVALUATION

In this study, 100 RetCam images were randomly selected to
test the model, which were not included in the training set and
validation set. Six ophthalmologists independently annotated
the optic disc and macula of the fundus images in the labeling
system. After that, zone I of the fundus image is annotated
automatically in the labeling system according to the ICROP.
The results of this study were quantitatively analyzed by
calculating the effect of Intersection over Union (IOU). IOU
is the coincidence rate of the candidate bound identified by
the proposed method and the gold standard bound annotated
by the six experts [31], which is formulated as

Dectection result N Ground truth

10U = . 1
Dectection result U Ground truth M

when evaluating the identification accuracy of the model,
IOU of the optic disc, macula, and zone I were calculated,
respectively. The identification accuracy of optic disc, mac-
ula, and zone I was calculated under different IOU thresholds.
Accuracy is defined as the ratio of the correctly labeled
samples to the total samples when the IOU is greater than
or equal to a certain threshold. For example, when the IOU
threshold is set to be 0.8, the training model is considered
as accurate if the calculated IOU of the macula and optic
disc is larger than or equal to 0.8, Zone I of RetCam images
calculated by the model and expert labeling are defined as
circle 1 and circle 0, respectively. IOU is calculated according
to the coincidence between circle 1 and circle 0, and the
accuracy of model identification in zone I of images was
calculated under different IOU thresholds. If lower the IOU
requirement, more sample will be identified as correct by the
model. In other words, when the requirements for IOU value
is low, the accuracy of model annotation improves.
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E. COMPARISON WITH CLINICIANS DIAGNOSIS

In this study, we divide the model evaluation into four
groups: model group, the professional ophthalmologist group
with expert experience, senior ophthalmologist group and
junior ophthalmologist group. The model group is the one
obtained from this study, the professor-level expert group is
the chief ophthalmologist with more than 10 years’ expe-
rience, the senior ophthalmologist group is the experienced
retinal specialists, and the junior ophthalmologist group is
the ophthalmic trainees. Each group labeled the optic disc
and macula of the 100 test set images, and zone I of the
fundus images was calculated according to the labeled circle
of the optic disc and macula. The accuracy of optic disc and
macula labeling in the four groups and the identification rate
of zone I of retinal images were compared under different
IOU thresholds.

Ill. EXPERIMENTAL RESULTS

Six experts who annotate the training set discussed the value
of the IOU. They agreed that when IOU of macula, optic
disc and zone I is greater than or equal to 0.5, identification
of optic disc, macula and zone I of the model is considered
accurate, otherwise, it is inaccurate. Therefore, IOU threshold
is set to be 0.5 in our experiment. Our algorithm is run on a
GTX 1080TI GPU and takes 0.8s for each test image. The
identification accuracy is defined as the ratio of the correctly
labeled samples to the total samples when the IOU > 0.5.
We achieve an accuracy of 100% and 90% for optic disc
and macula detection, respectively. Since our ultimate goal
of this study is to identify zone I of RetCam images, and
the label of the zone I is based on the label of optic disc
and macula. To better understand the identification accuracy
between them, the identification accuracy of optic disc, mac-
ula and zone I of the model were evaluated under different
IOU thresholds.

A. ASSESSMENT FOR OPTIC DISC AND MACULA

Fig. 2 (a) illustrates the accuracy of the optic disc and macula
detection under different IOU thresholds. The red solid line
represents the accuracy of optic disc, and the blue solid line
represents the accuracy of macula. When the IOU thresh-
old is 0.8, the accuracy of optic disc is 90%, while the
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FIGURE 2. Performance of different models under different 10U thresholds. (a) The accuracy of optic disc and macula in identification of fundus images
under different 10U thresholds. (b) The accuracy of zone I in the identification of funds images under different 10U thresholds. (c) The number of true

predictions by the developed model in identifying zone I of fundus images.
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FIGURE 3. Output images of different models. (a) the original image; (b) the detection results of the optic disc and macula;

(c) the identification results of zone | of retinopathy.

accuracy of macula is only 50%. From the original image,
an ophthalmologist can clearly identify the optic disc. Since
the development of macula in the newborn is incomplete,
the recognition of macula needs professional ophthalmolo-
gist with rich experience and medical knowledge to make
accurate diagnosis. Since the professional ophthalmologist
labeled optic disc and macula according to medical stan-
dards and their rich experience, the model achieves promising
performance built on the ophthalmologist’s knowledge and
experience. Therefore, the low accuracy of macula in our
model is consistent with the practical clinic application. The
accuracy of model detection of macular center is lower than
that of optic disc center since the macula is more difficult
to detect than the optic center. Zone I of the fundus images
is determined by both the label of optic disc and macula.
Thus, the IOU of optic disc and macula affects the accuracy
to identify zone I of fundus images.

B. ZONING ASSESSMENT

Fig. 2 (b) shows the accuracy of identifying zone I under
different IOU thresholds using the proposed model. The ver-
tical coordinate represents the accuracy, while the horizontal
coordinate represents different IOU thresholds. It can be seen
that when IOU threshold is 0.8, the identification accuracy
of model for zone I is 91%. When IOU threshold is 0.9,
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the accuracy is 69%. Fig. 2(c) illustrates the number of correct
quantities in identifying zone I of RetCam images under
different IOU thresholds.

C. EFFECT OF MODEL OUTPUT

Fig. 3 shows the effect of the model outputs. Fig. 3 (a) is
the original image, while Fig. 3 (b) is the result of optic
disc and macula detection. The red circular region represents
optic disc and macula detected by the model, while the green
circular region represents optic disc and macula marked by
experts (The macula is on the left and the optic disc is on the
right). Fig. 3(c) displays the identified zone I according to
the center of optic disc and macula, in which the area within
the green line is determined by zone I according to the center
of optic disc and macula circular frame labeled by experts,
and the area within the red line is the determined by zone I
according to the center of optic disc and macula detected by
the model.

D. MODEL COMPARISON

Fig. 4(a) illustrates the accuracy comparisons among the
proposed model and the ophthalmologist in recognizing
optic disc and macula under different IOU thresholds.
The standard refers to the validation set are based on the
annotation of 6 ophthalmologists. Red, black, blue and green
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FIGURE 4. Results of the ophthalmologist and model using different 10U thresholds. (a) Accuracy of the model and the ophthalmologists to
identify optic disc and macula under different 10U. (b) Zone I identification accuracy of the fundus images versus different 10U thresholds.
(c) Number of true identification of the zone I samples versus different 10U thresholds.

represent the model, expert-level chief ophthalmologists,
senior ophthalmologist, and junior ophthalmologist, respec-
tively. The dotted line represents the optic disc and solid line
represents the macula. It can be seen from the comparison
results that the accuracy of the four groups for the detection
of optic disc is similar. For macula detection, the accuracy
of model is lower than the expert level, but it is higher
than that of senior ophthalmologists and junior ophthalmol-
ogists. Fig. 4 (b) shows the accuracy of the model and the
ophthalmologist to identify zone I of images under different
10U thresholds. Fig. 4 (c) shows the number of images when
zone I is accurately identified by the model and ophthal-
mologists under different IOU thresholds. Red, black, blue,
and green represent the model, chief ophthalmologists, senior
ophthalmologists and junior ophthalmologists, respectively.
The three figures show that experts achieve the highest accu-
racy in identifying zone I, and the accuracy of the model is
similar to the expert level but higher than that of senior and
junior ophthalmologists.

VOLUME 7, 2019

IV. DISCUSSIONS AND LIMITATIONS

The ROP prognosis are based on zone I and II in terms of
clinical features, which are quite different [35]. Compared
with zone II ROP, zone I ROP is more quickly progressive to
threshold ROP [9], [12], [17], [36], [37]. Treatment requiring
ROP is defined as any stages with plus disease in zone I, stage
3 without plus disease in zone I, and stages 2 or 3 with plus
disease in zone II. Most zone I ROP requires treatment. Even
the partial zone I ROP does not need immediate treatment,
the close follow-up is needed to prevent progression. There-
fore, it is quite important to identify zone I from the RetCam
images accurately [37].

In our experiment, with the deep learning algorithm,
the accuracy to automatically identify zone I of RetCam
images has reached the expert level. If we input a RetCam
image of an infant into our framework, zone I can be
identified automatically in 0.8s, which is achieved without
manual segmentation and classification of fundus images.
In literature, some researchers strongly recommend that strict
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screening guidelines must be followed for prompt ROP
treatment before vision-threatening via complications [17].

Our proposed method can identify zone I according to the
ICROP, which facilitates an objective assessment of ROP
severity for ROP diagnosis, treatment, and prognosis. ROP
infants can therefore reduce irreversible visual damage. The
popularity of the application is expected to change the way
of diagnosing ROP in future and benefit premature infants
worldwide.

In future, we will continue to use more data for the
algorithm development. More data renders the identification
of zone I with higher accuracy. Although some literature
has reported that deep learning algorithm can automatically
diagnose plus disease of ROP [16], few researches have been
focused on accurately identifying zone I. This study utilizes
the deep learning algorithm to automatically identify zone I
of RetCam images. To the best of our knowledge, this is the
first study on automatic identifying zone I. It is also noted
that our proposed method can be extended for the diagnosis
zone I ROP.

In spite of the achieved promising performance, the current
framework still has some limitations. First, identifying zone I
from RetCam images in ADS is based on the detection of the
disc and the macula [7], [9], [19]. Therefore, the fundus image
without the two structures cannot be analyzed. However, each
infant is fully photographed in a standard 10 orientations
during the screening, and at least three images contain two
structures. Therefore, identifying zone I of RetCam images
can be judged by the images containing two structures and the
images with only the disc or macula can be identified based
on the images containing two structures. This study chooses
fundus images with 130 degree, which is unilateral bit image
and cannot cover the zone I, II, and III, simultaneously. As
a result, our method can only accurately identify zone I of
RetCam images. zone II and III still need professional oph-
thalmologist to label. In this study, we identify zone I from
RetCam images, rather than zone I ROP. However, we have
previous publications regarding the ROP recognition. We can
realize to identify zone I ROP based on our method and the
Automated Screening System [32].

Second, our proposed method needs to explore the mosaic
algorithm for diagnosis application. Images of the standard
10 position fundus images need to be automatically mosaiced
and the model identifies zone of the mosaic fundus images.
The mosaic panoramic images can be automatically divided
into zone I, II, and III by the algorithm. It not only solves
the problem that zone I in part of the images with optic
disc or macula cannot be identified by our algorithm, but
also solves the problem that the unilateral bit image can-
not distinguish zone II and III. To improve the accuracy of
identifying zone I, we also strive to combine medical knowl-
edge, clinicians’ experience, and optical knowledge to further
improve model accuracy, which could even outperform the
performance of the expert and would be potentially accepted
by ophthalmologists, eventually.
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Third, in this study, the optic disc and macular center of
images were first detected by the algorithm, and then zone I
was calculated according to the ICROP based on two struc-
tures [7], [9]. Therefore, the identification accuracy of zone I
of images depends on the detection accuracy of optic disc
and macula. By the annotated data, the algorithm can auto-
matically determine the center of the optic disc and macula.
However, the macula of the newborn is not fully developed,
ophthalmologists are suffered from the subjectivity when
marking fovea centralis. The more accurate annotated data
can lead to higher model accuracy. The experts’ level deter-
mines the model accuracy to some extent [24]. According to
the data of training set, the developed model may deviate from
the position of macula due to the subjectivity of the experts
in macular annotation, which will eventually lead to a certain
deviation of zoning results. For this reason, we will apply
more RetCam images to train more robust model and reduce
the influence of the experts’ subjectivity.

Finally, our algorithm still can identify zone I of some
images with low accuracy due to the low segmentation accu-
racy. It is believed that the difference of image clarity, res-
olution, and focal length will result in the image hetero-
geneity, which may also have some negative impact on the
algorithm accuracy. This study has not explored ROP staging
and diagnosing some special categories (e.g., pre-threshold
disease, threshold disease, and AP-ROP). Future research
and exploration by professional clinicians still need further
development.

V. CONCLUSIONS

A new deep learning framework is successfully developed
to automatically identify zone I from RetCam images in
infants. The model shows that an accuracy of 91% in zone |
identification is achieved when the IOU threshold is 0.8. The
promising identification accuracy results show its extensive
application, which is expected to reduce the workload of
ophthalmologists. However, compared with the existing oph-
thalmological examination, the efficiency and the algorithm
feasibility in real clinical application still needs more in-depth
observation and research [24]. Nevertheless, the algorithm
provides new opportunities and directions for the grading of
ROP. The algorithm can also be applied in the identification
and screening of other retinal diseases, which require future
exploration and research by clinicians. Our future work will
focus on the further development of algorithms and the larger
datasets for training, which will eventually push forward the
medical reform in the new situation.
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