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ABSTRACT Cyber security has become a matter of a global interest, and several attacks target industrial
companies and governmental organizations. The advanced persistent threats (APTs) have emerged as a new
and complex version of multi-stage attacks (MSAs), targeting selected companies and organizations. Current
APT detection systems focus on raising the detection alerts rather than predicting APTs. Forecasting the
APT stages not only reveals the APT life cycle in its early stages but also helps to understand the attacker’s
strategies and aims. This paper proposes a novel intrusion detection system for APT detection and prediction.
This system undergoes two main phases; the first one achieves the attack scenario reconstruction. This
phase has a correlation framework to link the elementary alerts that belong to the same APT campaign. The
correlation is based on matching the attributes of the elementary alerts that are generated over a configurable
time window. The second phase of the proposed system is the attack decoding. This phase utilizes the
hidden Markov model (HMM) to determine the most likely sequence of APT stages for a given sequence of
correlated alerts. Moreover, a prediction algorithm is developed to predict the next step of the APT campaign
after computing the probability of each APT stage to be the next step of the attacker. The proposed approach
estimates the sequence of APT stages with a prediction accuracy of at least 91.80%. In addition, it predicts
the next step of the APT campaign with an accuracy of 66.50%, 92.70%, and 100% based on two, three, and
four correlated alerts, respectively.

INDEX TERMS Advanced persistent threat, intrusion detection system, alert correlation, hidden Markov
model, attack prediction.

I. INTRODUCTION
Cyber attacks have become more widespread and several
attacks have made headline news over the past decade, target-
ing industrial companies and governmental organizations [1].
These attacks have caused substantial financial losses and
were able to hinder operation of core public services. Fur-
thermore, since the Internet of Things (IoT) has emerged,
the number of devices connected to the Internet is increasing
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rapidly and becoming easy targets for cyber attacks [2].
The global cost of cybercrime has now reached $600 billion
according to a McAfee report in 2018 [3]. The term cyber
attack refers to criminal activities launched via the Internet,
aiming usually at financial gain or confidential data exfil-
tration. Additionally, an attacker can spy and monitor the
target organisation and disrupt its functions, due to political,
ideological or criminal motivation [4].

To mitigate cyber attacks, cyber security analysts heav-
ily depend on Intrusion Detection Systems (IDSs) which
can detect malicious activities by matching patterns of
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known attacks (i.e. signature-based) or observing anomaly
activities (i.e. anomaly-based) [5]. In signature-based IDS,
the detection is based on a comparison between themonitored
data/information and a signatures-database. This database
contains a list of known attack signatures. If a match is found,
the monitored data/information is reported as malicious and
an alert is raised. In anomaly-based IDS, the detection is
based on a comparison between the monitored activity and
a baseline profile. This baseline profile is built within the
training phase and a threshold is set. Any deviation for the
monitored activity from the baseline profile is considered as
malicious.

Multi-Stage Attacks (MSAs) are a cyber security threat
in which the attack campaign is performed through several
stages. In recent years, Advanced Persistent Threats (APTs)
have emerged as a sophisticated version of MSAs [6]. This
type of cyber threat is conducted by highly skilled and moti-
vated cyber-criminals, aiming at spying and data exfiltration.
Individually, each APT stage can appear as a benign one and
does not raise any suspicion. Furthermore, the attack could
last for weeks or years, while exfiltrating the target’s data
without being detected. The detection of an APT requires
an IDS to correlate several alerts during the APT life cycle
to reveal the attack campaigns, i.e. to reconstruct the attack
scenario [7]. The traditional pattern matching methods are
not applicable for APT detection, as these methods require
that all possible actions to be well defined. Unfortunately, this
is not the case of an APT for several reasons. For instance,
there is not any specific sequence of stages to perform the
attack campaign. An attacker does not need to follow a
precise order of stages. On the contrary, the attacker needs
to adapt the implementation of a successful APT campaign
to the actual characteristics and current configuration of
the targeted system. The techniques used during this pro-
cess may vary from pre-existing and well-known penetration
tools to bespoke and unique software. Moreover, there are
many factors that could halt the APT campaign, and there
is not a particular point at which an APT finishes. Once the
attacker takes control of a system and information has been
exfiltrated, the attacker could abandon the attack, or keep
access to the system for months or years after the initial
attack. Additionally, the detection of one or more stages
of APT can be missed due to technical limitations of net-
work devices or due to the attacker using new techniques
to compromise current or new vulnerabilities. These chal-
lenges have brought much interest in the research and invest-
ment towards developing new tools and approaches for APT
detection.

The Hidden Markov Model (HMM) is a statistical model
used for representing probability distributions over sequences
of observations [8]. This model has been used in several
domains such as speech recognition [9], text understand-
ing [10], image identification [11] and microbiology [12].
HMMhas also been utilized in [13], [14] to trainmodels using
observed network traffic under normal network conditions
and to detect diverting sequences of traffic observations.

These diversions could indicate network anomalies, either
genuine or malicious. The HMM has the potential to detect
MSAs even if an IDS misses the detection of certain
stages of the attack. Hence, HMM addresses the chal-
lenge of providing complete information on the attack
campaign.

This work proposes a novel IDS for APT detection and
prediction. The proposed system undergoes two main phases,
the first one is for attack scenario reconstruction, and the sec-
ond phase is for attack prediction. The first phase of the
proposed system is presented in our previous work [15]. This
has been extended using the second phase of the proposed
approach by incorporating HMM. The first phase of this
approach achieves the attack scenario reconstruction based
on alert type and spatiotemporal characteristics. This phase
has a correlation framework to link the elementary alerts that
belong to the same APT campaign. The correlation is based
on matching the attributes of the elementary alerts which
are generated over a configurable time window. The second
phase of the proposed approach is the generation of proba-
bilities and prediction of various stages of APT. This sec-
ond phase, called the attack decoding, utilizes the HMM to
determine the most likely sequence of APT stages for a given
sequence of correlated alerts. Moreover, this phase predicts
the next step of the APT campaign based on the current and
past observations and the transition probabilities of the HMM
model.

The contribution of this work is summarized as follows:
• Relevant HMM has been developed for APT predic-
tion. This module employs the Viterbi algorithm to
determine the most likely sequence of APT stages for
the sequence of correlated alerts linked by the corre-
lation framework in the first phase of the proposed
IDS. Forecasting the APT stages not only reveals the
APT life cycle in its early steps but also helps to
understand the attacker’s strategies and aims. Addi-
tionally, predicting the next step of the attacker plays
a key role in the attack response and enables the
network security team to take the required actions
before the attacker reaches the final stage of data
exfiltration.

• Potential of the new HMM approach for APT is demon-
strated using a carefully designed synthetic data. Due
to the lack of relevant publicly available data for APT
scenarios, the demonstration of the HMM approaches
using the synthetic data, as made available in [16], will
be beneficial to stimulate further research interests in the
research community.

The remainder of this paper is organized as follows.
In Section II, the most relevant previous works are reviewed.
Section III defines the APT life cycle and provides an
overview of the methods and algorithms used in this work.
The proposed system for APT detection and prediction is
described in Section IV. Section V presents the performance
evaluation of the proposed system and discusses the results.
Finally, conclusions are drawn in Section VI.
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II. RELATED WORK
The detection of APTs is a challenge for current IDSs, and
much research has been conducted to address this type of
MSA. In [17], the authors propose SPuNge, a host-based
APT detector. The proposed system monitors the traffic of
each host in the network and analyses malicious URLs. These
malicious connections can be established by the hosts via
an Internet browser or by a piece of malware installed on
the compromised machine. Then, all the machines that show
similar activities are grouped and considered as part of an
APT campaign. Although this system can raise an alert on the
APT attack, it does not consider any type of alert correlation
between the APT stages, i.e. the APT scenario cannot be
revealed.

The work in [18] utilizes the algorithm Data Leakage
Prevention (DLP) to detect data exfiltration, which is the
final stage of the APT campaign. In particular, the pro-
posed methodology uses a DLP algorithm to monitor the
network traffic and analyses the transferred data over the
connections to detect any data leakage. Then, fingerprints
are produced based on the attributes of the leaked informa-
tion. This methodology employs external cyber counterintel-
ligence (CCI) sensors in order to track the location or path
of the leaked data. This system is based on detecting the
final stage of APT, data exfiltration, but it does not detect
the early stages of APT or provide an early alarm to mitigate
the attack campaign before the damage of data exfiltration
occurs. Furthermore, the external CCI sensors have access to
the data traffic which might create an issue in terms of data
privacy.

An approach for APT detection, called TerminAPTor,
is presented in [19]. This approach tracks the information
flow to correlate alerts generated within the APT campaign.
This correlation is based on the similarity of alerts’ attributes
which can be generated by another IDS like Snort. The system
performance was evaluated by simulating two APT scenarios
and the authors mentioned that the false positive rate should
be improved.

The authors in [20] describe an APT detector based
on command and control (C&C) domain detection. After
investigating the C&C communication of APTs, the authors
proposed a new feature called Independent Access. This
methodology assumes that the access to C&C domains is
independent while the access to legal domains is correlated.
Thus, this methodology analyses the Domain Name Sys-
tem (DNS) records and applies RIPPER classification algo-
rithm to classify the domains into C&C domains and legal
ones. One limitation of this detector acknowledged by the
authors is that it cannot detect the C&C domains if the C&C
communication occurs while the user is surfing the Internet.

An active-learning-based system was introduced in [4].
This system detects malicious PDF files which can be used to
install malware and infect the network machines as part of the
APT life cycle. The system analyses the network connections
and gathers all PDF files. Then, a developed module is used
to filter all known benign and malicious files. This module

utilizes white lists, reputation systems and antivirus signature
repository to achieve its functionality. Next, the remaining
unknown files are checked for their compatibility as viable
PDF files. According to the compatibility test, these files are
added to white or blacklists to achieve the active learning
of the system. This system detects an APT only if a mali-
cious PDF file is used within the APT campaign. Meaning,
the detection of the APT can easily be evaded when the
attacker uses other techniques, rather than malicious PDFs,
to infect the network machines.

Spear phishing is a common technique used to get the Point
of Entry (PoE) into the targeted system in an APT. The work
in [21] presents a methodology to detect this technique. This
methodology is based on mathematical and computational
analysis to detect spam emails. It looks for specific words
and characters, called tokens (such as click here, free, Viagra,
replica) to distinguish spam emails. These tokens should be
defined to the detection algorithm. Nonetheless, it is not
guaranteed that the spam email will include one of these
tokens, which is a limitation for this methodology.

Focusing on HMM based techniques, the work in [22]
utilizes the HMM to rank the APT scenarios which are recon-
structed by other tools of alerts correlation. It considers the
APT stages as the HMM states and the correlated alerts as
observations. Then, using the HMM parameters (transition,
emission and initial probabilities), the proposed approach
computes a probability score for each sequence of linked
alerts. Following that, the APT scenarios are ranked accord-
ing to the highest probability. Thus, the APT scenarios with
low probabilities are considered having wrongly-correlated
alerts. In contrast, in our work, we utilize the HMM to esti-
mate the most likely sequence of stages for a given sequence
of correlated alerts. Furthermore, we use the HMM to predict
the next step of the APT campaign.

A probabilistic approach to predict a network intrusion
was presented in [14]. The proposed approach uses a Markov
chain to model network events. This system computes the
probability of a network event and makes a decision on the
abnormality based on this probability. The system undergoes
three main phases: in the first phase, the network states are
defined using K-means clustering algorithm. In the second
phase, the state transition probability matrix and the initial
probability distribution are computed based on Markov chain
assumptions. In the final phase, the probability of a malicious
event is stochastically calculated. This system is predicting
malicious activities in general, and the states of Markov
chain model are defined by the k-means algorithm. However,
our approach addresses MSAs and the states of HMM are
modeled on the APT life cycle.

The work in [23] utilizes an HMM to propose an adaptive
risk approach for the prediction of MSAs in cloud systems.
This approach measures the potential impact of a malicious
activity on assets based on its occurrence probability. First,
the system gathers different events from several detectors.
Then, these events are structured in the IDMEF protocol [24]
for the purpose of event correlation. The events are compared
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with a set of attack rules and considered correlated if they
were triggered by the same rule. Next, the HMM is used to
estimate the current state of the cloud system and measures
the threat level. This approach assumes four states for the
cloud system: Hale (H): indicates that there is no threat,
Investigate (I): indicates that there is an attack attempt, Attack
(A): indicates that an attack is in progress, Penetrate (P):
indicates that an attack is complete. The observations are
events or alerts gathered from different sensors and cause the
system to transit from one state to another. These observations
are linkedwith the system states and classified into four threat
levels: Low, Medium, High, and Very high. Thus, the HMM
can estimate the system status utilizing Viterbi algorithm
and measures the risk based on the alert threat level. This
system assumes the states of HMM and estimate the threat
level based on the current observation. However, our system
considers the typical APT stages as states. Furthermore, our
system goes beyond estimating the current state by predicting
the next step of the attacker.

III. PRELIMINARIES
This section provides an overview of APT and the mathemat-
ical framework of relevant algorithms used by the proposed
prediction system. These are the Markov chain, the Hidden
Markov Model, the Viterbi algorithm and the Baum-Welch
algorithm.

A. ADVANCED PERSISTENT THREAT LIFE CYCLE
An APT is a cybercrime category directed at espionage and
confidential data exfiltration, which requires a high degree
of stealthiness over a long period of operation in order to
be successful. Figure 1 depicts various stages of an APT
attack [25].

1) Intelligence gathering: This initial stage aims to get
information regarding the target organisation, such
as its structure, IT environment and even about its
employees. For this purpose, the attacker can use public
sources (social media, webpages, etc) and social engi-
neering. The information gathered during this stage
will allow the attacker to craft the spear phishing email
which is the most common technique to get the point
of entry [25].

2) Initial compromise (Point of Entry): Performed by use
of social engineering and spear phishing, or by exploit-
ing software vulnerabilities. Another popular infection
method is to plant a piece of malware into a website
which the victim employees are likely to visit.

3) Command and control (C&C) communication: After
an organization’s perimeter has been breached, con-
tinuous communication between the infected host and
the C&C server should be preserved to instruct and
guide the compromised machine. These communica-
tions are usually protected by Secure Sockets Layer
(SSL), making it difficult to identify if the traffic is
malicious. Another technique that can be used in this
stage is domain flux technique [26]; an exploited host

FIGURE 1. Typical stages of an APT attack [25].

may try to connect to a large number of domain names
which are expected to be C&C servers. The goal of this
technique is to make it difficult or even impossible to
shut down all of these domain names.

4) Lateral movement: Once the target’s network has been
accessed, the attacker laterally moves throughout the
target’s network searching for new hosts to infect. The
attacker can use brute force attack to obtain informa-
tion such as a user password or personal identification
number (PIN) [27]. Another technique is pass the hash
attack, in which the attacker steals a hashed user cre-
dential and, without cracking it, reuses it to trick an
authentication system into creating a new authenticated
session on the same network [28].

5) Asset discovery: This stage aims to identify and find
the noteworthy assets within the target’s network for
future data exfiltration. Port scanning can be used for
this step [29].

6) Data exfiltration: Data of interest is transmitted into
external servers which are controlled by the attacker.
There are some techniques used for data exfiltration
like built-in file transfer, via FTP or HTTP and via the
Tor anonymity network [30].

B. HIDDEN MARKOV MODEL
In a Markov chain, the states are visible and the transition
probabilities can be obtained. Thus, the future state qt+1 is
predicted based on the current state qt . Therefore, theMarkov
chain is sometimes called the observed Markov model. How-
ever, in other cases, some of the states are not directly
observed and only observations related to these hidden states
are observed. The observation likelihoods are called emission
probabilities. For a given set ofN states, S = (s1, s2, . . . , sN ),
and discreet observation symbols, ŌM = ō1, ō2, . . . , ōM ,
the Hidden Markov Model (HMM) is defined by the state
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transition matrix, A = {ai,j}, observation emission matrix,
B = {bi(ōk )}, and initial matrix, πi, where i, jε[1, . . .N ]
and kε[1 . . .M ] [31]. ai,j is the probability of moving from
state i to state j, bi(ōk ) is the probability of an observation,
ōk , emitted at state i, and πi is the initial probability of
HMM to start in state i. Thus, an HMM is fully described by
λ = (A,B, π).
For a sequence of observations, Ot = (o1, o2, . . . ot ), and

a sequence of states, Qt = (q1, . . . , qt ), a first-order HMM
assumes that the probability of a particular state depends only
on the previous state:

P(qt |q1, q2, . . . qt−1) = P(qt |qt−1)

Another assumption for a first-order HMM is that the
probability of an observation, ot , does not rely on other
observations. It is only based on the state qt that gener-
ates the observation, regardless of other previous states or
observations [31]:

P(ot |q1, . . . , qt , o1, . . . , ot−1) = P(ot |qt )

1) THE FORWARD - BACKWARD ALGORITHM
To determine the probability of an observation sequence

occurring under an HMM, P(OT |λ), all possible path prob-
abilities would have to be considered, since the actual state
sequence is hidden. For an HMMwith N hidden states and T
observations, there areNT possible hidden sequences. There-
fore, the number of possible paths increases exponentially
with the length of the observation sequence OT .

However, the complexity of the algorithm can be reduced
by leveraging on the Markov property and using dynamic
programming. A Forward and Backward algorithm is com-
monly used for this purpose. The Forward (FW) algorithm
computes the observation probability by summing over the
probabilities of all possible state paths that could gener-
ate the observation sequence, as in the following three
steps [32]:

The initialization step (t = 1),

α1(i) = πibi(o1) (1)

The induction step (for 1 < t ≤ T ), which has complexity
of O(NT):

αt+1(j) =

[
N∑
i=1

αt (i)ai,j

]
bj(ot+1) (2)

And the termination step, t = T , has complexity O(N),

P(OT |λ) =
N∑
i=1

αT (i) =
N∑
i=1

P(o1, o2, . . . , oT , qT = si) (3)

Thus, in total the FW algorithm has complexity in O(N 2T ).
Figure 2 shows an example of a forward trellis which has

N = 2 states and t = 3 observation time slots. The output of
the Forward algorithm is the N × t array α. Each αt (j) value
represents the probability of being in state j after seeing the
first t observations, given the HMM model.

Assume, as an example, the HMM matrices to be:

Suppose the observation sequence is Ō3 = (ō2, ō1, ō3),
the α parameters calculated in the first two stages of Figure 2
are shown below.

α1(1) = π1 ∗ b1(ō2) = 0.7 ∗ 0.4 = 0.28

α1(2) = π2 ∗ b2(ō2) = 0.3 ∗ 0.3 = 0.09

α2(1) = (α1(1) ∗ a1,1 + α1(2) ∗ a2,1) ∗ b1(ō1)

= (0.28 ∗ 0.6+ 0.09 ∗ 0.3) ∗ 0.1 = 0.0195

α2(2) = (α1(1) ∗ a1,2 + α1(2) ∗ a2,2) ∗ b2(ō1)

= (0.28 ∗ 0.4+ 0.09 ∗ 0.7) ∗ 0.6 = 0.105

FIGURE 2. The FW and Viterbi algorithms for an HMM of two states and
having three observations. For every time instance, the forward
probabilities for the FW and Viterbi algorithms, i.e. the α and δ
parameters, are indicated [33]. Note, observations might occur randomly
and out of sequence.

The backwards part of the Forward-Backward algorithm
computes β parameter, as follows [32]:

βT (i) = 1, ∀i = 1 . . .N (4)

βt (i) =
N∑
j=1

ai,jbj(ot+1)βt+1(j), (5)

∀i = 1 . . .N and t = T − 1,T − 2, . . . , 1

2) THE VITERBI ALGORITHM
Let us suppose that we have a sequence of observations, OT ,
and we want to determine the most probable sequence of
states, QT , given the HMM. This task is known as decoding.
One approach to find the sequence of states is to calculate
the probability of the observation sequence for each possible
path based on the Forward algorithm. Then, the most likely
sequence of states can be determined by tracing back the path
with highest likelihood value starting from the most likely
state at the end of observation.
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The Viterbi algorithm introduces the δ parameter in a
similar manner to α of FW algorithm, but instead of summing
the probabilities from all prior states, only the maximum
likelihood value is considered. In addition, the ψ parameter
keeps track of the prior state that maximizes this likelihood
towards all states and at each time instance. There are three
steps for the Viterbi algorithm, as well:

The initialization step (t = 1),

δ1(i) = πibi(o1) same as for α in eq.(1)

ψ1(i) = 0

The recursion step, for 1 < t ≤ T and for 1 ≤ i ≤ N

δt (j) = max
1≤i≤N

{δt−1(i)ai,j}bj(ot ) (6)

ψt (j) = argmax
1≤i≤N

{δt−1(i)ai,j} (7)

The termination step (t = T ):

Max. probability: P(T ) = max
1≤i≤N

δT (i) (8)

Best last state: qT = argmax
1≤i≤N

δT (i) (9)

Previous best states: qt = ψt+1(qt+1) (10)

Figure 2 also shows the δ values. At t = 1 the calculation
of δ is the same as for α. Then, we have:

δ2(1) = max(δ1(1) ∗ a1,1, δ1(2) ∗ a2,1) ∗ b1(ō1)

= max(0.28 ∗ 0.6, 0.09 ∗ 0.3) ∗ 0.1

= max(0.168, 0.027) ∗ 0.1 = 0.168 ∗ 0.1 = 0.0168

δ3(1) = max(δ2(1) ∗ a1,1, δ2(2) ∗ a2,1) ∗ b1(ō3)

= max(0.0168 ∗ 0.6, 0.0672 ∗ 0.3) ∗ 0.5

= max(0.01008, 0.02016) ∗ 0.5 = 0.01008

3) THE BAUM-WELCH ALGORITHM
The Baum-Welch (BW) is a learning algorithm used to opti-
mize the HMM transition and emission probabilities given
a set of sequences of observations. It works by computing
an initial estimate for these probabilities and then iteratively
refining these estimates [31].

The algorithm starts with setting random initial param-
eters for the HMM. It initially uses the forward-backward
parameters α and β to achieve its functionality, but then also
introduces, using Bayes’ theorem and expectation maximiza-
tion [32], the following two parameters:
ξt (i, j) is the probability of being in state i at time t , transi-

tioning to state j at time t + 1, given the observed sequence:

ξt (i, j) = P(qt = si, qt+1 = sj|OT , λ)

=
αt (i)ai,jbj(ot+1)βt+1(j)∑N

i=1
∑N

j=1 αt (i)ai,jbj(ot+1)βt+1(j)
(11)

γt (i) is the ξ probability marginalized over j:

γt (i) = P(qt = si|OT , λ) =
N∑
j=1

ξt (i, j)

=
αt (i)βt (i)∑N
i=1 αt (i)βt (i)

(12)

Next, the HMM parameters λ are updated, considering one
observation sequence from the set, by computing π∗i , a

∗
i,j and

b∗i (ōk ), with π
∗
i being the expected frequency spent in state i

at time 1.

π∗i = γ1(i) (13)

a∗i,j is the expected number of transitions from state i to
state j over the overall number of transitions from state i.

a∗i,j =

∑T−1
t=1 ξt (i, j)∑T−1
t=1 γt (i)

(14)

b∗i (ōk ) is the number of expected transitions from state i, when
emitted observation is ot = ōk , over the number of expected
transitions.

b∗i (ōk ) =

∑T−1
t=1 γt (i) , if ot = ōk , else 0∑T−1

t=1 γt (i)
(15)

IV. PROPOSED SYSTEM
The proposed system, for APT detection and prediction,
undergoes two main phases: attack scenario reconstruction
and attack decoding. This work focuses on the second phase
of the proposed approach. This section introduces briefly
the attack scenario reconstruction and explains the attack
decoding phase.

A. ATTACK SCENARIO RECONSTRUCTION
As shown in Figure 3, elementary alerts, raised by individual
detection modules or third party IDS, are fed to this phase.
These elementary alerts are triggered for each malicious
activity observed over the APT life cycle. Each alert has seven
attributes: alert type (alert_type), alert time (timestamp),
source and destination IP addresses (src_ip, dest_ip), source
and destination ports (src_port, dest_port) and infected host
IP (infected_host). A reconstruction framework has been
developed to find alerts that could belong to the same APT
scenario. This framework runs through three main steps:
(1) Alert filtering, which filters redundant or repeated alerts;
(2) Alerts clustering, which clusters alerts that may belong to
the same APT scenario; and (3) Correlation indexing, which
evaluates the correlations between alerts of each cluster. The
correlation is based on matching the attributes of the ele-
mentary alerts which are generated over a configurable time
window (correlation period).

For each new alert, the alert correlation framework (ACF)
checks all stored alerts, which have been triggered over the
last time window and proceeds to assign each alert to a
specific APT scenario based on the following rules:

• Infected host: Two alerts are considered correlated if
they have the same infect_host attribute, i.e. the same
src_ip or dest_ip.

• Alert stage: Multiple alerts of different types pointing
to a particular stage belong to their respective APT
scenario.
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FIGURE 3. The architecture of the proposed system. There are two phases: the first one is attack scenario reconstruction
using an alert correlation framework [15] left side, and the second phase is attack decoding using a HMM right side.

• Alert type: Similarly, multiple alerts of the same type
pointing to a particular stage belong to their respective
APT scenario.

• Alert time: Alerts belonging to a specific APT scenario
should be triggered within a correlation time, and corre-
spond to the APT life cycle.

Thus, the ACF generates two types of alerts:
• apt_full_scenario_alert: This alert is generated when
ACF detects a fullAPT attack scenario during the corre-
lation time. A full attack scenario is the one in which all
possible stages are detected.

• apt_sub_scenario_alert: This alert is generated when
ACF detects a subset of correlated stages during a con-
figurable time window.

For more details about the attack scenario reconstruction
phase, the reader is referred to our previous work in [15].

B. ATTACK DECODING
Within the attack decoding phase, based on the current
sequence of correlated alerts from the ACF, the following two
functions are performed:
• Determine the most likely sequence of APT stages for
a given sequence of correlated alerts, using the Viterbi
algorithm.

• Predict the next stage of the APT campaign, using the
transition and emission probabilities.

These functions assist the network security team to perform
forensic analysis on the alerts and proceed by denying the
attacker to complete the APT life cycle by mitigating actions
against the predicted next stage.

This phase leverages HMM to develop the attack Decoding
Module (DM). This module makes use of the ACF output in
twoways. Firstly, during training, the ACF correlation dataset
can be gathered to construct a historical record of the APT
strategies occurring in the monitored network and learn the
HMM parameters. Secondly, during testing, the ACF will
generate a sequence of alert observations that will be used
by the proposed HMM to predict the next APT stage.

As illustrated in Figure 1, the APT life cycle has six stages
and the attacker might go through all or several of them
to complete the campaign. Table 1 shows the APT stages
and alerts generated within the attack scenario reconstruction
phase. Specifically, there are eleven types of alert observa-
tions considered for the HMM, as seen in Table 1, with the
addition of the nc_alert generated by ACF.
Additionally, DM considers a non-complete state as a sixth

state for the HMM. This state is considered when the cor-
relation time of ACF is passed and the APT campaign does
not reach the final stage of APT (data exfiltration). To indi-
cate the sixth state, ACF generates nc_alert (non-complete
alert) to imply that the correlation time has passed before the
current correlated alerts complete the APT scenario. Thus,
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TABLE 1. The proposed detection modules for the APT life cycle .

DM considers six states for the HMM, which are: point of
entry (S1), C&C communications (S2), lateral movement (S3),
asset/data discovery (S4), data exfiltration (S5) and non-
complete state (S6).
Table 2 shows a sample of 10 APT scenarios from the

correlation dataset. Each scenario contains a sequence of cor-
related alerts corresponding to a known sequence of stages.
Note that some of these scenarios are incomplete, i.e. the
correlation time passed without ACF being able to link other
alerts for the remaining stages. For such a case, ACF gener-
ates the nc_alert.

TABLE 2. A sample of 10 APT scenarios from the correlation dataset used
to train the HMM.

To train the HMM, DM applies the Baum-Welch algo-
rithm on the correlation dataset to train the HMM transition,
emission and initial probabilities. Using these parameters
(A,B, π), DM utilizes the Viterbi algorithm to determine the
most likely sequence of APT stages, given the alert observa-
tions. To predict the next stage of the attack, DM uses the FW
α parameters and the transition probabilities, A, as explained
later in the end of this section.

1) DM TRAINING
DM utilizes the historical record of alert observations to learn
and optimize the HMM parameters, A, B and π using the
Baum-Welch (BW) algorithm as shown in Algorithm 1. In the
beginning, the HMM parameters are randomly initialized,
as seen on line 2. Then the α and β parameters of the FW and
BW algorithms are calculated, on line 3, as shown in equa-
tions 2 and 5. As described in Section III-B.3, BW proceeds

Algorithm 1 Implementation Pseudo-Code of DM Training
to Learn the HMM Parameters
1: Input: Set of sequence of correlated alerts OT
2: Randomly initialize the HMM parameters A,B, π
3: Compute FW and BW parameters: αt+1(i), βt (i)

αt+1(j) =
∑N

i=1 αt (i)ai,jbj(ot+1)
βt (i) =

∑N
j=1 ai,jbj(ot+1)βt+1(j)

4: Calculate the values ξt (i, j), γt (i)
ξt (i, j) =

αt (i)ai,jbj(ot+1)βt+1(j)∑N
i=1

∑N
j=1 αt (i)ai,jbj(ot+1)βt+1(j)

γt (i) =
αt (i)βt (i)∑N
i=1 αt (i)βt (i)

5: Update the HMM parameters π∗i , a
∗
i,j, b

∗
i (vk )

π∗i = γ1(i)

a∗i,j =
∑T−1

t=1 ξt (i,j)∑T−1
t=1 γt (i)

b∗i (ōk ) =
∑T−1

t=1 γt (i) , if ot=ōk , else 0∑T−1
t=1 γt (i)

6: Iterate the previous step until convergence
7: Output optimized A,B, π

by calculating the ξ and γ parameters, as shown on line 4.
Finally, BW considers all training observations sequences to
iteratively update the HMM parameters based on the equa-
tions 13, 14 and 15. At the end, BW will output the learned,
optimized λ = (A,B, π) parameters.

2) DETERMINING THE MOST LIKELY SEQUENCE OF APT
STAGES
Themost likely stages of the APT life cycle is estimated given
a sequence of correlated alerts, O, and the trained HMM, λ.
To accomplish this function DMutilizes the Viterbi algorithm
to calculate the probability of the observation sequence for
each possible path.

Algorithm 2, follows the foundations described in
Section III-B.2 to decode a sequence of observations
into the most probable sequence of states. In particular,
lines 2-6 initialize the δ and ψ parameters. Lines 7-13,
calculate the values of δ at each time instance and for each
state. Similarly, the prior state that maximizes the likelihood
of transitioning to each next state and at each time instance
is stored in the ψ variable. Therefore, the ψ variable is
very important for identifying the most likely path, given
the specific sequence of observation. This task is referred to
as backtracking, but before doing this, the last state needs
to be identified. So, for the last time instance, t = T ,
the highest probability, P(T ), and its respective state, qT , are
determined on lines 14 and 15, respectively. Finally, during
the termination/backtracking phase (lines 16-19), the most
likely states, at every time instance, are identified using
the ψ variable.

3) PREDICTING THE NEXT STEP OF THE APT CAMPAIGN
The next stage of the APT campaign is predicted given
the current sequence of the correlated alerts, O, the trained
HMM, λ, and leveraging the Forward algorithm. This module
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Algorithm 2 Implementation Pseudo-Code of DMDetermin-
ing the Most Likely Sequence of APT Stages
1: Input: HMM parameters λ = A,B, π , and sequence of

correlated alerts OT .
2: #Initialisation:
3: for each state i = 1, 2, . . . ,N do
4: δ1(i) = πi · bi(o1)
5: ψ1(i) = 0
6: #Recursion:
7: for each observation time t = 2, 3, . . . ,T do
8: for each possible prior state i = 1, 2, . . . ,N do
9: δt (j) = max1≤i≤N {δt−1(i)ai,j}bj(ot )
10: ψt (j) = argmax1≤i≤N {δt−1(i)ai,j}

11: P(T ) = max1≤i≤N δT (i)
12: qT = argmax1≤i≤N δT (i)
13: #Termination:
14: for t = T − 1, . . . , 1 do
15: qt = ψt+1(qt+1)
16: Output: The most likely sequence of states QT .

computes the probability of each APT stage to lead to any
possible next stage based on the occurred observations and
transition probabilities. Algorithm 3 shows the implementa-
tion pseudo-code of DM predicting the next step of the APT
campaign.

More specifically, the FW α parameters (see eq. 2) of every
intermediate stage, i, are calculated (lines 3-6). Considering
any possible next stage, j, might occur, the α parameters are
multiplied by the transition probability from any intermediate
stage, i, to each considered next stage, j, (lines 7-8). Note that
this task does not consider any observation for the next time
instance, ot+1, as this has not been emitted yet.
The stage that has the greatest probability is predicted as

the next stage of the APT campaign. It is helpful to alert
the security team in terms of a number of possible likely
threats, particularly when the greatest two probabilities are
very close. For this reason, in addition to the prediction of the
most likely next stage, the second most likely next stage is
also predicted (line 10).

V. EVALUATION RESULTS
Due to the lack of publicly available data of APT traffic,
we have constructed a 6000 alert synthetic dataset. Out of
these 6000 alerts, 3700 are APT alerts and 2300 are uncorre-
lated alerts, i.e. they do not belong to any APT campaign.
The proposed system might not be able to detect all the
stages of the APT campaign, yet it still can raise an alert,
apt_sub_scenario_alert, when two or more stages of APT are
correlated.

In a real network, the number of APT alerts should be
smaller than the number of uncorrelated alerts. Moreover,
it might not be possible to get as many as 3700 APT alerts
to train the prediction model. Therefore, a second synthetic
dataset has been built with a smaller number of APT alerts.

Algorithm 3 Implementation Pseudo-Code of DMPredicting
the Next Step of the APT Campaign
1: Input: HMM parameters λ = A,B, π and sequence of

correlated alerts OT .
2: for each possible next state j = 1, 2, . . . ,N do
3: for each possible intermediate state i = 1, 2, . . . ,N ,

and their respective observations do
4: Calculate the probability αt (i) as per eq. 2

5: αt (i) =
N∑
r=1

αt−1(r)a(r, i)bi(ot ), where r denotes

index of all possible prior states
6: Compute the probability P(qt+1 = sj) by multiplying

all α parameters, at time t with their respective transition
probabilities.

7: P(qt+1 = sj) =
N∑
i=1

αt (i)ai,j

8: Determine the two likely next states according to the
largest two probabilities on line 8.

9: Output: Prioritised probabilities for the next possible
APT stage.

The second dataset contains 361 APT alerts and 2300 uncor-
related alerts. This second dataset has been used to further
evaluate the robustness of the prediction model when trained
on a smaller number of APT alerts.

The APT alerts were generated to simulate APT scenarios
targeting a university campus network, i.e. using random IP
addresses from the campus network IP address range. Within
each APT scenario, the transition between stages follows the
APT life cycle as described in Section III-A. Furthermore,
the related alerts within each stage are randomly generated.

The datasets consider the attacker is moving forward
within the APT life cycle, i.e. the attacker does not go back
to a previous stage. Usually, the attacker can go back to a
previous stage if the current attack fails and the attacker has
to find another way to complete the APT campaign.In such
cases, the attacker’s alternative action will trigger a new APT
scenario within the simulation.

The sequence of correlated alerts generated within each
APT scenario should match at least one of the IP address
attributes, i.e. the correlated alerts should either have the same
src_ip, dest_ip or infected_host.Moreover, these alerts should
be triggered within the same time window, i.e. the timestamp
difference between the first and final alert of theAPT scenario
should not exceed the specified correlation time.

As six states were considered for theHMM, Figure 4 shows
all possible transitions between the HMM states over five
time slots. Note that S5 represents the final stage of APT, data
exfiltration, and S6 is the non-complete state. Therefore, there
are no transitions after these two states. Formore details about
generating the dataset, the reader is referred to our previous
work in [15].
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FIGURE 4. All possible transitions between the states of APT. The
continuous arrow lines represent all possible transitions starting from S1.
The dashed arrows lines represent all possible transitions starting from
the other states S2,S3, . . . ,S6.

Once the dataset was created, the ACF was applied
to reconstruct the attack scenarios and generate the cor-
related alerts. The correlation dataset was split into two
equal datasets, the first one was used to train the HMM
(train_dataset) and the second dataset was used to test the
DM functions (test_dataset).

A. TRAINING THE HMM
To train the HMM, DM applies the Baum-Welch algorithm
on the train_dataset. Considering the 6 states and 11 observa-
tions for the HMM, the following transition, A, and emission,
B, probabilities were obtained.

A =


0.0096 0.8798 0.0096 0.0096 0.00961 0.0817
0.0098 0.0098 0.3814 0.2593 0.1950 0.1446
0.0097 0.0097 0.0097 0.4445 0.2999 0.2263
0.0096 0.0096 0.0096 0.0096 0.7241 0.2374
0.9523 0.0095 0.0095 0.0095 0.0095 0.0095
0.9523 0.0095 0.0095 0.0095 0.0095 0.0095



B =


0.5454 0.2889 0.0917 0.0093 0.0093 0.0093
0.0093 0.0093 0.0093 0.4584 0.3360 0.1315
0.0092 0.0092 0.0092 0.0092 0.0092 0.0092
0.0091 0.0091 0.0091 0.0091 0.0091 0.0091
0.0091 0.0091 0.0091 0.0091 0.0091 0.0091
0.0091 0.0091 0.0091 0.0091 0.0091 0.0091

0.0093 0.0093 0.0093 0.0093 0.0093
0.0093 0.0093 0.0093 0.0093 0.0093
0.6288 0.2886 0.0092 0.0092 0.0092
0.0091 0.0091 0.9091 0.0091 0.0091
0.0091 0.0091 0.0091 0.9091 0.0091
0.0091 0.0091 0.0091 0.0091 0.9091


It is worth noting that both matrices A an B should not have

any zero-value element, otherwise, wemight getNaN error or

zero probabilities when running the DM algorithms. To avoid
this, the training algorithm replaces every zero probability
with a very small, but non-zero, value.

B. DM FUNCTIONS
DM initially estimates the sequence of stages based on the
first two alerts of the sequence. Then, it keeps updating the
predicted sequence of stages when detecting the successive
alerts. The Viterbi algorithm was run on each sequence of
observations, in the test_dataset, utilizing the trained HMM.
Then, the estimated states werematchedwith the ground truth
and the prediction accuracy was calculated as,

Prediction_accuracy = n/N , (16)

where n is the number of APT scenarios whose stages are
correctly estimated,N is the total number of APT scenarios in
the test_dataset. Table 3 shows the results of DM estimating
the most likely stages in terms of prediction accuracy.

TABLE 3. The prediction accuracy of DM estimating the most likely states
for a sequence of observations (3700 APT alerts and 2300 uncorrelated
alerts).

These results are based on the number of observations of
each sequence. To find the results based on two observa-
tions, from the test_dataset, only the scenarios which have
at least two observations were fed to DM, and similarly for
the results based on three, four and five observations. For
two-observations sequence, the prediction of the most likely
states has an accuracy of 91.80%. Furthermore, by having
more than two observations, the system achieves a prediction
accuracy reaching 100%.

To evaluate the prediction of the next step of the APT
campaign, given the current sequence of the correlated alerts,
Algorithm 3 was run on each sequence of observations
(each APT scenario), in the test_dataset, utilizing the trained
HMM. Thus, DM calculates the probability of each APT
stage to be the next step. Then, the two stages with the two
greatest probabilities are reported as a prediction for the next
step of the APT campaign. Table 4 shows the results of DM
predicting the next step of the attack. The prediction accuracy
is computed for two cases: (1) one-stage prediction, when
DM reports only one stage as a prediction for the next step
of the attacker; (2) two-stage prediction, when DM reports
two stages as a prediction for the next step of the attacker.

For one-stage prediction, predicting the next step based on
two observations generates an accuracy of 43.60%. Having
only two observations or detecting early stages does not
provide enough information to DM for an accurate predic-
tion. The prediction accuracy based on three observations is
almost 30% better than the two observation one. Based on
four observations, the system achieves a prediction accuracy
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TABLE 4. The prediction accuracy of DM predicting the next step of the
APT campaign (3700 APT alerts and 2300 uncorrelated alerts).

TABLE 5. The prediction accuracy of DM estimating the most likely states
for a sequence of observations (361 APT alerts and 2300 uncorrelated
alerts).

TABLE 6. The prediction accuracy of DM predicting the next step of the
APT campaign (361 APT alerts and 2300 uncorrelated alerts).

of 93.31%. Thus, correlating more alerts, which are added
to the sequence of observation, significantly improves the
DM performance. This is because the probabilities of these
observations contribute to the estimation of the next step.
Nevertheless, predicting the next step based on a less number
of observations provides the network security team with an
early alarm to performmore forensics andmitigate the attack.

For two-stage prediction, reporting two most likely stages
rather than one, as a prediction of the next step, has sig-
nificantly improved the system performance. Based on two
and three observations, the prediction accuracy is about 20%
better than the one-stage approach. Based on four observa-
tions, the system yields an accuracy reaching 100%. The
better performance of the two-stage prediction is achieved by
avoiding the incorrect predictions when the values of the two
greatest probabilities are very close to each other.

Tables 5 and 6 show further evaluation results using the
smaller synthetic dataset having 361 APT alerts. For estimat-
ing the most likely sequence of states, the prediction accuracy
based on two observations is just 1.8% less than that gained
when training on the larger dataset. The prediction based
on three, four and five observations remains perfect with an
accuracy of 100%.

Regarding the next step of the attacker, the prediction accu-
racy of the one-stage prediction approach is about 2%− 9%
less than that produced when training on the larger dataset.
For the two-stage prediction approach, based on two and three
observations, the prediction accuracy decreases by only 5.5%
and 2.59%, respectively. However, based on four observa-
tions, the system yields an accuracy reaching 100%.

In general, the system yields significant results even when
a smaller and more realistic number of APT alerts are used

for training. This indicates the robustness of our system in
terms of predicting the next step of the attacker.

VI. CONCLUSION
We proposed a probabilistic IDS for APT detection and
prediction. The proposed approach runs through two main
phases: the first one is for attack scenario reconstruction
using a correlation framework, and the second phase is for
attack decoding using an HMM. First, the APT scenario is
reconstructed by linking alerts which are observed during
an APT life cycle. The correlation of these alters is based
on matching the attributes of the generated alerts over a
configurable time window. Second, the sequence of the cor-
related alerts are fed to a decoding module, which utilizes the
HMM, to achieve two functions. The first one uses Viterbi
algorithm to estimate the most likely sequence of APT stages
for the sequence of alerts correlated in the attack reconstruc-
tion phase. The second function predicts the next step of
the attack campaign. This prediction algorithm makes use
of the HMM parameters to compute the probability of each
APT stage to be the next possible step of the attacker. Then,
the stage of the highest probability is predicted as the next
step.

For the first dataset considered, the proposed system esti-
mates the sequence of APT stages with a prediction accuracy
of 91.80%, for two-observation sequence, and 100% for a
sequence ofmore than two observations. Forecasting the APT
stages not only reveals the APT life cycle in its early stages
but also helps to understand the attacker’s strategies and aims.
For predicting the next step of the attacker, the prediction
accuracy depends on the number of observations. The predic-
tion accuracy will be higher, as more information is fed to the
prediction algorithm. For one-stage prediction, this system
has an accuracy of 43.60%, 72.77% and 93.31% based on
two, three and four observations, respectively. Furthermore,
the two-stage prediction improves the accuracy by nearly
20% based on two and three observations. Moreover, the pre-
diction accuracy reaches 100% when four observations are
used. A similar performance has also been seen for reduced
number of training data samples demonstrating robustness
of the methods against size of training dataset. Predicting
the next step of the attacker plays a key role in the attack
response and enables the network security team to take the
required actions before the attacker reaches the final stage of
data exfiltration.
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