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ABSTRACT This paper presents a robust adaptive backstepping control (RABC) for high-speed
permanent-magnet synchronous motor (HSPMSM) drive system. The proposed RABC achieves high
performance operation by incorporating an ideal backstepping controller (IBC), a recurrent radial basis
function neural network (RRBFNN) uncertainty observer, and a robust controller. The Lyapunov stability
theorem is utilized to design the IBC as a position controller of the HSPMSM servo drive system. To enhance
the disturbance rejection capability during parameter changes, certain information is needed within the
backstepping control law so that the system performance would not sorely be affected. To mitigate the need
for the lumped parameter uncertainties within the backstepping controller, an online adaptive observer based
on RRBFNN is designed to estimate the nonlinear parameter uncertainties. Moreover, the robust controller
is intended to retrieve the remaining of the RRBFNN approximation errors. To assure the stability of the
proposed RABC, the Lyapunov stability analysis is used to derive the online adaptive control laws. The
performance of the proposed RABC is verified by simulation and experimental analysis under different
operating conditions and parameter uncertainties. The test results validate the effectiveness of the proposed
RABC scheme to achieve preferable tracking performance regardless of external disturbances and parameter
uncertainties.

INDEX TERMS Adaptive control, backstepping technique, Lyapunov stability theorem, high-speed
permanent-magnet synchronous motor, radial basis function neural network (RBFNN), uncertainty observer.

I. INTRODUCTION
In recent years, several processing techniques of micro-
electromechanical systems (MEMS) have been developed
to reduce power dissipation, size, and weight of the micro-
motors. For special industrial applications, micromotors
are considered good candidates to achieve high perfor-
mance operation. The micro permanent-magnet synchronous

The associate editor coordinating the review of this manuscript and
approving it for publication was Gaolin Wang.

motors (micro PMSMs) provide high efficiency, robustness,
high power density, better reliability, and high speed oper-
ation compared to other micromotors [2], [3]. Furthermore,
micro PMSMs are good nominees for several industrial appli-
cations such as medical diagnostic, surgical devices, security
equipment, power driving devices in MEMS, and micro auto-
nomic robots [4].

In the literature, several topologies and control techniques
have been developed for micromotors [5]–[17]. In [5], a com-
parative analysis of inverter topologies for micromotors has
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been performed. A six-phase five-level inverter prototypewas
designed and tested at high frequency of 2 MHz. Various
speed sensorless control techniques have been introduced
for the micromotor drives [6]–[12]. For sensorless control of
micro PMSMs, the rotor positionmeasurement is estimated in
the control schemes [6], [7]. A micro PMSM control system
based on rotor position estimator and robust H∞ controller
was introduced in [8]–[10]. Several advanced control strate-
gies for micromotors have been studied in [11] and [12].
For micro PMSM system in [13], a robust identifier and
intelligent Petri-fuzzy neural network (PFNN) controller was
proposed. An adaptive inverse control scheme incorporates
an adaptive model for a micro PMSM drive system was
developed [14]. In [15], an optimal design of sensorless-
based speed controller of micro PMSM drives was proposed.
Moreover, a motion controller involves a tuning parame-
ter feed-forward function along with an optimal position
controller was implemented for micro PMSM system [16].
In [17], a sliding-mode observer has been incorporated in
a robust sensorless control method for high-speed micro
PMSM.

Since micro PMSM drive system is extremely nonlinear,
uncertain and has a wide range of operating conditions,
the linearization around one operating point cannot be used
to design the controller. To resolve this issue, nonlinear
control techniques can be effectively utilized [18]–[21]. The
recent development of backstepping control technique is a
robust and consistent design approach for nonlinear feed-
back control schemes, which provides an option to conform
the unmodeled and nonlinear impacts and parameter uncer-
tainties. Several backstepping control design approaches
have been suggested to handle nonlinear systems and
motor drives [22]–[26]. The adaptive backstepping control
approach is designed based on choosing recursively several
proper functions of state variables as pseudo control inputs
with reduced order subsystems of the whole control scheme.
A new pseudo control structure from preceding stages is
generated for each backstepping stage. The summation of all
Lyapunov functions resulted from each design stage produces
final Lyapunov function which fulfills the main design objec-
tive while terminating the actual control input of the feed-
back design. Therefore, favorable robustness features under
parameter uncertainties are achieved using the backstepping
control approach [18], [23]–[25].

Intelligent computation methodologies are attracting more
attention due to rapid industrial developments. Thesemethod-
ologies have been evolved to enhance the drive system
characteristics and to address the uncertainties and nonlinear-
ities [27]–[34]. The architecture of the radial-basis function
neural network (RBFNN) is designed based on the Kohonen
network model. The RBFNN is structured of input, hidden,
and output layers with normalized Gaussian activation func-
tions. Although the simple structure of the RBFNN, it is
one of the most preferable observers for position/speed con-
trollers and nonlinear mapping problems due to its superior
performance [35]–[40]. RBFNN has a quicker convergence

feature than standard multilayer-perception neural network.
RBFNN has a comparable characteristic as the fuzzy-logic
scheme, in which the output result is studied employing
the weighted-sum technique, and the number of nodes in
the hidden layer is similar the fuzzy system structured of
‘‘if-then’’ rules. Furthermore, the RBFNN is represented
by the field function which is the same as that of the
fuzzy-logic system with its premise part constructed of the
membership functions. Thus, the RBFNN can be incor-
porated effectively with nonlinear controllers designed for
dynamic systems with parameter uncertainties since it intro-
duces several features of its self-adaptation characteristics
and numerous facets [40]. In [41], an improved performance
of the shunt active power filter (APF) is accomplished by
developing a radial basis function neural network (RBFNN)
incorporated in an adaptive fuzzy-neural-network schematic.
The proposed RBFNN is used to enhance the dynamic model
of the APF through approximating its nonlinear function.
Furthermore, the Lyapunov stability analysis is utilized to
develop an online adaptive law in order to adjust the weights
of the proposed RBFNN. In [42], a nonsingular terminal slid-
ing mode backstepping (NTSMB) control approach is pro-
posed to design an adaptive fuzzy-neural-network (AFNN)
to mitigate the influence of the APF dynamic model uncer-
tainties and external perturbations. In addition, the NTSMB
robustness is enhanced by relieving the need of the preceding
information of system specifications. In [43], the perfor-
mance of the photovoltaic (PV)-based grid-connected single-
phase inverter is improved using disturbance observer-based
fuzzy sliding mode control (DOBFSMC) scheme. The pro-
posed observer is utilized as an online estimator of system
disturbances while the inverter output voltage is controlled
using a sliding mode controller based on the information gen-
erated by the observer. Meanwhile, the system performance
is enhanced through approximating the error value of the
observer using fuzzy control system. Moreover, a terminal
sliding-mode-based adaptive current controller for an APF
is proposed [44]. To assure stable sliding surface properties
with high accuracy, an adaptive finite-time fractional-order
control scheme is designed. A fuzzy-neural observer is con-
structed to estimate the unknown nonlinearities of the APF
while suppressing the current harmonic distortion. In [45],
a robust adaptive vibration control is desired for systems with
flexible risers subjected to input nonlinearities and unknown
external disturbances. To eliminate the influence of input non-
linearities and limit the vibrational offset, a robust adaptive
boundary controller is developed. Furthermore, the vibration
control approach along with the adaptive upper-bound law
is used to estimate the unknown disturbance boundary mag-
nitude. In [46], another adaptive neural network based on
backstepping approach is proposed to control a vibrating flex-
ible string system. The effect of system uncertainties, input
asymmetrical dead-region, and output restraint are consid-
ered. The proposed backstepping control strategy is designed
to assure that the output constraints are not overridden.Mean-
while, the neural network is constructed to recover the input
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FIGURE 1. The proposed RABC framework for the HSPMSM drive system.

asymmetrical dead-region effect and maintain the overall
string system stability. In [47], a new adaptive boundary
control system is proposed to suppress the vibration of a belt
system with axial movement and compensate for parametric
disturbances. In addition, a disturbance observe is designed to
mitigate the influence of the unknown boundary uncertain-
ties. In [48], another boundary control scheme is desired to
reduce the vibration of the flexible string system under the
effect of external perturbations and input dead-region. The
proposed scheme employs the backstepping control strategy
to mitigate the vibration of the string system. Subsequently,
the influence of the input dead-region is resolved using a
RBFNNwhile the external perturbations are handled utilizing
a disturbance observer.

This main contribution of this paper is to design a RABC
scheme for the HSPMSM servo drive using an intelligent
adaptive backstepping control system. The drive system
structure of the designed RABC is demonstrated in Fig. 1.
For industrial applications, the compounded disturbances and
accurate lumped parameter uncertainties are harsh to be iden-
tified beforehand of the HSPMSM control operation. Thus,
a novel scheme of nonlinear controller is considered here
based on the adaptive backstepping control with RRBFNN to
achieve the desired performance. Accordingly, the proposed
control scheme incorporates three parts: an IBC, a RRBFNN-
based uncertainty observer and a robust controller. Utilizing
Lyapunov stability theorem, an effective design of the pro-
posed RABC scheme is established to accurately control the
rotor position of the HSPMSM drive system. Meanwhile,
the uncertainty term existed in the backstepping control law
is needed to be recognized as a mean to reduce the severe
impact of the parameter changes on the system performance.
The IBC can effectively control, track and regulate the rotor
position of the drive system. Though, the drive system is still
significantly affected by virtue of the existing uncertainties

involving the unexpected disturbances, parameter variations,
and inevitable approximation errors. This problem can be
solved by using a RRBFNN uncertainty online observer to
adaptively estimate the nonlinear parameter uncertainties.
Furthermore, a robust controller is designed to retrieve the
remaining of the relative errors of the RRBFNN. The Lya-
punov stability analysis is used to assure the closed-loop
system stability theory. The validity of the proposed RABC
design is confirmed by test results (simulation and exper-
imentation) subject tooled variations and parameter uncer-
tainties. The test outcomes assure the effectiveness of the
proposed RABC design through eliminating the external
load perturbations in addition to compensating the parameter
uncertainties.

Finally, the contributions of the proposed RABC scheme
compared to other schemes are concluded as:
• The RRBFNN model has a new structure with the
advantage of recurrent property which handles interim
issues.

• The RRBFNN model has a quicker convergence feature
than standard multilayer-perception NN.

• The RRBFNN model has a comparable characteristic
as the fuzzy-logic scheme, in which the output result is
studied employing the weighted-sum technique,

• The RRBFNN model has a hidden layer with num-
ber of nodes similar to the fuzzy system structured of
‘‘IF-THEN’’ rules.

• The RRBFNNmodel is represented by the field function
which is the same as that of the fuzzy-logic system
with its premise part constructed of the membership
functions.

• The feedback of the output layer is added to accomplish
faster convergence time.

• The RRBFNN neurons are susceptible to past data due
to the self-connections of the hidden.
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• Compared with RBFN, faster convergence and higher
precision are achieved.

• In Section IV, it was validated that the proposed
RABC with the RRBFNN uncertainty observer main-
tains robust control features and effectively controls
the HSPMSM system under multiple perturbations and
parameter uncertainties.

This paper is structured as: Section II introduces the
HSPMSMdynamicmodeling with parameter uncertainty and
the problem description. In section III, the design proce-
dure of the RABC scheme is presented. First, the structure
of the RRBFNN uncertainty observer is provided. Then,
the detailed design steps for the proposed IBC are also pre-
sented in this section. Moreover, the adaptive training meth-
ods and the stability study of the designed RABC scheme
are illustrated in Section III. A development control board
(dSPACEDS1102DSP) is utilized to implement the proposed
control algorithms. The HSPMSM servo system has been
studied to examine the dynamic performance under two dif-
ferent conditions (extrinsic load perturbations and parameter
uncertainties). Section IV provides the test results to confirm
the validity of the proposed RABC design for the HSPMSM
servo system. Finally, Section V introduces conclusions and
summarizes the main contributions.

TABLE 1. The three-phase HSPMSM model parameters.

II. PROBLEM FORMULATION AND
MATHEMATICAL PRELIMINARIES
A. THE HIGH-SPEED PMSM DYNAMIC
MODEL WITH UNCERTAINTY
The field-oriented control (FOC) approach is applied with
the aim of achieving high torque capability of the HSPMSM
system by virtue of decoupling the d − q axes stator currents
in the rotor reference frame [18]. The motor parameters are
denoted in Table 1. The analytical modeling of the HSPMSM
in the rotating reference frame can be represented as:

V r
qs = Rsirqs + Lss

d
dt
irqs + ωrLssi

r
ds + ωrλ

′
m (1)

V r
ds = Rsirds + Lss

d
dt
irds − ωrLssi

r
qs (2)

The electromagnetic torque can be represented by:

Te =
3
2
·
Pn
2
· λ′m · i

r
qs = Kt irqs (3)

The HSPMSMmotion dynamic equation can be described as:

Te − TL = Jm (2/Pn)
d
dt
ωr + βm (2/Pn) ωr (4)

where Vqs, Vds, iqs and ids are the d− s tator voltages and cur-
rents. Rs and Lss are the stator resistance and self-inductance.
θr , ωr , Jm, βm and P are the rotor position, electrical rotor
speed, effective inertia, friction coefficient and the number
of poles of the HSPMSM, respectively. TL and Te are the
load and electromagnetic torques, respectively. The torque
constant is expressed as Kt = (3/2)(Pn/2) · λ′m.

It is common knowledge that the FOC of the HSPMSM
enables an independent control of two input state variables,
stator d − q-axis currents irds and i

r
qs. The dynamic model of

the HSPMSM (1)-(4) in reliance on the field-oriented control
in the synchronous reference frame [18] can be illustrated in
state form as:

θ̇r = ωr

ω̇r =
Kt
Jm
irqs −

1
Jm
TL −

βm

Jm
ωr

i̇rqs = −
Rs
Lss

irqs − ωr i
r
ds −

1
Lss
ωrλ
′
m +

1
Lss

V r
qs

i̇rds = −
Rs
Lss

irds + ωr i
r
qs +

1
Lss

V r
ds

(5)

Due to temperature change, load disturbance, and sat-
uration, the motor parameters are changing during motor
operation. Thus, all these possible uncertainty factors should
be considered during the design phase of the drive system
controller. Accordingly, the perturbed dynamic model of the
previous motor equations presented in (5) can be derived and
expressed by (6)-(15) as follows:

θ̇r = ωr

(Jm +1Jm)ω̇r = (Kt +1Kt )irqs − (TL +1TL)
−(βm +1βm)ωr
(Lss +1Lss)i̇rqs = −(Rs +1Rs)i

r
qs − ωr i

r
ds

−ωrλ
′
m + V

r
qs

(Lss +1Lss)i̇rds = −(Rs +1Rs)i
r
ds + ωr i

r
qs + V

r
ds

(6)



θ̇r = ωr

Jmω̇r=Kt irqs−(TL +1TL)−βmωr
+

(
fr −1Jmω̇r −1βmωr +1Kt irqs−1TL−TL

)
Lss i̇rqs=−Rsi

r
qs−ωr i

r
ds − ωrλ

′
m + V

r
qs

+

(
fqs −1Lss i̇rqs −1Rsi

r
qs +1Lssωr i

r
ds

)
Lss i̇rds = −Rsi

r
ds + ωr i

r
qs + V

r
ds

+
(
fds −1Lss i̇rds −1Rsi

r
ds +1Lssωr i

r
ds

)
(7)

The state vector and its derivative are given by:

x =


x1
x2
x3
x4

 =

θr
ωr
irqs
irds

 , ẋ =


ẋ1
ẋ2
ẋ3
ẋ4

 =

θ̇r
ω̇r
i̇rqs
i̇rds

 (8)
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Using (6)-(8), the perturbed dynamical model of the
HSPMSM is expressed in the following form:

ẋ1 = θ̇r = x2 (9)

ẋ2 = ω̇r = −
βm

Jm
x2 +

Kt
Jm
x3 +�r (10)

ẋ3 = i̇rqs=−
Rs
Lss

x3−x2x4 −
λ′m

Lss
x2 +

V r
qs

Lss
+�qs (11)

ẋ4 = i̇rds = −
Rs
Lss

x4 + x2x3 +
V r
ds

Lss
+�ds (12)

and the uncertainty terms in (10)-(12) are given by (13)-(15):

�r =
1
Jm
(fr−1Jmẋ2−1βmx2+1Ktx3−1TL−TL) (13)

�qs=
1
Lss

(
fqs−1Lssẋ3 −1Rsx3+1Lssx2x4

)
(14)

�ds=
1
Lss

(fds−1Lssẋ4 −1Rsx4+1Lssx2x4) (15)

where �r , �qs and �ds represent the lumped parameter
uncertainties, wherein 1Rs, 1Lss, 1Kt , 1βm, 1Jm and 1TL
denote possible uncertainties in the drive system parameters;
fr , fqs and fds are added to indicate the extrinsic perturbations
in realistic applications. The lumped parameter limits of the
possible uncertainties are expressed by |�r | < δr ,

∣∣�qs
∣∣ <

δqs and |�ds| < δds; δr , δqs and δds are positive constants.
Remark 1: In the dynamic modeling of the motor formu-

lated by (9)-(15) encompasses all uncertainties, the presence
of nonlinearities is explicit due to the d − q stator current,
the compounded rotor speed, and the permanent flux terms.
Furthermore, there occur irregularities as a result of the non-
linear features of the CRPWM inverter. This is a substan-
tial cause of the design difficulty for the robust control of
HSPMSM system. Besides, the parameter variations enlarge
the nonlinearities and reduce the system performance or even
demolish the control stability. To design a superior con-
trol of the motor drive system, particular factors such as
the system nonlinearities, parameter changes and extrinsic
load perturbations should be canceled or restricted within
an attenuation level. Favorably, the whole nonlinear reliance
might be intended into the parameter uncertainties (13)-(15)
and the proposed controller need to be designed robust ade-
quate to with stand un-modeled dynamics as well as these
uncertainties.
Assumption 1: The HSPMSM states, x1 = θr , x2 = ωr ,

x3 = irqs and x4 = irds, are measurable since the backstepping
control scheme requires these feedback signals.

B. PROBLEM DESCRIPTION
The proposed RABC framework for the HSPMSM system
is shown in Fig. 1. The drive system contains a HSPMSM,
a three-phase current regulated pulse width modulation
(CRPWM) inverter and the load. The system uncertainties
exist in the perturbed dynamic model of the HSPMSM drive
system (9)-(12) are presumed to be limited. These uncertain-
ties include extrinsic perturbations as well as unknown mod-
eling inaccuracies. From (13)-(15), it is noticed that the terms

of uncertainty cannot be directly evaluated. Subsequently, the
RRBFNN-based uncertainty observer is proposed to estimate
the nonlinear lumped parameter uncertainty terms for the
HSPMSM drive system. The control objective is to develop
a robust adaptive backstepping control (RABC) system with
RRBFNN uncertainty observer such that the closed-loop sys-
tem of (9)-(12) is stable in the existence of parameter uncer-
tainties and extrinsic perturbations. Eventually, all errors are
consistently restricted and the tracking error value can be
arbitrary small as t →∞ . The configuration of the designed
RABC is shown in Fig. 1.

In this paper, a novel RABC scheme is designed to control
the HSPMSM drive system. The proposed scheme integrates
IBC, RRBFNN-based uncertainty observer and robust con-
troller. First, the mathematical model of the HSPMSM with
parameter variations and external disturbances is derived.
The FOC approach is utilized here to enhance the dynamic
performance of the drive system through the decoupling con-
trol property. In accordance with the backstepping process,
an IBC is designed based on Lyapunov stability theorem
to fulfill several goals of a persistent rotor position while
tracing the desired trajectory. Though, accurate data about
the lumped parameter uncertainties of the drive system are
needed within the backstepping control law in such a way
the performance would not sorely affected. To mitigate the
need for the parameter uncertainties within the IBC structure,
an online adaptive observer based on RRBFNN is intended to
evaluate the nonlinear parameter uncertainties. Furthermore,
the robust controller is configured to retrieve the remaining
of the RRBFNN estimate error. To ensure the stability of the
proposed RABC, the Lyapunov stability analysis is employed
to obtain the online adaptive control laws.

III. ROBUST ADAPTIVE BACKSTEPPING CONTROL
VIA RRBFNN UNCERTAINTY OBSERVER
The main idea of the backstepping process is to structure a
new subsystem using preselected state variable that needed
to be stabilized. Therefore, the error functions of the new
state variables are chosen to be attenuated to zero. As a
result, a virtual control law is derived by selecting a proper
Lyapunov candidate function. Eventually, an actual control
law could be concluded, and the proposed system stabil-
ity would be assured. In this section, the structure of the
designed RABC for the HSPMSM is presented. At the nom-
inal parameters, the IBC can fulfill a desirable performance
of the HSPMSM position control. Nevertheless, the control
performance of the HSPMSM is still susceptible to parameter
changes. To resolve this issue with an effective control design
of the rotor position of the HSPMSM, a RABC is developed
here. The structure of the designed RABC system, which
incorporates an IBC, a RRBFNN uncertainty observer and
a robust controller, is shown in Fig. 1.

A. RRBFNN UNCERTAINTY OBSERVER
The HSPMSM drive system involving parameter uncertain-
ties is expressed in terms of the unknown nonlinear parameter
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FIGURE 2. Recurrent radial basis function neural network (RRBFNN).

uncertainty function which can be estimated here using the
proposed RRBFNN uncertainty observer. To adaptively esti-
mate this nonlinear dynamic function, �̂(·), the backpropaga-
tion algorithm is utilized to train the RRBFNN. To implement
the proposed uncertainty observer, a three-layer RRBFNN
is suggested here to optimize the precision of the function
approximation. The proposed RRBFNN encompasses three-
layers, two inputs (the i layer), hidden (the j layer), and
one output (the o layer), as shown in Fig. 2. In addition,
the Gaussian function is selected as the particular field func-
tion in the hidden layer due to its differential and persistent
characteristics. Furthermore, the RRBFNN output is repeated
to the input of the output layer with a time delay. The basic
function and signal propagation in each layer of the proposed
RRBFNN are expressed as shown below [18]:
Layer 1: Input Layer
Layer 1 involves some nodes to transmit the input signals

to the subsequent layer. In the input layer, every input and
output node i of the RRBFNN can be expressed as:

net1i = x1i (N ) (16)

y1i (N ) = f 1i (net
1
i (N )) = net1i (N ), i = 1, · · · ,m (17)

where x1i illustrates the ith input to the node of layer 1 and N
indicates the number of iterations.
Layer 2: Hidden Layer
Every node in the hidden layer precedes a susceptible field

function. The Gaussian function is chosen as the receptive
field function in the hidden layer due to its differential and
persistent features. For the jth hidden node:

net2j (N )=−(X−µj)Tσj(X−µj)+8j(N − 1)αj (18)

y2j (N )= f 2j (net
2
j (N ))=exp(net2j (N )), j = 1, ..., n (19)

where the standard deviation and mean vectors of the Gaus-
sian functions are σj = [1/σ 2

1j, 1/σ
2
2j, . . . , 1/σ

2
ij ]
T and µj =

[µ1j, µ2j, . . . , µij]T , respectively, µij and σij are the standard

deviation and mean of the jth neuron in the hidden layer
of the ith input of the RRBFNN, n indicates the number
of receptive field units and bases in the hidden layer, X =
[x1, x2, . . . , xi]T ∈ <m×1 is the input vector of the input layer,
8 = [81,82, . . . , 8j,8n]T ∈ <n×1 is the output vector of
the hidden layer, 0 ≤ α < 1 is the self-connecting feedback
gain of the hidden layer.
Layer 3: Output Layer
The single node o in the output layer is represented by

∑
,

which calculates the total output as the addition of all arriving
signals to acquire the final outcomes.

net3o =
∑

j
Wjy2j (N )+Woylo (20)

y3o(N ) = f 3o (net
3
o (N )) = net3o (N )o = 1 (21)

8j(N ) = exp
(
−(X−µj)Tσj(X−µj)+8j(N−1)αj

)
(22)

ylo(N ) = ylo(N − 1)βj + y3o(N − 1) (23)

y3o = �̂(·) (24)

whereWj = [$1,$2, . . . ,$j,$n]T ∈ <n×1 is the adaptable
weight vector between the hidden and the output layers,Wo =

[$o]T ∈ <1×1 is the connective weight of output feedback
neuron to output neuron, ylo is the feedback layer output,
y3o = �̂(·) is the output of the RRBFNN, 0 ≤ β < 1 is
the self-connecting feedback gain of the output layer, �̂(·)
is the function of the nonlinear parameter uncertainty. For
the uncertainty estimation, the vector form of the RRBFNN
output can be expressed as:

y3o(x, σ, µ, α, β,W ) = W T8(x, σ, µ, α, β) (25)

where W is the weight vector and 8 is the firing strength
vector. Even for time-varying function, it was confirmed
that an RRBFNN exists as shown in (25) such that it can
symmetrically approximate function nonlinearity [40].
Assumption 2: consider the RRBFNN input, X =

[x1, x2, . . . , xi]T , pertains to a compact set κX and the
RRBFNN is utilized to estimate the nonlinear function�(X ).
The optimal parameter vector of the proposed RRBFNN,W ∗,
is provided by [51]–[54]:

W ∗k = arg min
Ŵ∈κW

[
sup
X∈κX

∥∥∥�k (X )− �̂k (X
∣∣∣Ŵk )

∥∥∥] (26)

It is presumed that the optimal parameter vector, W ∗k , is
limited to a compact set of the parameter vector, κW .

B. ONLINE LEARNING ALGORITHM
The parameter learning algorithm is used to adjust the param-
eters of the RRBFNN bases, feedback weight and the con-
nection weight (µ, σ , α, βWj and Wo) optimally with the
same training pattern. The detailed derivation of the learn-
ing methodology is given in the Appendix. In this paper,
the weights, Wj, Wo, α

j
i , and β

l
o as well as the mean µji, and

the standard deviation σ ji , are under training to get the adapted
laws using Lyapunov stability. Theweighting vectorW which
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collects all weights for training, is defined as

W = [Wj,Wo, α, β, µ, σ ]

=



(w11, · · · ,wnm1, . . . ,w12, . . . ,wnm2, · · · ,

w1nj , · · · ,wnmnj ),

(w1l, · · · ,wnm1l, . . . ,w2l, . . . ,wnm2l, · · · ,

w1nl , · · · ,wnmnl ),

(α1j, α2j, . . . , αmj, . . . , αnmj),

(β1l, β2l, . . . , βml, . . . , βnml),

(µ11, · · · , µni1, . . . , µ12, . . . , µni2, · · · ,

µ1nj , · · · , µninj ),

(σ11, · · · , σni1, . . . , σ12, . . . , σni2, · · · ,

σ1nj , · · · , σninj ).


C. CONVERGENCE ANALYSES
In this paper, the convergence analyses are introduced to
derive the learning rates parameters to assure convergence
of the output error of RRBFNN parameters. Therefore,
the learning rates parameters selection has a significant effect
on the RRBFNN performance. In order to train the RRBFNN
effectively, six varied learning rates, ηW , ηoηµ, ησ , ηβ and ηα ,
which guarantee the convergence of tracking errors and iden-
tification based on the analyses of a discrete-type Lyapunov
function, are derived in the Appendix [27], [49], [50].

D. THE PROPOSED RABC SYSTEM DESIGN
The main goal of this paper is to design a robust and effi-
cient control method for the HSPMSM model described by
(9)-(15) regardless load disturbances and obscure parame-
ter changes. Accordingly, an RABC scheme employing the
RRBFNN-based uncertainty observer was designed as shown
in Fig. 1.Thus, the rotor position state trajectory θr (t) can
asymptotically follow the reference state trajectory position
θ∗r (t).We presume that θ∗r (t) and θ̇

∗
r (t) are the time functions

with additional constraints.
To accurately detect the lumped parameter uncertainties

described in (13)-(15), the RRBFNN-based observer out-
puts �̂r (·), �̂qs(xqs) and �̂ds(xds) are derived according
to assumption 1 and the universal approximation theorem
in [51], [52] as:

�k (xk ) = W ∗Tk 8∗k + εk (27)

whereW ∗k and8∗k represent the optimal parametermatrices of
the proposed observer while k = r, qs, ds; εk is the minimum
remodeled error. Although these optimal parameter matrices
cannot be obtained, although, it can be estimated using the
RRBFNN uncertainty observer as:

�̂k (xk ) = Ŵ T
k 8̂k + uRCk (28)

where Ŵk and 8̂k are the estimated values of the optimal
parameter matrices W ∗k and 8∗k , respectively; u

RC
k expresses

the robust controller function that recover the flaw of the pro-
posed RRBFNN uncertainty observer as a result of tracking,

weight, and estimation errors. The parameter uncertainties in
(13)-(15) can be illustrated as:

�k (xk
∣∣W ∗k )=�∗k (xk ∣∣W ∗k )+εk

= �̂k (xk
∣∣∣Ŵk )+

[
�∗k (xk

∣∣W ∗k )−�̂k (xk
∣∣∣Ŵk )

]
+εk + uRCk (29)

where Ŵk and W ∗k are the estimated and optimal weight
matrices, respectively. xr = (x1, x2, ẋ1), xqs = (x1, x2, x3, ẋ2)
and xds = (x1, x2, x3, ẋ3) are the inputs to the RRBFNNs.
Assumption 3: Presume that W ∗k matrices are limited

as
∥∥W ∗k ∥∥F ≤ Wk,M , where ‖·‖F indicates the Frobenius

norm [51], [52].
It is noticed that the restricted valuesWk,M are not needed

to carry out the designed control system. However, those
values are still necessary to perform the stability analysis. The
weights of the RRBFNN uncertainty observer can be trained
through applying the Taylor series expansion of �∗k (xk

∣∣W ∗k )
around

∣∣∣Ŵk . Thus, the error function can be optimized

as [51]–[57]:

�∗k (xk
∣∣W ∗k )− �̂k (xk

∣∣∣Ŵk )

= W̃ T
k 4k + Hk (W ∗k , Ŵk ) (30)

4k =

[
∂�̂k,1

∂Ŵk,1
,
∂�̂k,2

∂Ŵk,2
, · · · ,

∂�̂k,n

∂Ŵk,n
,

]T
(31)

where k = r, qs, ds and the vectors with higher order terms
are represented by W̃k = (W ∗k − Ŵk ) and Hk (W ∗k , Ŵk ).
Substituting (30) into (31) will provide:

�k (xk |Wk ) = �̂k (xk
∣∣∣Ŵk )+ W̃ T

k 4k + γk − uRCk (32)

where γk = Hk (W ∗k , Ŵk )+εk . The uncertainty expression γk
is presumed to be limited by ‖γk‖ ≤ σk while σk are positive
constants. Due to the uncertainty observer errors (tracking,
estimation, and weight), we can use σk to represent the flaw
of the proposed RRBFNN design. Rewrite (32) will provide:

�k (xk |Wk ) = �̂k (xk
∣∣∣Ŵk )+ W̃ T

k 4k + γk − uRCk (33)

The design procedures of the overall proposed RABC sys-
tem including the RRBFNN uncertainty observer are summa-
rized as follows:
Procedure 1: Determine the state function of the tracking

error:

z1(t) = θr (t)− θmr (t) (34)

Thereafter, by differentiating the error function as:

ż1(t) = θ̇r (t)− θ̇mr (t) = ωr − θ̇
m
r (t) (35)

where θ̇r (t) = ωr (t) can be noted as virtual control in (35).
A Lyapunov function nominee can be adopted as:

V1(t) =
1
2
z21(t) (36)
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By differentiating (36) then substituting from (35) as:

V̇1(t) = z1ż1 = z1[θ̇r (t)− θ̇mr (t)] (37)

Subsequently, set the virtual control law x̄2(t) = ω∗r as
follows:

x̄2 = −k1z1(t)+ θ̇mr (t) (38)

where k1 > 0 is defined as again value for the control
design.
Procedure 2: Repeat procedure 1 through defining the

tracking error state function of the rotor speed:

z2(t) = x2(t)− ω∗r (t) (39)

Therefore, by utilizing (10) and (27)-(29), the error
function is differentiated as:

ż2(t) = ẋ2 − ω̇∗r (t)

= −(βm/Jm)x2 + (Kt/Jm)x3 +�r − ω̇
∗
r (t)

= f1 + (Kt/Jm)x3 +�r − ω̇
∗
r (t) (40)

where f1 = −(βm/Jm)x2.
The candidate of the Lyapunov function is selected as:

V2(t) = V1(t)+
1
2
z22(t) (41)

By differentiating V2(t) then utilizing (39) and (40):

V̇2(t)= V̇1(t)+z2(t)ż2(t)

=−k1z21 + z2(t)
(
−
βm

Jm
x2+

Kt
Jm
x3+�r−ω̇

∗
r (t)

)
(42)

The virtual control law x̄3(t) = ir∗qs is constructed as:

x̄3= (Jm/Kt )
(
−k2z2 − f1−�̂r+ω̇

∗
r (t)

)
= (Jm/Kt )

(
−k2z2−f1−Ŵ T

r 4r−uRCr −σr+ω̇
∗
r (t)

)
(43)

where k2 > 0 is defined as a design control gain; the
estimated value of the approximated parameter uncertainty
�r of the RRBFNN-based observer is defined as �̂r =

Ŵ T
r 4r + uRCr + σr . Thus, the tracking error state of the rotor

speed can be defined as:

z3(t) = x3(t)− x̄3(t) (44)

Procedure 3: The derivative of (44) and employing (11) as:

ż3(t) = ẋ3(t)− ˙̄x3(t)

= −
Rs
Lss

x3 − x2x4 −
λ′m

Lss
x2 +

V r
qs

Lss
+�qs − i̇r∗qs (t)

= f2 +
V r
qs

Lss
+�qs − i̇r∗qs (t) (45)

where f2 = (Lss)−1
(
−Rsx3 − x2x3Lss − λ′mx2

)
.

Select the candidate of the Lyapunov function to be:

V3(t) = V2(t)+
1
2
z23(t) (46)

Moreover, the derivative of (46) will introduce:

V̇3(t)= V̇2(t)+ z3(t)ż3(t)

=−k2z22+z3(t)
(
f2+(V r

qs/Lss)+�qs− i̇r∗qs (t)
)

(47)

The q-axis desired control law V r∗
qs is prepared as:

V r∗
qs = Lss

(
−k3z3−f2−�̂qs + i̇r∗qs (t)

)
= Lss

(
−k3z3−f2−Ŵ T

qs4qs − uRCqs −σqs+ i̇
r∗
qs (t)

)
(48)

where k3 > 0 is defined as a design control gain; the q-axis
estimated value of the approximated parameter uncertainty
�qs of the RRBFNN-based observer is defined as �̂qs =

Ŵ T
qs4qs + uRCqs + σqs.Thus, the state function of the tracking

error can be determined as:

z4(t) = x4(t)− ir∗ds (t) (49)

Procedure 4: By using the derivative of (49) then substitut-
ing from (12) yields:

ż4(t) = ẋ4(t)− i̇r∗ds (t)

= f3 +
V r
ds

Lss
+�ds − i̇r∗ds (t) (50)

where f3 = −(Rs/Lss)x4 + x2x3.
Subsequently, select the candidate of the Lyapunov
function as:

V4(t) = V3(t)+
1
2
z24(t) (51)

Thereafter, (51) is differentiated and substituting from
(47) as:

V̇4(t) = V̇3(t)+ z4(t)ż4(t)

= −k3z23 + z4(t)
(
f3 +

V r
ds

Lss
+�ds − i̇r∗ds (t)

)
(52)

The d-axis desired control law V r∗
ds is derived as:

V r∗
ds = Lss

(
−k4z4−f3 − �̂ds + i̇r∗ds (t)

)
= Lss

(
−k4z4 − f3−Ŵ T

ds4ds − uRCds −σds+ i̇
e∗
ds (t)

)
(53)

where k4 > 0 is a defined as a design control gain; the d-axis
estimated value of the approximated parameter uncertainty
�ds of the RRBFNN-based observer is defined as �̂ds =

Ŵ T
ds4ds + uRCds + σds.

E. STABILITY ANALYSIS OF THE PROPOSED RABC SYSTEM
This section aims to examine the stability analysis of the
proposed RABC process with a RRBFNN-based uncertainty
observer for the motor drive system operation. The candidate
of the Lyapunov function can be considered as follows:

Va=
1
2

3∑
υ=1

zTυ zυ+
1
2ηr

tr(W̃ T
r 0
−1
r W̃ T

r )+
1

2ηqs
tr(W̃ T

qs0
−1
qs W̃

T
qs)

+
1

2ηds
tr(W̃ T

ds0
−1
ds W̃

T
ds)+

1
2ηr

0−1r σ̃ 2
r +

1
2ηqs

0−1qs σ̃
2
qs

+
1

2ηds
0−1ds σ̃

2
ds (54)
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where 0qs = diag[0qs,i], 0qs = diag[0qs,i], and 0ds =
diag[0ds,i], i = [1, 2, · · · , n], and 0r,i, 0qs,i, and 0ds,i are
the tuning gains. tr(·) indicates the trace of a matrix.
Assumption 4: Suppose that ξ is positive constant and the

Lyapunov function candidate denoted in (54) is limited as
Va ≤ ξ .
Stability Theorem: The HSPMSM drive system is demon-

strated by (9)-(15) while uncertainties are considered. The
adaptive control laws, represented by (38), (43), (48) and
(53), are used to design the proposedRABCwith a RRBFNN-
based uncertainty observer. Furthermore, if the control sys-
tem fulfills Assumptions (1-4) and the adaptation control
laws are selected as (55)-(57) for all weights of the RRBFNN
observer, then the stability of the designed RABC can be
ensured via designing the robust controllers as (58)-(60) with
the adaptive estimations to be limited as (61)-(63).

˙̂Wr,i = 0r,i4r,iz2,i − ηr0r,iŴr,i (55)
˙̂Wqs,i = 0qs,i4qs,iz3,i − ηqs0qs,iŴqs,i (56)
˙̂Wds,i = 0ds,i4ds,iz4,i − ηds0ds,iŴds,i (57)
uRCr,i = σ̂r,isgn(z2,i) (58)

uRCqs,i = σ̂qs,isgn(z3,i) (59)

uRCds,i = σ̂ds,isgn(z4,i) (60)
˙̂σr,i = ηr

∣∣(z2,i)∣∣ (61)
˙̂σqs,i = ηqs

∣∣(z3,i)∣∣ (62)
˙̂σds,i = ηds

∣∣(z4,i)∣∣ (63)

where ηr , ηqs and ηds are positive constants; 4r,i, 4qs,i and
4ds,i are the ith elements of 4r , 4qs and 4ds, respectively.
σr , σqs and σds represent the terms of uncertainty which can
be estimated online by σ̂r , σ̂qs and σ̂ds, respectively. The
sgn(·) indicates the sign function. Eventually, upon satisfy-
ing Assumption 4 with any initial conditions, the adjustable
weights ˙̂Wr,i,

˙̂Wqs,i and
˙̂Wds,i and the errors of states Z =

[z1, z2, z3, z4] of the closed loop system are symmetrically
restricted and can be maintained at arbitrary small value.
Proof of Stability Theorem:
The tracking error states can be differentiated as Ż =

[ż1, ż2, ż3, ż4] by substituting (38), (43), (48) and (53)
into(35), (40), (45) and (50), respectively, as follows:

ż1(t) = −k1z1 (64)
ż2(t) = −k2z2 + W̃ T

r 4r + σr − uRCr (65)
ż3(t) = −k3z3 + W̃ T

qs4r + σqs − uRCqs (66)

ż4(t) = −k4z4 + W̃ T
ds4ds + σds − uRCds (67)

If we differentiate the candidate of the Lyapunov function
(54) and utilizing (64)-(67), we will attain the following:

V̇a = zT1 ż1 + z
T
2 ż2 + z

T
3 ż3 + z

T
4 ż4

−
1
ηr

tr(W̃ T
r 0
−1
r
˙̂Wr )−

1
ηqs

tr(W̃ T
qs0
−1
qs
˙̂Wqs)

−
1
ηds

tr(W̃ T
ds0
−1
ds
˙̂Wds)−

1
ηr
0−1r σ̃r ˙̂σr

−
1
ηqs
0−1qs σ̃qs

˙̂σqs −
1
ηds
0−1ds σ̃ds

˙̂σds

= −k1z21 − k2z
2
2 − k3z

2
3

+z1(−uRCr + σr )+ z2(−u
RC
qs + σqs)

+z3(−uRCds + σds)+z1W̃
T
r 4r+z2W̃ T

qs4r+z3W̃ T
ds4ds

−
1
ηr

tr(W̃ T
r 0
−1
r
˙̂Wr )−

1
ηqs

tr(W̃ T
qs0
−1
qs
˙̂Wqs)

−
1
ηds

tr(W̃ T
ds0
−1
ds
˙̂Wds)−

1
ηr
0−1r σ̃r ˙̂σr

−
1
ηqs
0−1qs σ̃qs

˙̂σqs −
1
ηds
0−1ds σ̃ds

˙̂σds (68)

Compensating (55)-(63) into (68) will provide:

V̇a = −k1z21 − k2z
2
2 − k3z

2
3 − k4z

2
4

+z2(−uRCr +σr )+z3(−u
RC
qs + σqs)+z4(−u

RC
ds + σds)

−
1
ηr
0−1r σ̃r ˙̂σr −

1
ηqs
0−1qs σ̃qs

˙̂σqs −
1
ηds
0−1ds σ̃ds

˙̂σds

≤ −k1z21 − k2z
2
2 − k3z

2
3 − k4z

2
4

− |z1| [uRCr − |σr |]− |z2| [u
RC
qs −

∣∣σqs∣∣]
− |z3| [uRCds − |σds|]

≤ −k1z21 − k2z
2
2 − k3z

2
3 − k4z

2
4 ≤ 0 (69)

Since V̇a(Z (t), W̃k , σ̃k (t)) is a negative semidefinite func-
tion (i.e. Va(Z (t), W̃k , σ̃k (t)) ≤ Va(Z (0), W̃k , σ̃k (0)), which
denotes that Z (t), W̃k and σ̃k (t) are limited functions.
Determine the subsequent term as:

2a(t)≡k1z21 + k2z
2
2 + k3z

2
3 + k4z

2
4≤−V̇a(Z (t), W̃k , σ̃k (t))

(70)

where Z = [z1, z2, z3, z4], k = r, qs, ds. Therefore:
t∫

0

2a(τ )dτ ≤Va(Z (0), W̃k , σ̃k (0))− Va(Z (t), W̃k , σ̃k (t))

(71)

Since Va(Z (0), W̃k (0), σ̃k (0) is a limited function while
Va(Z (t), W̃k (t), σ̃k (t)) is a limited and non-rising function,
the next outcome can be acquired as:

lim
t→∞

t∫
0

2a(τ )dτ ≤ ∞ (72)

Since 2̇a(t) is a limited function, consequently 2a(t) is a
symmetrical continuous function. By employing Barbalat’s
Lemma [52], it can be demonstrated that:

lim
t→∞

2a(t) = 0 (73)

We can notice that as t →∞, the function Z (t) will converge
to zero. As a result, the stability of proposed RABC with
RRBFNN-based uncertainty observer is guaranteed.
Remark 2: The lumped uncertainty terms σr , σqs and σds

comprise optimal parameters of the network, approximation
errors, and higher order terms of Taylor series. Accordingly,
a conservative control lawwith considerable limits is selected
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due to the unavailability of those terms in practical appli-
cations. In addition, the selection process of the upper limit
of the uncertainty terms σr , σqs and σds has a considerable
influence on the performance of the control system. If the
limits are chosen too large, the sign function of the controller
may lead to a significant chattering incident in the control
attempts. The unwanted chattering control attempts will trig-
ger unsteady system dynamics. Contrarily, if the limits are
chosen too small, the stability conditions may not be fulfilled.
Thus, the HSPMSM drive system will be unstable. Hence,
the adaptive bound estimation algorithms in (61)-(63) are
used in this paper o simplify the adjustment of the limits
in real time for the HSPMSM drive system based RRBFNN
uncertainty observer.
Remark 3: According to Remark 1 and by comparison

the RABC scheme with the backstepping control techniques
in [19]–[26], the proposed strategy can resolve the problem of
performance degradation by assessing the uncertainty terms
in the dynamic model (9)-(15), �r , �qs and �ds. In addition,
the model uncertainties�qs and�ds of the drive system were
not considered in [19]–[26]. Though, if the HSPMSM drive
system parameters are perturbed (13)-(15), the control laws
in [19]–[26] which consider only the mechanical uncertainty
term (�r ) will lead to unstable drive system and the system
performance may be degraded because the uncertainty terms
�qs and �ds are not considered in the design step of the
control method. The control laws in [19]–[26] only contains
the neural network output. However, the control laws (43),
(48) and (53) in this paper not only contains the RRBFNN
output, which is utilized to estimate the parameter uncer-
tainties, but also the developed robust controllers (58)-(60),
which are intended to conform the values of lumped
parameter uncertainties using the adaptive laws (61)-(63).
Furthermore, the learning algorithms were only utilized to
adjust the thresholds and weights of the neural network in
[19]–[26] so as to give proper control performance. Nonethe-
less, in this paper, the learning algorithms (55)-(57), are
utilized to online adapt the interior feedback, the center
parameters, and the width parameters. Hence, to assure the
the HSPMSM drive system stability in spite of the extrinsic
load disturbance and dynamics of parameter uncertainties
existed in (13)-(15), the RABC-based RRBFNN observer is
suggested to compensate all these parameter uncertainties.

IV. VALIDATION RESULTS
In this section, the simulation and experimentation tests
are performed to investigate the effectiveness of the pro-
posed RABC scheme. The simulation tests are imple-
mented through MATLAB/SIMULINK software according
to the control schemes demonstrated in Figs. (1, 2). The
schematic diagram of the experimental hardware setup is
shown in Fig. 3.

A. EXPERIMENTAL SET-UP
The block diagram of the proposed control scheme with
DSP-based controller for the high speed PMSM drive system

FIGURE 3. The schematic diagram of the overall developed DSP-based
high-speed drive system.

is shown in Fig. 3. To implement the control operation,
a DSP-based development controller board (dSPACE
DS1102) with a TMS320C31 and TMS320P14 digital signal
processors is utilized. The control board involves several
input/output ports (PIO, ADC, DAC, and encoder) to acquire
the measured signals and send the proper control actions.
To enhance the precision of the measured feedback signals
(position and speed), the encoder interface circuits uses a
digital filter with frequency multiplied by four. The PWM
signals of the inverter are generated based on a carrier fre-
quency of 15 kHz which provides a sampling rate of 66.67µs.
The position control loop utilizes a time interval of 1 ms.
A six-IGBT switches were used to build the current-regulated
PWM VSI. A 10000 pulses/revolution incremental optical
encoder was applied to carry out the position acquisition.
Consequently, a high precision measurement of the position/
speed is resulted due to the high output frequency of the
multiplier circuit (40000 pulses/revolution). Furthermore,
the computed torque controller (CTC), the IBC and the pro-
posed RABC schemes are implemented. Figure 4 shows the
software flowcharts of the proposed RABC using RRBFNN.

The proposed real-time control algorithm implementa-
tion process consists of the main control program along

99336 VOLUME 7, 2019



F. F. M. El-Sousy et al.: Robust Adaptive Neural-Network Backstepping Control Design

FIGURE 4. Flowcharts of the RABC algorithm.

with its subroutines. First, the initialization process of the
input/output (I/O) and system parameters is set. After,
the intervals for the two interrupt routines (IR1 and IR2) are
set. Later, the counters of the encoder circuits are initialized
by setting the servo drive. Once the interrupt is enabled,
the main program is applied to observe the data of the control
system. A sampling period of 1 ms is chosen to accomplish
CPU calculations with high performance of the proposed
RABC algorithm. The first interrupt subroutine (IR1) is uti-
lized for the implementation of the control algorithms and
the interface operation of the encoders. Initially, IR1 uses
the encoders to examine the position of the HSPMSM. Next,
IR1 with 1 ms sampling rate is utilized to calculate tracking
error states (z1, z2, z3 and z4) and its derivatives (ż1, ż2, ż3
and ż4), the virtual control laws x̄2 and x̄3, real-time training
of the RRBFNN and computation of the parameter uncertain-
ties from the RRBFNN observer, calculation of the robust
controllers, the adaptive control laws computation, the esti-
mation of the adaptive limit algorithm, calculation of the

RABC algorithm and updating the weights of the RRBFNN.
Later, the IR2 with 0.2 ms sampling rate is utilized to col-
lect the encoder data, perform the abc/d-q transformation,
determine the d-q command currents, and perform d-q axis
reference SVPWM voltages to generate the switching signals
that control the inverter operation. Considering the stability
needs and different operating condition, the parameters of
the proposed RABC scheme are selected to accomplish the
preferable tracking performance. An online parameter learn-
ing technique is used to retrieve the inaccurate initialization
of system parameters. Hence, the adjustment operation of
system parameters is regularly active for the whole running
duration of experiments. Furthermore, the proposed RABC
scheme parameters are: ηds = ηqs = 6.0, ηr = 3.0, k1 = 9.5,
k2 = 3.5, k3 = 7.5 and k4 = 7.5.

B. SIMULATION RESULTS
To investigate the feasibility of the proposed RABC scheme,
the HSPMSM servo drive system is simulated and tested
under various operating conditions. Subsequently, four dif-
ferent operating conditions of extrinsic load perturbations
and parameter uncertainties (PUs) are studied to examine the
robustness of the proposed controllers as follows:
Case 1: 1.0 × (Ls/Rs), 1.0 × (βm/Jm), 1.00 × λm,

TL = 0− 0.5 mN.m
Case 2: 0.5 × (Ls/Rs), 1.5 × (βm/Jm), 0.85 × λm,

TL = 0− 0.5 mN.m
Case 3: 1.5 × (Ls/Rs), 2.5 × (βm/Jm), 1.25 × λm,

TL = 0− 0.5 mN.m
Case 4: 1.5 × (Ls/Rs), 5.0 × (βm/Jm), 1.25 × λm,

TL = 0− 0.5 mN.m
For Case 1, we investigate the dynamic performance of

the HSPMSM servo drive system under external loading
command change 0-0.5 mN.m for the both IBC and RABC
schemes while parameter ratios are maintained constant.
Fig. 5 (a) shows the dynamic performance of the drive system
with IBC scheme in terms of the reference and actual rotor
positions, the position tracking error, the reference and actual
rotor speeds, the speed tracking error, and d−q axis currents,
respectively. Moreover, the dynamic performance using the
RABC scheme is investigated at the same operating condi-
tions as depicted in Fig. 5 (b). At t = 2.5sec, themotor shaft is
loaded by 0.5 mN.m then load is removed after at t = 7.5sec
in order to check the disturbance rejection capabilities of
both IBC and the proposed RABC. As seen from Fig. 4,
the simulation results achieve good dynamic performances
for both controllers under command change and load reg-
ulation. We can observe that the proposed RABC scheme
provides better performance then IBC in load regulation and
command tracking characteristics. Consequently, the results
obtained from Fig. 4 show larger position and speed tracking
errors with IBC scheme compared to the proposed RABC
scheme with RRBFNN-based uncertainty observer. Further-
more, the results have demonstrated a substantial reduction
of the utmost dip of both rotor position and speed with the
proposed RABC scheme.
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FIGURE 5. Simulation results of the dynamic performance of the HSPMSM servo drive system with a reference position model of
π rad and subsequent loading of 0.5 mN.m using: (a) the IBC and (b) the proposed RABC with RRBFNN-based uncertainty observer.
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FIGURE 6. Simulation results for all different Cases (1-4) of the enlarged dynamic performance under PUs of the HSPMSM servo drive system with a
reference position model of 2π rad and subsequent loading of 0.5 mN.m using: (a) the IBC and (b) the proposed RABC with RRBFNN-based uncertainty
observer.

In addition, the external load disturbance and PUs are
further detailed investigated through four different cases
(Case 1-4) to be compared in order to confirm the robustness

capability of the proposed RABC scheme. Fig. 6 and 7 show
the comparative dynamic performance at all Cases of PUs
of the HSPMSM servo drive system for both the IBC and
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FIGURE 7. Simulation results for all different Cases (1-4) of the load regulation characteristics under PUs of the HSPMSM servo drive system using:
(a) the IBC and (b) the proposed RABC with RRBFNN-based uncertainty observer.

the proposed RABC schemes. It is clearly noticed that the
tracking errors quickly converge to zero which validate the
robustness characteristics of the proposed RABC scheme

under the incident of PUs. Thus, the tracking errors have been
significantly reduced as well as load regulation capabilities
have been verified compared to the IBC scheme. As a result,
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FIGURE 8. Experimental results of the dynamic performance of the HSPMSM servo drive system with a reference position
model of 2π rad and subsequent loading of 0.5 mN.m using: (a) the IBC and (b) the proposed RABC with RRBFNN-based
uncertainty observer.
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FIGURE 9. Experimental results of the dynamic performance of the HSPMSM servo drive system with a reference position model
of 2π rad at no-load condition using: (a) IBC and (b) proposed RABC with RRBFNN-based uncertainty observer.

the designed RABC structure can provide preferable control
response compared to the IBC structure. In addition, the pro-
posed RABC scheme yields a faster response (within 0.2 sec)
and higher precision than the IBC scheme for the reference
model under load variations. On the other hand, the IBC under
PUs has indolent recovery time (>2.5 sec). Eventually, for all
cases of PUs, it can be confirmed that the proposed RABC
scheme provides several advantages in terms of its tracking
accuracy, robustness, as well as suitability with the HSPMSM
control system

C. EXPERIMENTAL RESULTS
A hardware experimental prototype of the HSPMSMwith the
same simulation parameters was tested to validate the high
performance of the developed RABC scheme compared to
the IBC scheme. The laboratory tests were performed based
on the control schemes presented in Figs. (1-4).

To further investigate the effectiveness of the developed
control schemes formicro drive-based industrial applications,
experimental test findings are presented. Fig. 8 shows com-
parative test results for the dynamic performance of the IBC
versus the developed RABC under desired model command
with subsequent applied loading condition of 0.5 mN.m. The
dynamic responses of the IBC involving the reference and
actual rotor positions, the position tracking error, the ref-
erence and actual rotor speeds, the speed tracking error,
the d − q axis currents, and adaptive position/speed sig-
nals are depicted in Fig. 8(a). Furthermore, the dynamic
responses of the proposed RABC including same signals are

shown in Fig. 8(b). In addition, the results have shown better
disturbance rejection capability with the proposed RABC
scheme compared to the IBC scheme. At full load condi-
tion, we can also notice that the proposed RABC with the
RRBFNN-based uncertainty observer provides less maxi-
mum position tracking errors of∼0.15 rad while the IBC has
higher error of ∼0.6 rad. Obviously, the test results acquired
in Fig. 8 show better dynamic response of the proposed
RABC scheme accomplishing preferable load regulation and
command tracking. Moreover, the drive system performance
has been investigated for both IBC and RABC schemes
at no-load condition as displayed in Fig. 9. It is clearly
illustrated that the proposed RABC gives better regulation
characteristics as well as significantly reduced position/speed
tracking errors compared with the IBC. Subsequently, the
proposed RABC scheme validates its superiority perfor-
mance compared with the IBC. Undoubtedly, the RABC
scheme with RRBFNN-based uncertainty observer has veri-
fied its preferable performance for the HSPMSM drive appli-
cations with greatly improved characteristics to a great extent.
Consequently, it was proved that the developed RABC design
accomplishes the precision demands, robustness, and suit-
ability for high performance industrial drive applications.

D. EVALUATION AND COMPARISON OF
CONTROL PERFORMANCE
To evaluate the performance of the servo drive system,
we will use three tracking error indices (maximum, average,
and standard deviation) [18], [40]. The control response can
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be readily compared utilizing (74)-(76) as follows:

TEmax = max
k

√
T (k)2 (74)

TEmean =
n∑

k=1

T (k)
n

(75)

TEsd =

√√√√ n∑
k=1

(T (k)− Tmean)2

n
(76)

where TEmax is the maximum tracking error, TEmean is the
average tracking error, TEsd is the standard deviation of the
tracking error, T (k) = [θmr (k)− θr (k)].

FIGURE 10. Performance measures of CTC, IBC and proposed RABC
schemes for HSPMSM servo drive system (experimentation): (a) TEmax,
(b) TEmean, and (c) TEsd.

The performance evaluation of the different position con-
trollers schemes are depicted in Fig. 10. The various compara-
tive performance average measures with respect to computed
torque controller (CTC) show that the proposed RABC pro-
vides lower tracking errors by: 87.66% for maximum error,
96.48% for average error and 94.74% for standard deviation
error. In regard to IBC compared to CTC, the averages of

FIGURE 11. Tracking errors reduction percentage using IBC and proposed
RABC schemes for HSPMSM servo drive system (experimentation):
(a) TEmax, (b) TEmean, and (c) TEsd.

TABLE 2. Performance evaluation of the HSPMSM servo drive system
(experimentation).

the maximum, average, standard deviation tracking errors
are decreased by 56.36%, 75.10% and 81.13%, respectively.
The percentage reductions of the tracking errors utilizing the
IBC and the proposed RABC schemes compared to the CTC
scheme are shown in Fig. 11. The comparative analysis of
the control performance is illustrated in Table 2. Furthermore,
Table 3 depicts the improvement in the tracking errors with
IBC and proposed RABC in comparison to the CTC. It is
apparent that the performance measures of the HSPMSM
servo drive system are significantly enhanced with the pro-
posed RABC scheme. Consequently, the developed RABC
with RRBFNN-based uncertainty observer fulfills the high
precision demands. Thus, the proposed scheme has verified
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TABLE 3. Percentage reductionof tracking errors based on CTC
(experimentation).

its superiority for the position/speed control of the HSPMSM
servo drive systems for industrial applications.

V. CONCLUSION
In this paper, we proposed an RABC using RRBFNN uncer-
tainty observer for HSPMSM adjustable speed drives to
achieve high dynamic control performance in the existence of
parameter uncertainties and extrinsic load perturbations. The
RABC scheme encompasses an IBC, a RRBFNN uncertainty
observer and a robust controller. First, the IBC is designed
in the sense of Lyapunov stability theorem to stabilize the
HSPMSM drive system and to satisfy multiple objectives
of a stable rotor position to trace the desired trajectory.
Though, certain information about the lumped parameter
uncertainties are needed within the backstepping control law
so that the system performance would not severely affected.
Consequently, an RABC was developed to enhance the
robustness of the HSPMSM drive system as a result of extrin-
sic load perturbations as well as parameter uncertainties.
Thus, an online adaptive observer based on RRBFNN was
incorporated to estimate the nonlinear parameter uncertain-
ties. Moreover, the robust controller was developed to retrieve
the remaining of the RRBFNN estimate errors. To assure the
stability of the developed RABC, the Lyapunov stability anal-
ysis has been used to derive the online adaptive control laws.
Experimental tests of the HSPMSM drive system were per-
formed to confirm the validation of the designed RABC
scheme. The dynamic performance of the HSPMSM drive
system has been studied under wide range of operating
conditions. The test results assure an improved dynamic
response and robust control performance of the developed
RABC regardless the parameter changes and load distur-
bances. In conclusion, the main contributions of this paper
can be summarized as: a novel RABCwas successfully devel-
oped, implemented, and applied for the HSPMSM drive sys-
tem to achieve robust control performance considering load
disturbances and parameters uncertainties; a new model of
RRBFNN-based online uncertainty observer was effectively
designed to conform the nonlinear uncertainties.

APPENDIX
A. ON-LINE LEARNING ALGORITHM OF THE RRBFNN
To describe the on-line parameter learning algorithm, first the
energy function En is defined as

En = (1/2)(xdn − xn)
2
= (1/2)(zn)2 (A.1)

where xdn (t) is the reference command, xn(t) is the actual state
and zn is the error signal between the reference command

and the actual state; n = 1, 2, · · · , 4. The learning algorithm
based on the BP is described as follows.
Layer 3: In the output layer, the error term to be propagated

is calculated as:

δ3o(N + 1) = −
∂En
∂net3o

(N + 1)

=

[
−
∂En
∂znn

∂znn
∂y3o

]
=

[
−
∂En
∂znn

∂znn
∂u

∂u
∂y3o

]
(A.2)

The weight is updated by the amount:

1Wj(N + 1)

= −ηW
∂En
∂Wj

(N + 1)

=

[
−ηW

∂En
∂y3o

∂y3o
∂net3o

∂net3o
∂Wj

]
= ηW δ

3
o(N + 1)82

j (A.3)

1Wo(N + 1)

= −ηo
∂En
∂Wo

(N + 1)

=

[
−ηo

∂En
∂y3o

∂y3o
∂net3o

∂net3o
∂Wo

]
= ηoδ

3
o(N + 1)ylo (A.4)

1β lo(N + 1)

= −ηβ
∂En
∂β lo

(N + 1)

=

[
−ηo

∂En
∂y3o

∂y3o
∂net3o

∂net3o
∂β lo

]
= ηβδ

3
o(N + 1)ylo (A.5)

where ηW , ηo and ηβ are the learning rate parameter of the
connecting weights between the hidden layer and the output
layer of the RRBFN. The weights of the output layer are
updated according to the following equations.

Wj(N + 1) = Wj(N )+1Wj(N + 1) (A.6)

Wo(N + 1) = Wo(N )+1Wo(N + 1) (A.7)

β lo(N + 1) = β lo(N )+1β lo(N + 1) (A.8)

Layer 2: In the hidden layer, the error term is calculated as:

δ2j = −
∂En
∂net2j

= −
∂En

∂Ãji
=

(
−
∂En
∂y3o

∂y3o
∂net3o

∂net3o
∂y2j

∂y2j

∂Ãji

)
=

∑
j

Wj8j (A.9)

The update laws of the µji and the σ ji are given by:

1µ
j
i(N + 1) = −ηµ

∂En

∂µ
j
i

(N + 1) =

[
−ηµ

∂En

∂∂Ãji

∂∂Ãji
∂µ

j
i

]
= ηµδ

2
j (N + 1) · Ãji(8

j
i)

·

(
(8j − µj)Tσj(8j − µj)

)
(N − 1)

×

(
∂8

j
i

∂µ
j
i

(N )− 1

)
(A.10)
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∂8
j
i

∂µ
j
i

(N ) = ζ ji (N − 1)αji(N )

·

(
(8j − µj)Tσj(8j − µj)

)
(N − 1)

×

(
∂8

j
i

∂µ
j
i

(N )− 1

)
(A.11)

1σ
j
i (N + 1) = −ησ

∂En

∂σ
j
i

(N + 1)=

[
−ησ

∂En

∂Ãji

∂Ãji
∂σ

j
i

]
= ησ δ

2
j (N + 1) · Ãji(8

j
i)

·

(
(8j−µj)Tσj(8j−µj)

)
(N−1) (A.12)

∂8
j
i

∂σ
j
i

(N ) = ζ ji (N−1)α
j
i(N )

·

(
(8j−µj)Tσj(8j−µj)

)
(N−1) (A.13)

The update weight of the feedback, αji , is:

1α
j
i(N + 1)

= −ηα
∂En

∂α
j
i

(N + 1) =

[
−ηα

∂En

∂Ãji

∂Ãji
∂α

j
i

]
= ηαδ

2
j (N + 1) · Ãji(8

j
i)

·

(
(8j − µj)Tσj(8j − µj)

)
(N )

(
∂8

j
i

∂α
j
i

(N )

)
(A.14)

∂8
j
i

∂α
j
i

(N )

= ζ
j
i (N − 1)αji(N )

·

(
(8j − µj)Tσj(8j − µj)

)
(N − 1)

(
∂8

j
i

∂α
j
i

(N )− 1

)
+ζ

j
i (N − 1) (A.15)

where ηµ and ησ and ηα are the learning rate parameters
of the mean, standard deviation and the self-feedback loop,
respectively. Moreover, they can be updated as follows:

µij(N + 1) = µij(N )+1µij(N + 1) (A.16)

σ ij (N + 1) = σ ij (N )+1σ ij (N + 1) (A.17)

αij(N + 1) = αij(N )+1αij(N + 1) (A.18)

The exact calculation of the Jacobian of the HSPMSM drive
system (∂xn/∂y3o) in (A.2), cannot be easily determined and
need heavy computation due to the uncertainties of the servo
drive system dynamic, such as parameter variations and
external load disturbances. To overcome this problem and to
increase the online learning speed of the network parameters,
the sensitivity of the system in (A.2) can be approximated by
its sign function [27], [49], [50] as:

∂xn
∂y3o
∼= sgn

(
xn(N )− xn(N − 1)
y3o(N )− y3o(N − 1)

)
(A.19)

where sgn(·) is the sign function.

B. CONVERGENCE ANALYSES OF THE RRBFNN
Consider the energy function in (A.1) as a discrete-type
Lyapunov function and the change in the Lyapunov function
can be written as:

En(N + 1)

= En(N )+1En(N )

≈ En(N )+
ny∑
j=1

no∑
o=1

[
∂En(N )
∂Wj

1Wj

]

+

ny∑
l=1

no∑
o=1

[
∂En(N )
∂Wo

1Wo

]
+

ny∑
l=1

no∑
o=1

[
∂En(N )
∂β lo

1β lo

]

+

ni∑
i=1

nj∑
j=1

[
∂En(N )

∂µ
j
i

1µ
j
i+
∂En(N )

∂σ
j
i

1σ
j
i +
∂En(N )

∂α
j
i

1α
j
i

]
(B.1)
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6
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∂Wo

)2

+
1
6
En(N )− ηβ

ny∑
l=1

no∑
o=1

(
∂En(N )
∂y3o

∂y3o
∂β lo

)2

+
1
6
En(N )− ηµ

ni∑
i=1

nj∑
j=1

no∑
o=1

(
∂En(N )
∂x in

∂x in
∂y3o

∂y3o
∂µ

j
i

)2

+
1
6
En(N )− ησ

ni∑
i=1

nj∑
j=1

no∑
o=1

(
∂En(N )
∂x in

∂x in
∂y3o

∂y3o
∂σ

j
i

)2

+
1
6
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j
i
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(B.2)

where 1Wj, 1Wo, 1µij, 1σ
i
j , 1β

l
o and 1αij represent the

weight change in the output layer, the mean and standard
deviation in the Gaussian function and the weight change
in the self-feedback loops, respectively. If the learning rate
parameters of the RRBFNN are designated as

ηW =
En(N )

6

[
ny∑
j=1

no∑
o=1

(
∂En(N )
∂y3o

∂y3o
∂Wj

)2
+ ν

] (B.3)

ηo =
En(N )

6

[
ny∑
j=1

no∑
o=1

(
∂En(N )
∂y3o

∂y3o
∂Wo

)2
+ ν

] (B.4)

ηβ =
En(N )

6
[ ny∑
l=1

no∑
o=1

(
∂En(N )
∂y3o

∂y3o
∂β lo

)2
+ ν

] (B.5)
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ηα =
En(N )

6

[
ni∑
i=1

nj∑
j=1

no∑
o=1

(
∂En(N )
∂xin

∂xin
∂y3o

∂y3o
∂α

j
i

)2

+ ν

] (B.8)

where ν is a positive constant, then (B.2) can be rewritten as

En(N + 1) ≈ ν(ηW + ηo + ηβ + ηµ + ησ + ηα)
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According to (A.1) and (B.9), the convergent ability of the
RRBFNN can be guaranteed.
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