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ABSTRACT As the number of space debris (also called meteoroid/orbital debris-M/OD) increases in
recent years, the hypervelocity-impact (HVI) events of M/OD on spacecrafts have become one of the most
main risks threatening human activity in space. For the automatical M/OD risk assessment, some effective
nondestructive testing (NDT) methods are critical to realizing the evaluation of the HVI damages. In this
paper, a novel HVI damage evaluation method based on the active infrared thermal wave image detection
technology with multi-objective feature extraction optimization (MO-FEO) is proposed to achieve the
quantitative evaluation of M/OD HVI damages. For the precise selection of representative temperature point
in thermal infrared image data, the proposed MO-FEO method has the advantage not only of considering
the difference among temperature points in different thermal temperature categories but also considering
the correlation among temperature points of each thermal temperature category. The multi-objective feature
extraction problem decomposed by Tchebycheff aggregation is used to seek the representative temperature
points through an evolution process brought the selection pressure and fitness value. In addition to the
MO-FEO frame, the variable step search and classification of temperature points are also implemented in
the HVI damage evaluation strategy to improve efficiency. Some experimental results of infrared detection
for the real M/OD HVI test articles are proposed to illustrate the effectiveness of the proposed method.

INDEX TERMS M/OD hypervelocity impact, impact risk assessment, damage evaluation, multi-objective
optimization, evolution analysis.

I. INTRODUCTION
With the increasing human activities in space, more and more
spacecrafts have been sent into the earth’s orbit or deep space
[1], [2]. Accidental and intended at times, breakups or explo-
sions of the spacecrafts have created a lot of fragments in
varying shapes and sizes over the years, which leads to
the deteriorated earth’s orbital-debris-environment [3], [4].
Besides the man-made space junk, the meteoroid is another
natural-source of the space debris, which includes aster-
oidal or cometary debris in orbit around the Sun. Nowa-
days, the M/OD HVI risk has turned into a major threat to

The associate editor coordinating the review of this manuscript and
approving it for publication was Chee Keong Kwoh.

human activities in space [5], [6], which has brought some
evident negative effects to the spacecrafts in space, such as
impact craters caused by the HVI of small M/OD as shown
in Figure 1. Owing to the unpredictability of M/OD impact
events, the impact conditions (such as impact velocity/angle,
debris size/quantity) are random, causing the consequential
damages are very complicated to be detected [7]–[9]. Hence,
the automatical M/OD risk assessment is critical for various
spacecraft, and the HVI damage evaluation based on some
effective NDT technologies is an important component of it.

The infrared thermal wave image detection technology
can acquire surface/subsurface structural damage informa-
tion of the test articles by utilizing the thermal excitation
method andmeasuring change of infrared radiant temperature
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FIGURE 1. M/OD impact crater on spacecraft’s scuttle [5].

field of material surface [10]–[13]. Infrared thermal image
sequence contains mass valid data and strong noise interfer-
ence, it is very important to extract the key defect feature
from image sequence for a better detection results. Over the
last few decades, some image processing algorithms have
been proposed by researchers to investigate the temperature
field change caused by defect and distinguish the defect area
from the background area. To extract the thermal feature,
Fourier Transform methods can transform transient temper-
ature responses (TTRs) of each frame in time domain to ones
in frequency domain, however, the frequency selection still
rely on personal experience [14], [15]. Principal component
analysis (PCA) and independent component analysis (ICA)
have also been used to separate the damage’s feature informa-
tion from the infrared image sequence through the space-time
informationmining [16]–[18]. Some related studies [16] have
demonstrated that ICA is able to realize the feature extraction
more effectively than PCA does. In addition, some other
images processing algorithms based on representative tem-
perature points extraction proposed in [19], [20] can achieve
higher efficiency than ICA method. For the extraction of
representative temperature points, the between-class distance
decision scheme, which mainly considering the difference
calculation of different categories, has been applied in [19],
[20]. However, the correlation between the representative
temperature point and the other temperature points in same
category have not yet been investigated in these relevant
literatures, so that the selected representative temperature
points are less representative of their own categories. Hence,
both the difference and the similarity of temperature points
in infrared image sequence data should be adequately consid-
ered in the selection of the representative temperature point
in damage evaluation.

Actually, the problem about multiple contradictory objec-
tives is very common in some other practical problems, such
as hexa-Rotor [21], [22], interferometric aperture synthesis
[23], and complex network clustering [24], [25]. In deal-
ing with these multi-objective problems, the conventional
weighting method has many limitations in computing effi-
ciency and accuracy due to the difficulty of obtaining exact
weight coefficient, so it can not be regarded as an effective
solution to our problem. But it is worth reminding that,

the Pareto solution under the multi-objective evolutionary
algorithm obtains a compromise between the multiple con-
tradictory sub-objectives [26]–[29]. When considering how
to select representative feature points, the double difficulties
of establishing multi-objective problems as well as searching
candidate representative temperature points should be solved
simultaneously, which would be caused by high-dimensional
data and high-dimensional target numbers.

Based on the above purposes, a defect feature extrac-
tion and quantitative evaluation method with the MO-FEO
scheme based on infrared image data is proposed to auto-
matically detect and evaluate the HVI damages of M/OD.
The multi-objective optimization method plays an important
role in the infrared image feature extraction algorithm, which
can achieve multi-performance considerations including dif-
ference and similarity in representative feature selection. The
solutions of the multi-objective feature extraction problems
are used to generate Pareto front (PF) and select the represen-
tative temperature point, and thereby the quantitative damage
evaluation and efficient risk assessment are realized in M/OD
HVI event. Moreover, the variable step search and classifica-
tion of temperature points are also implemented in the HVI
damage evaluation strategy to improve the efficiency. Exper-
imental results based on the actual infrared image sequences
data of M/OD HVI test articles are provided to demonstrate
the validity and advantage of the proposed method.

II. MULTI-OBJECTIVE FEATURE EXTRACTION
OPTIMIZATION ALGORITHM
Different sized space debris may result in very big different
impact damages to spacecraft [5], [6]. M/OD objects larger
than about 10 cm in LEO and 1 m in GEO are often con-
sidered as the large-size space debris, which causes some
serious structural failure of spacecraft, but the large-size
M/OD can be monitored and cataloged by optical sensor
systems or ground-based radar, so the impact risk can be
effectively reduced by posture adjustment and orbit mod-
ulation of spacecraft. However, for small-size M/OD (usu-
ally centimeter-scale or below) which cannot be monitored
and cataloged due to its smaller size and enormous amount,
the risk and hazard of hypervelocity impacts will be more
serious than that of large-size M/OD HVI. Accordingly,
the detection and evaluation of HVI damage are necessary
and vital for the impact risk assessment. For instance, a con-
ventional hypervelocity impact of micro-scale M/OD on the
thermal protection system can generate the surface/internal
damage (i.e. crack, crater, delamination/spalling) of thermal
protection materials, which may cause the disintegration and
explosion of spacecrafts during their re-entry flights in earth’s
atmosphere. More seriously, the amount of micro M/OD on
earthąŕs orbit is immense, so the collision probability and
potential hazard are very high. Hence, it is necessary first to
evaluate the M/OD HVI damages by using some available
NDT technologies, which is very important for the M/OD
risk prediction and the performance evaluation of various
spacecrafts.
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FIGURE 2. The selection of temperature points in [19], [20].

Infrared thermography testing technology is a kind of
effective nondestructive detection means, which can detect
surface/subsurface damages of various aerospace materials
based on the temperature field change of the test articles
captured by infrared camera. For the purpose of reducing
the data redundancy, enhancing the detection image quality,
and improving the detection efficiency, it is necessary to
extract the defect feature information from the infrared ther-
mal image sequence. As shown in Figure 2, consulting our
previous research works [19], [20], each pixel in the image
can be regarded as a temperature point with TTR varying
with time. A representative temperature point i′RE is picked
from each category based on a certain determination method
to acquire feature extraction, in which case the determination
method is the core content of the selection of a more repre-
sentative point i′RE .

The determination method in [19], [20] focuses mainly
on the difference performance among different categories.
Specifically, i′RE is picked based on the following formula:

i′RE = arg
i′X

 max
i′X∈i′2


L∑

j′=1
j′ 6=i′

∥∥i′X − j′Center
∥∥

 (1)

in which i′RE owns the greatest difference with the other
categories, i′2 denotes the i′-th category, i′X expresses TTR
in the i′-th category, j′Center is TTR of the cluster center
of the j′-th

(
j′ = 1, · · · ,L, j′ 6= i′

)
category. The selection

of i′RE based on difference is a feasible method, but the
above method cannot determine the correlation between the
representative temperature points and their corresponding
categories. According to our new research result, it found
that i′RE could be an edge point that has a weak correlation
with other temperature points in the same category, then the
selected temperature point may be not sufficient to character-
ize the category.
Remark 1: To investigate the characterization perfor-

mance of i′RE , it should study whether i′RE has a great
correlation with similar temperature points. i′RE, i′ = 1, 2, 3
derived by the difference method [19], [20] are displayed
in Figure 3. Moreover, the related data-information of each
category is listed in Table 1. Table 2 shows further the corre-
lation and difference values among three representative tem-
perature points and cluster center, respectively. Obviously,

FIGURE 3. Representative temperature points selected by the difference
method.

TABLE 1. Related data information for each category.

TABLE 2. Correlation and difference values of the representative
temperature points selected by the difference method.

the correlation between i′RE and Centeri′(i′ = 1, 2, 3) is
small, so that the selected points cannot be sufficient to
characterize their corresponding category.

Hence, the representative temperature points extracted by
only considering the difference calculation of different cat-
egories is insufficient to represent the real characteristic of
their own categories. To extract effectively the damage fea-
tures, it is hoped that the selected representative temperature
points iRE can not only satisfy the biggest difference with
temperature points of other categories, but also ensure the
strongest correlation with similar temperature points of their
own categories. Actually, It is almost impossible to achieve
both goals above-mentioned at the same time, so it is nec-
essary to achieves a compromise between these two goals.
The proposed algorithm of this paper focuses on solving the
problem that the selected point may beweakly correlatedwith
TTR of other similar temperature points while guaranteeing
the sufficient difference.

A. MULTI-OBJECTIVE FEATURE EXTRACTION
OPTIMIZATION ALGORITHM FRAMEWORK
In this paper, we investigate mainly the seeking problem of
the representative temperature point for multi-performance
consideration of difference and correlation. When select-
ing the representative temperature point i′RE in the i′-
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th
(
i′ = 1, ...,L

)
category, the seeking problem can be written

in the following:

minimize i′F (i′X ) = (i′ f1 (i′X ) , · · · , i′ fL (i′X ))T ,
subject to i′X ∈ i′2, i′ = 1, ...,L, (2)

in which i′2 is determined by the T -time dimension
TTRs in the i′-th category. L denotes the clustering num-
ber. i′ fi (i′X ) , i = 1, · · · ,L can be stated as follows:

i′ f1 (i′X ) =
√

T∑
ρ=1

(
i′xρ − i′Centerρ

)2, i′ fi
i=2,...,L

(i′X ) =

−

√
T∑
ρ=1

(
i′xρ − j′Centerρ

)2, in which i′X = (i′x1, · · · , i′xT ) ∈
i′2 is the transient thermal response of a temperature point in
the i′-th category; i′Center = (i′Center1, · · · , i′CenterT ) ∈
R
T
, j′Center =

(
j′Center1, · · · , j′CenterT

)
∈ RT , j′ =

2, · · · ,L, j′ 6= i′.
Several scalar temperature seeking sub-problems after

decomposition are built to solve multi-objective feature
extraction optimization problem. At each evolution genera-
tion κ , the specific MO-FEO algorithm for selecting the rep-
resentative temperature point i′RE in i′2 is given as follows:

Step a1)The i′-th category involves i′M temperature points
with T time dimension; the clustering center is a T × 1
vector, marked as i′Center , which can be derived in Step 2 of
Section III.

Step a2) Initialize a group of uniformly distributed weight

vectors
→

i′ω
1, · · · ,

→

i′ω
N% for the i′-th category. The tempera-

ture seeking sub-problem under the Tchebycheff aggregation
method [27], [28] can be expressed as follows:

min
i′X∈i′2

gtf
(
i′X

∣∣∣∣ →i′ωj , i′r∗)
= min

i′X∈i′�
max
1≤i≤L

{
i′ω

j
i

∣∣i′ fi (i′X )− i′r
∗
i

∣∣} , (3)

where i′r∗ =
(
i′r∗1 , i′r

∗

2 , ..., i′r
∗
L

)
, i′r∗ ∈ RL , and

i′r∗j = min
{
i′ fj (i′X ) |i′X ∈ i′2

}
is the temperature reference

point corresponding to the objective function i′ fj.
→

i′ω
j
=(

i′ω
j
1, · · · , i′ω

j
L

)T
,
L∑
i=1

i′ω
j
i = 1.

Step a3) Select randomly N% temperature points
i′X ′1 (0) , · · · , i′X ′N% (0) ∈ i′2 as initial population. Let the
parameter κ = 0. Then, generate further the initialization
temperature points i′X 1 (0) , · · · , i′XN% (0) of the i′-th cat-
egory by adjusting the sequence of the above points on the
basis of the following formula

i′X i (0) = min
1≤j≤N%

{
i′X j (0)

∣∣∣∣∥∥∥∥i′X ′j (0)− →i′ωi∥∥∥∥
2

}
(4)

where i = 1, · · · ,N%.
Step a4) Set i′NDS (0) = ∅, that denotes a set stored

candidates (i.e. non-dominated solutions) for the represen-
tative temperature points. Moreover, initialize the reference

point i′r (0) = (i′r1 (0) , · · · , i′rL (0))T where i′ri (0) =
min

{
i′ fi
(
i′X 1 (0)

)
, · · · , i′ fi

(
i′XN% (0)

)}
, i = 1, · · · ,L.

Step a5) Search the η nearest weight vectors by applying
the following formula:

i′5
ij
=

√√√√ L∑
k=1

(
i′ω

j
k − i′ω

i
k

)2
, j = 1, · · · ,N%, j 6= i. (5)

The index set of η nearest weight vectors of
→

i′ω
i is denoted

as i′B [i] =
{
i1, i2, · · · , iη

}
, i = 1, · · · ,N%, therefore, η

nearest weight vectors for
→

i′ω
i is

→

i′ω
i1 ,
→

i′ω
i2 , · · · ,

→

i′ω
iη .

Step a6) At the κ-th evolution generation, the following

update operations are performed for each weight vector
→

i′ω
i.

1) Select randomly two index numbers p and q from
i′B [i], and then generate a newly-generated popula-
tion temperature point i′Y (κ) = i′GP × i′X p (κ) +

(1− i′GP) × i′X q (κ) based on i′X p (κ) and i′X q (κ),
in which i′GP ∈ (0, 1) denotes a variation threshold.

2) Renew i′r (κ): If i′ fj (i′Y (κ)) < i′rj (κ), let i′rj (κ) =
i′ fj (i′Y (κ)) for each j = 1, 2, · · · ,L, where i′rj (κ) is
the reference point of the function i′ fj.

3) Renew neighborhood solutions: For each index

j ∈ i′B [i], if gtf
(
i′Y (κ)

∣∣∣∣ →i′ωj , i′r (κ)) ≤

gtf
(
i′X j (t)

∣∣∣∣ →i′ωj , i′r (κ)), let i′X j (κ + 1) = i′Y j (κ);

4) Renew i′NDS (κ): Replace all solutions dominated
by i′F (i′Y (κ)) in i′NDS (κ) with i′F (i′Y (κ)); If
no solutions in i′NDS (κ) dominate i′F (i′Y (κ)), add
i′F (i′Y (κ)) into i′NDS (t). Then let i = i+ 1.

Step a7) If i > N%, let κ = κ + 1; if the stopping criteria
isn’t achieved, repeat Step a6). Otherwise, then stop and
output i′NDS, and record the number of solutions in i′NDS
as i′Nnds.
Step a8) Select the best compromise solution from i′NDS,

i′ ∈ (1, 2, ...,L), that is, determine representative tempera-
ture points from L categories:

1) Compute the membership i′µi

(
i′X k

)
of the i-th objec-

tive function value of the k-th solution in the i′NDS
according to the formula:

i′µi

(
i′X k

)

=


0, i′ fi

(
i′X k

)
> max

(
i′ fi
(
i′X k

))
min

(
i′ fi
(
i′X k

))
− i′ fi

(
i′X k

)
max

(
i′ fi
(
i′X k

))
−min

(
i′ fi
(
i′X k

)) , others

1, i′ fi
(
i′X k

)
≤ min

(
i′ fi
(
i′X k

))
(6)

where i′X k
∈ i′NDS, i = 1, · · · ,L, k = 1, · · · ,

i′Nnds, min
(
i′ fi
(
i′X k

))
and max

(
i′ fi
(
i′X k

))
express

separately the corresponding minimum and maximum
values of the target function.
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2) For the k-th solution i′X k in the i′NDS, cal-
culate its standardized satisfaction i′U

(
i′X k

)
=

L∑
i=1

i′µi

(
i′X k

)
/
i′Nnds∑
k=1

L∑
i=1

i′µi

(
i′X k

)
.

3) Obtain a compromise optimization solution i′NFCM
from i′NDS by applying the following formula
i′NFCM =

{
i′X k
|max1≤k≤i′Nnds i′U

(
i′X k

)}
. Then, all

of the i′NFCM , i′ ∈ (1, 2, ...,L) constitute a T × L
matrix Y , which will be applied in Step 3 of Section III.

It is clear that i′NFCM is the selected representative tem-
perature point under the MO-FEO algorithm. Comparing
with i′RE from (1) in [19], [20], i′NFCM is extracted on the
basis of multi-performance consideration of difference (i.e.
difference with temperature points of other categories) and
correlation (i.e. correlation with similar temperature points
in the same category). The MO-FEO algorithm can avoid the
problem existed in [19], [20], that is, the selected represen-
tative temperature point may be weakly correlated with the
transient thermal response of other similar temperature points
under the premise of ensuring the difference.

B. ANALYSIS OF THE PROPOSED MO-FEO ALGORITHM
In this section, Tchebycheff aggregation method is utilized to
approximate PF with the solutions of N% decomposed tem-
perature seeking sub-problems. The representative tempera-
ture points i′NFCM , (i′ = 1, ...,L) are derived by comparing

the fitness value gtf
(
i′X

∣∣∣∣ →i′ωj , i′r∗) of aggregate function

(3). In the MO-FEO algorithm, each sub-problem has one
and only one different weight vector. Each optimal solution of

the corresponding weight vector
→

i′ω
j
=

(
i′ω

j
1, · · · , i′ω

j
L

)T
is

maintained during the evolution process. The approximation
optimal PF is affected by the selection pressure determined.
It means that the selection of representative temperature point
i′NFCM is determined by this pressure. The individual would
approach gradually the temperature reference point i′r∗ under
the selection pressure until that it intersects with the optimal
PF contained the optimal solutions for the scalar optimization
problem.

Without loss of generality, take the evolution process
of the L = 3 objective function as an example. In this

situation, the weight vector is
→

i′ω
j
=

(
i′ω

j
1, i′ω

j
2, i′ω

j
3

)T
satisfying

3∑
i=1

i′ω
j
i = 1 and i′ω

j
1, i′ω

j
2, i′ω

j
3 ≥ 0. i′ f (i′X ∗) =

(i′ f1 (i′X ∗) , i′ f2 (i′X ∗) , i′ f3 (i′X ∗)) is the pareto optimal solu-

tion corresponding to
→

i′ω
j. At first, consider a simple

weight vector
→

i′ω
j
= (1, 0, 0)T . As depicted in Fig-

ure 4(a), the selection pressure in the case depends only

on the objective function i′ f1, that is gtf
(
i′X

∣∣∣∣ →i′ωj, i′r∗) =
max
1≤i≤3

{
i′ω

j
i

∣∣i′ fi (i′X )− i′r∗i
∣∣} = i′ω

j
1

∣∣i′ f1 (i′X )− i′r∗1
∣∣.

Hence, the new solution is influenced by the selection pres-
sure and will evolve toward the i′ f2 − i′ f3 plane (i.e. the

FIGURE 4. The influence of selection pressure under special weight
vector during evolution.

plane constructed by the i′ f2 and i′ f3 axes). In Figure 4(a),
the point i′XA evolves from the point i′X , and the point i′XB
evolves from the point i′XA. Hence, the evolutionary process
continues until the point i′X converges to i′X ∗, then there
is i′ f1 (i′X ) > i′ f1 (i′XA) > i′ f1 (i′XB) > i′ f1 (i′X ∗) =
i′r∗1 . After each evolution, i′ f1 (i′X ) can draw nearer to i′r∗1 ,
and the value of i′ω

j
1

∣∣i′ f1 (i′X )− i′r∗1
∣∣ is getting smaller,

which is: gtf
(
i′X

∣∣∣∣ →i′ωj , i′r∗) > gtf
(
i′XA

∣∣∣∣ →i′ωj , i′r∗) >

gtf
(
i′XB

∣∣∣∣ →i′ωj , i′r∗) > gtf
(
i′X ∗

∣∣∣∣ →i′ωj , i′r∗) = 0.

Similarly, considering
→

i′ω
j
= (0, 1, 0)T ,

→

i′ω
j
= (0, 0, 1)T ,

their corresponding selection pressure replies separately on
i′ f2 and i′ f3. As shown in Figure 4(b), the new solution
is influenced under the selection pressure and will evolve

toward the i′ f1 − i′ f3 plane when
→

i′ω
j
= (0, 1, 0)T . As given

in Figure 4(c), the new solution is influenced by the selection
pressure and will evolve toward the i′ f1 − i′ f2 plane when
→

i′ω
j
= (0, 0, 1)T . Finally, they can get respectively closer to

the optimal solutions i′r∗2 and i′r∗3 .
Next, consider the more general case when i′ω

j
i ∈

(0, 1) , i = 1, 2, 3. As illustrated in Figure 5, the opti-
mal solution i′ f (i′X ∗) denotes the intersection of the

PF and the brown line where the weight vector
→

i′ω
j is

located. Actually, the brown line is through the PF solu-
tion (i′ f1 (i′X ∗) , i′ f2 (i′X ∗) , i′ f3 (i′X ∗)) and the temperature
reference point i′r∗ =

(
i′r∗1 , i′r

∗

2 , i′r
∗

3

)
, which is the

selection pressure to get the front solution i′ f (i′X ∗). The
fitness value of i′X ∗ satisfies i′ω

j
1

(
i′ f1 (i′X ∗)− i′r∗1

)
=

i′ω
j
2

(
i′ f2 (i′X ∗)− i′r∗2

)
= i′ω

j
3

(
i′ f3 (i′X ∗)− i′r∗3

)
. More-

over, each point i′ f (i′X ) of the brown line can be satisfied
i′ f1 (i′X )− i′r∗1
i′ f1 (i′X ∗)− i′r∗1

=
i′ f2 (i′X )− i′r∗2
i′ f2 (i′X ∗)− i′r∗2

=
i′ f3 (i′X )− i′r∗3
i′ f3 (i′X ∗)− i′r∗3

.

98534 VOLUME 7, 2019



C. Yin et al.: Research on Damages Evaluation Method With MO-FEO Scheme for M/OD Impact Risk Assessment

FIGURE 5. The influence of selection pressure under weight vector
without zero component during evolution.

Hence, we can further obtain

i′ f1 (i′X )− i′r∗1
i′ f2 (i′X )− i′r∗2

=
i′ f1 (i′X ∗)− i′r∗1
i′ f2 (i′X ∗)− i′r∗2

=
i′ω

j
2

i′ω
j
1

i′ f1 (i′X )− i′r∗1
i′ f3 (i′X )− i′r∗3

=
i′ f1 (i′X ∗)− i′r∗1
i′ f3 (i′X ∗)− i′r∗3

=
i′ω

j
3

i′ω
j
1

i′ f2 (i′X )− i′r∗2
i′ f3 (i′X )− i′r∗3

=
i′ f2 (i′X ∗)− i′r∗2
i′ f3 (i′X ∗)− i′r∗3

=
i′ω

j
3

i′ω
j
2

(7)

Hence, i′ω
j
1

(
i′ f1 (i′X )− i′r∗1

)
= i′ω

j
2

(
i′ f2 (i′X )− i′r∗2

)
=

i′ω
j
3

(
i′ f3 (i′X )− i′r∗3

)
.

It is clear that gtf
(
i′X |

→

i′ω
j, i′r∗

)
= max

1≤i≤3

{
i′ω

j
i |i′ fi (i′X )

− i′r∗i
∣∣} > gtf

(
i′X ∗|

→

i′ω
j, i′r∗

)
= i′ω

j
i

∣∣i′ fi (i′X ∗)− i′r∗i
∣∣. In

the evolutionary process, the evolution direction of i′ f (i′X )
would be affected by the selection pressure under the Tcheby-
cheff aggregation, while comparing i′ f (i′X ) with the point of

the brown line determined by
→

i′ω
j. As exhibited in Figure 5,

the point A (that is, (i′ f1 (i′XA) , i′ f2 (i′XA) , i′ f3 (i′XA))) is in
the feasible domain, and the corresponding point A1 (i.e.(
i′ f1
(
i′XA1

)
, i′ f2

(
i′XA1

)
, i′ f3

(
i′XA1

))
) is on the brown line.

Based on the above illustration, i′ω
j
1

(
i′ f1
(
i′XA1

)
− i′r∗1

)
=

i′ω
j
2

(
i′ f2
(
i′XA1

)
− i′r∗2

)
= i′ω

j
3

(
i′ f3
(
i′XA1

)
− i′r∗3

)
=

i′ω
j
1 (i′ f1 (i′XA) −i′r∗1

)
= i′ω

j
3

(
i′ f3 (i′XA)− i′r∗3

)
. Further-

more, it can be derived that i′ω
j
2

(
i′ f2 (i′XA)− i′r∗2

)
>

i′ω
j
1

(
i′ f1 (i′XA)− i′r∗1

)
= i′ω

j
3

(
i′ f3 (i′XA)− i′r∗3

)
due

to i′ f2 (i′XA) > i′ f2
(
i′XA1

)
. gtf

(
i′XA

∣∣∣∣ →i′ωj , i′r∗) =

max
{
i′ω

j
i

∣∣i′ fi (i′XA)− i′r∗i
∣∣} = i′ω

j
2

(
i′ f2 (i′XA)− i′r∗2

)
can

be ensured for the point A. Hence, the new solution under the
selection pressure would evolve toward the i′ f1− i′ f3 plane by
reducing the i′ f2 value. That is, the point A in the evolutionary
process can move toward the point A1.

FIGURE 6. The relationship between arbitrary solutions and solutions on
the selection pressure.

Similar as the above analysis, consider the points
B,C (that is, (i′ f1 (i′XB) , i′ f2 (i′XB) , i′ f3 (i′XB)) , (i′ f1 (i′XC ) ,
i′ f2 (i′XC ) , i′ f3 (i′XC ))) and their corresponding points B1
(that is,

(
i′ f1
(
i′XB1

)
, i′ f2

(
i′XB1

)
, i′ f3

(
i′XB1

))
) and C1 (that

is,
(
i′ f1
(
i′XC1

)
, i′ f2

(
i′XC1

)
, i′ f3

(
i′XC1

))
) on the blown line

in Figure 5. For the point B, the new solution under the
selection pressure can evolve toward the i′ f1 − i′ f2 plane by
reducing the i′ f3 value. That is, the point B in the evolutionary
process moves toward the point B1. For point C , the new
solution under the selection pressure can evolve toward the
i′ f2 − i′ f3 plane by reducing the i′ f1 value. That is, C in the
evolutionary process moves toward C1.
From the above analysis, one has i′ω

j
1

(
i′ f1 (i′X1)− i′r∗1

)
=

i′ω
j
2

(
i′ f2 (i′X1)− i′r∗2

)
= i′ω

j
3

(
i′ f3 (i′X1)− i′r∗3

)
for any point

i′ f (i′X1) of the brown line determined by
→

i′ω
j. Further-

more, consider the three planes S11, S12 and S13 through
the point i′ f (i′X1) = (i′ f1 (i′X1) , i′ f2 (i′X1) , i′ f3 (i′X1)) where
the planes S11, S12 and S13 are separately parallel to the
i′ f2 − i′ f3 plane, the i′ f1 − i′ f3 plane and the i′ f1 −
i′ f2 plane, as shown in Figure 6. Actually, one has that
i′ω

j
i

(
i′ fi
(
i′Xs1i

)
− i′r∗i

)
= i′ω

j
i

(
i′ fi (i′X1)− i′r∗i

)
for any point(

i′ f1
(
i′Xs1i

)
, i′ f2

(
i′Xs1i

)
, i′ f3

(
i′Xs1i

))
in the planes S1i, (i =

1, 2, 3). Next, as shown again in the figure for the other point
i′ f (i′X2) of the brown line and the three planes S21, S22 and
S23 through i′ f (i′X2) in which S21, S22 and S23 are separately
parallel to the i′ f2− i′ f3, i′ f1− i′ f3 and i′ f1− i′ f2 planes, one can
also have i′ω

j
i

(
i′ fi
(
i′Xs2i

)
− i′r∗i

)
= i′ω

j
i

(
i′ fi (i′X2)− i′r∗i

)
for

any point i′ fi
(
i′Xs2i

)
in the plane S2i, (i = 1, 2, 3). For the

points in the planes S1i, (i = 1, 2, 3), their fitness values are
same as the fitness value of i′ f (i′X1). Hence, the solutions in
the planes S1i that are not on the brown line can be projected
onto the selection pressure. Similarly, the fitness values of
the points in the plane S2i, (i = 1, 2, 3) are equal to the
fitness value of i′ f (i′X2). The solutions in the planes S2i
that are not on the brown line can be also projected onto
the selection pressure. Thus, the relationship between good
and bad solutions in space can be analyzed and discussed
by comparing the fitness values on the selection pressure,
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to realize the selection of representative temperature point
i′NFCM . The tchebycheff decomposition strategy can always
try to minimize the fitness values in evolutionary process,
to draw the solution to the optimal value along with the

evolutionary direction
(
1/i′ω

j
1, 1/i′ω

j
2, 1/i′ω

j
3

)T
, as depicted

in Figure 6.
Considering the general situation (i.e. not only considering

L = 3), one can derive i′ f1(i′X )−i′ r∗1
1

i′ω
j
1

=
i′ f2(i′X )−i′ r∗2

1

i′ω
j
2

=

· · · =
i′ fL(i′X )−i′ r∗L

1

i′ω
j
L

for any point i′ f (i′X ) on the selection

pressure. It is worth mentioning that the selection pressure
denotes a line across the point i′r∗ =

(
i′r∗1 , i′r

∗

2 , · · · , i′r
∗
L

)T
with the slope

(
1

i′ω
j
1

, 1

i′ω
j
2

, · · · , 1

i′ω
j
L

)
, when the weight vec-

tor is
(

1

i′ω
j
1

, 1

i′ω
j
2

, · · · , 1

i′ω
j
L

)
. When optimizing the solu-

tion in the L-dimensional target space, the pressure direc-
tion will drive i′ f (i′X ) along the evolutionary direction(

1

i′ω
j
1

, 1

i′ω
j
2

, · · · , 1

i′ω
j
L

)
, to seek for the point i′ f (i′X ∗) on

the PF.
Besides of the proposed MO-FEO scheme, the follow-

ing section will further develop a whole damage evaluation
method that contains variable step search and classification
of temperature points, in order to evaluate quantificationally
the HVI damages and enhance the efficiency ofM/OD impact
risks assessment.

III. DAMAGE EVALUATION METHOD WITH THE
PROPOSED MO-FEO ALGORITHM
In the evaluation of the M/OD impact damages, the dam-
ages change the temperature distribution in the part zones.
In this section, a damage evaluationmethodwith the proposed
MO-FEO algorithm will be developed to evaluate quantifica-
tionally the M/OD impact damages.

First of all, the definitions are introduced as follows:M and
N express separately the total number of rows and columns in
3 dimensional (3d) matrixD. T represents the total number of
the images in the time axis t . L indicates the number of clas-
sifications. The Pearson Correlation Coefficient is presented
as PCC . The proposed method is exhibited follows:
Step 1: D records the initial thermal images. D(γ, c,:)

denotes the vector in the γ -th row and c-th column
of D, which represents TTR. Its third-dimension expresses
the time axis t . Seek the maximum temperature value
D(Rmm,Cmm,Tmm) = max

γ=1,2,··· ,M
c=1,2,··· ,N
t=1,2,··· ,T

[D(γ, c, t)]. Define tem-

perature thresholds TC (k), (k = 1, 2, · · · ,K − 1). From
these thresholds, the row involving D(Rmm,Cmm,Tmm) could
be split to K data-blocks marked as ‘‘Block Ck ’’,(k =
1, 2, · · · ,K ), to count the length of the interval in the
vertical axis. Furthermore, seek the maximum temperature
value Dk (Rmm,Ck

m, :) in ‘‘Block Ck ’’(k = 1, 2, · · · ,K )
and define its temperature threshold THRECLk . Then,

calculate respectively PCC(Dk (Rmm,Ck
m, :),D

k (Rmm, c, :)),
c = (1, 2, · · · ,Ck

m− 1) and c = (Ck
m+ 1,Ck

m+ 2, · · · , lenCk )
until theirPCC ≤ THRECLk , wherePCC represents the pear-
son correlation coefficient, Dk (Rmm, c, :) is the c-th vector
and lenCk denotes the number of TTR of ‘‘Block Ck ’’. And
the corresponding number ofDk (Rmm, c, :) satisfyingPCC >
THRECLk are regarded as lk1 and lk2. Therefore the seeking-
interval value in ‘‘Block Ck ’’ is CLk = max{lk1, lk2}. Next,
define temperature thresholds TR(h), (h = 1, 2, · · · ,H − 1).
The column involving D(Rmm,Cmm,Tmm) can be split into
H data-blocks marked as ‘‘Block Rh’’,(h = 1, 2, · · · ,H ),
according to these thresholds. Furthermore, find the maxi-
mum temperature value Dh(Rhm,Cmm, :) in ‘‘Block Rh’’(h =
1, 2, · · · ,H ) and set its temperature threshold THRERLh .
Calculate respectively PCC(Dh(Rhm,Cmm, :),D

h(γ,Cmm, :)),
γ = (1, · · · ,Rhm − 1) and γ = (Rhm + 1,Rhm + 2, · · · , lenRh )
until their PCC ≤ THRERLk where D

h(γ,Cmm, :) is the γ -th
vector and lenRh denotes the number of TTR of ‘‘Block Rh’’.
And the corresponding number of Dh(γ,Cmm, :) satisfying
PCC > THRERLh are regarded as lh3 and lh4, therefore the
seeking-interval value in ‘‘Block Rh’’ is RLh = max{lh3, lh4}.
Then, set the threshold 4 and initialize h = 1, k = 1, g =
1, γ = 1, c = 1. The following procedure is executed:
1.1) D(γ, c, :) is stored to X (g, :). Let γ = γ + RLh.
1.2) If γ ≤ lenRh , calculate PCC(D(γ, c, :),X (g, :)), else

go to Step 1.4).
1.3) If PCC < 4, let g = g + 1, X (g, :) = Dpk (γ, c, :),

γ = γ +RLh, and repeat Step 1.2), else γ = γ +RLh, repeat
Step 1.2).
1.4) If γ < M , let g = g + 1, p = p + 1, and repeat Step

1.1), else let c = c+ CLk .
1.5) If c < lenCk , let γ = 1 and repeat Step 1.1); else go to

Step 1.6).
1.6) If c < N , let γ = 1 and k = k + 1, repeat Step 1.1),

else the procedure is completed.
The specific process of Step 1 is shown as Figure 7.
Step 2: The TTRs (i.e.X (i, :), (i = 1, 2, · · · , g)) have been

gotten by Step 1. Then, X (i, :), (i = 1, 2, · · · , g) will be
divided into L parts, i.e.
2.1) Initialize the cluster center j′Center, (j′ = 1, 2,
· · · ,L). Moreover, define the iteration times ς , the weighting
coefficient β, and the termination threshold ε.
2.2) Compute the membership function νj′ (X (i, :)) and

update cluster centers j′Center according to νj′ (X (i, :)) =

d−2/(β−1)
j′i

L∑
s=1

d−2/(β−1)si

, j′Center =

g∑
i=1

[νj′ (X (i,:))]βX (i,:)

g∑
i=1

[νj′ (X (i,:))]β
, i = 1, 2, · · · , g

and j′ = 1, 2, · · · ,L. in which djk =
∥∥X (k, :)− j′Center

∥∥
expresses the Euclidean distance between the k th TTR (i.e.
X (k, :)) and the j′th cluster center (i.e. j′Center). νj′ (X (i, :))
indicates the degree of the ith TTR attach to the j′th cluster.
2.3) If

∥∥Jf (ς )− Jf (ς − 1)
∥∥ ≥ ε, and i < g, i = i + 1,

go back to Step 2.2). If i > g and j < L, j = j + 1,
return to Step 2.2). If j′ ≥ L, the process is finished.
If
∥∥Jf (ς )− Jf (ς − 1)

∥∥ < ε, the process is finished too.
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FIGURE 7. The Specific process in Step 1.

2.4) The membership maximization criterion is applied
to partition X (i, :), (i = 1, 2, · · · , g) into L cluster j′2,
(j′ = 1, 2, · · · ,L).
Step 3: To find further the target damage feature informa-

tion, the proposed MO-FEO algorithm is adopted to select
the representative temperature point j′NFCM in each category
j′�, (j′ = 1, 2, · · · ,L), which is presented in Section II.
Step 4: The matrix D is transformed into 2d matrixU . The

elements in one row of U are taken columnwise from D(:
, :, t), t = 1, 2, · · · ,T . Compute the pesudo-inverse matrix
Ŷ of Y extracted in Section II, in which Y (:, i′) recording
the optimal solutions i′NFCM , (i′ ∈ (1, 2, ...,L)) derived
in Step 3. Then, calculate the linear transformation S =
Ŷ ∗U , where S represents the result of the proposed damage
evaluation method, which involves the features of the ther-
mal images processed by the proposed damage evaluation
method. Moreover, continue to achieve Feature extraction
of matrix using PCNN algorithm [30], which can show the
defect feature from the image.

To realize the automatic recognition of HVI damage,
a defect feature extraction method with the proposed MO-
FEO scheme is developed in the infrared thermal wave image
detection technology. Specially, the infrared imaging system
record the thermal image sequence of the M/OD HVI dam-
ages. Then the presented algorithm separates the TTRs into
some parts by the thresholds and seeks out the TTRs by vari-
able interval search, which is employed to reduce the double

counting of thermal characterization and keep the main fea-
ture of the M/OD HVI damages. Next, the acquired TTRs are
classified by membership maximization criterion. Moreover,
the proposed MO-FEO algorithm in Section II is applied
to select the representative temperature points (i.e. the typ-
ical TTRs), when considering multi-performance of differ-
ence and correlation. Finally, the representative temperature
points can be transformed to two-dimension matrix linearly.
The typical and representative features of infrared image
sequence in the M/OD impact damages can be extracted
by the representative temperature points. In the following,
the real infrared images data collected from two different
materials with typical damages will be processed to show the
effectiveness and advantages of the proposed method.

IV. EXPERIMENTAL RESULTS
In the section, two experimental cases including the compar-
ison analysis are given to verify the validity of the proposed
damage evaluation method with the MO-FEO scheme.
Case I: In this case, the thermal protection materials made

of carbide and boride have been used for M/OD HVI tests
on a hypervelocity ballistic range of China Aerodynamics
Research and Development Center (CARDC), as depicted in
Figure 8. There are four major components in HVI exper-
imental device: (1) a two-stage light-gas gun (LGG) as
the hypervelocity launcher; (2)the impact chamber within
test articles; (3) the laser-photodetector speed detectors;
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FIGURE 8. Setup for the hypervelocity impact experiment.

FIGURE 9. Experimental set-up for the thermal protection materials with
impact damages.

and (4) Hypervelocity Sequence Laser Shadowgraph Imager
(HSLSI) as the HVI process monitor. The aluminum alloy
projectiles with diameter 3 mm are launched by LGG,
the impact velocity is range from 1.5 km/s to 5 km/s.

After these HVI tests, the specimen with some HVI dam-
ages is thermally excited by two halogen lights and the
surface temperature field change is recorded by the infrared
camera with a resolution of 512 × 640. Figure 9 shows
the fundamental structure of the experimental setup for the
thermal image testing of the thermal protectionmaterials with
HVI damages. A total of T = 336 frames of thermal image
sequences are captured for the thermal protection materials.
Then, the proposed method is used to extract related damage
features from 327680 temperature points.

The temperature thresholds are firstly set as TC (1) =
TR(1) = 26.8,TC (2) = TR(2) = 28.2, respectively. The step
thresholds for column are separately defined as THRECL1 =
0.98, THRECL2 = 0.96 and THRECL3 = 0.94. The step
thresholds for row are separately selected as THRERL1 =
0.98, THRERL2 = 0.96 and THRERL3 = 0.94. Then, one
can obtain the 478 typical temperature points (TTRs) from
the original 327680 temperature points. In Step 2, let ς =
200, β = 1,L = 2, ε = 10−5. Then, the total TTRs are clus-
tered into two categories ‘‘Category A (i.e. A2) and Category
B (i.e. B2)’’. After Step 2 of Section III, there are 237 and
241 in A2 and B2. Their corresponding cluster centers are
ACenter and BCenter . Figure 10 shows the clustering result
including both categories of TTRs and their cluster centers,
where each TTR is mapped to 3 low dimension by using the
PCA algorithm [31]. It shows a good classification perfor-
mance. Next, the proposed MO-FEO algorithm is applied to

FIGURE 10. Clustering results after PCA dimensionality reduction.

select representative temperature points for Category A and
Category B. Therefore, the multi-objective functions for both
categories of TTRs are destabilized as follows:

For Category A:

minimize
AX∈A2

AF (AX ) = (Af1 (AX ) , Af2 (AX ))T ,

Af1 (AX ) =

√√√√ 336∑
ρ=1

(Axh − ACenterh)2, AX ∈ A2,

Af2 (AX ) = −

√√√√ 336∑
ρ=1

(Axh − BCenterh)2, AX ∈ A2.

For Category B:

minimize
BX∈B2

BF (BX ) = (Bf1 (BX ) , Bf2 (BX))T ,

Bf1 (BX ) =

√√√√ 336∑
ρ=1

(Bxh − BCenterh)2, BX ∈ B2,

Bf2 (BX ) = −

√√√√ 336∑
ρ=1

(Bxh − ACenterh)2, BX ∈ B2,

where ACenter = (ACenter1, · · · , ACenter336), AX =

(Ax1, · · · , Ax336) ∈ A2, BCenter = (BCenter1, · · · ,
BCenter336) and BX = (Bx1, · · · , Bx336) ∈ B2. To extract
the corresponding representative temperature points, we set
the population number N% = 20 and AGP = BGP =
0.4, and derive η = N% × 15% = 3 in the experiment.
As shown in Figures 11-12, the PF of Category A and Cate-
gory B are obtained after evolutions, which have separately
ANnds = 16 and BNnds = 19 non-dominated solutions.
The number is less than 20 because some of solutions in
the 20 population temperature points are dominated by solu-
tions in the non-dominated solution set i′NDS at the time
of the termination algorithm. By counting the standardized
satisfaction AU

(
AX k

)
and BU

(
BX k

)
of the non-dominant
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FIGURE 11. Pareto-fronts and the representative temperature point
produced by the MO-FEO algorithm for Category A.

FIGURE 12. Pareto-fronts and the representative temperature point
produced by the MO-FEO algorithm for Category B.

solutions, the relevant information of the maximum standard-
ized satisfaction for Category A and Category B is listed
in Table 3. According to max

1≤k≤16
AU

(
AX k

)
= AU

(
AX 5

)
≈

0.0892, the compromise optimization AX 5 can be extracted
as the representative temperature point of Category A by the
proposed MO-FEO algorithm. Similarly, BX12 is extracted as
the representative temperature point of Category B, according
to max

1≤k≤19
BU

(
BX k

)
= BU

(
BX 12

)
≈ 0.0628. That is, the rep-

resentative temperature points ANFCM = AX 5, BNFCM =
BX 12 are selected in the presence of the proposed MO-FEO
algorithm, as shown in Figures 11-12.
Next, a two-dimensional matrix is constructed by using

ANFCM and BNFCM , and two fusion images are obtained
after fusion and transformation with matrix and the origi-
nal infrared image, as shown in Figure 13. In the follow-
ing, the maximum temperature T max

= max
1≤i≤336

(X (i, :))

and the rate of decline DR = Ta−Tb
Fb−Fc

will be applied to
compare the representative temperature points ANFCM and
BNFCM , where Ta and Tb represent the temperature values
of points a and b in Figure 13(c), and Fb and Fc indicate the

FIGURE 13. (a) Fusion image of ANFCM. (b) Fusion image of BNFCM.
(c) Transient thermal response of ANFCM. (d) Transient thermal response
of BNFCM.

corresponding frame values of point b and c. Moreover, one
can obtain Ta−Tb

Fb−Fc
=

Ta−Td
Fd−Fe

. As shown in Figures 13(c)-(d),
the maximum temperatures of ANFCM and BNFCM are
T max (ANFCM) = 28.03, and T max (BANFCM) = 28.57.
It means that BNFCM is heated up faster during the same
heating time. Furthermore, the rate of decline of ANFCM
and BNFCM are DR (ANFCM) = cot Aϑ = 28.03−26.6

282−242 =

0.0358 and DR (BNFCM) = cot Bϑ =
28.57−26.8
267−242 =

0.0708. One can have DR (ANFCM) < DR (BNFCM). From
Figure 13, the representative temperature points ANFCM and
BNFCM extracted by the proposed MO-FEO algorithm can
be clearly distinguished by comparing the curve of ANFCM
and BNFCM including the maximum temperature and rate of
decline. That is, the proposed damage evaluationmethodwith
theMO-FEO scheme has successfully selected representative
temperature points of damage and background areas and
extracted main damage features for M/OD HVI tests.

Next, we validate the practical performance of the pro-
posedMO-FEO scheme forM/OD impact evaluation, in com-
parison with the results extracted by the difference method
[19], [20] mentioned in Section II. For convenient for com-
paring, the man-made selection of two typical TTRs in
the known test piece are denoted as two representative
temperature points Non−DamPoint and DamPoint for dam-
age and background areas. On the one hand, we use the
difference method [19], [20] to select the representative
temperature points ARE and BRE . Table 4 shows the pear-
son correlation(i.e. similarity) PCC1(Non−DamPoint, ARE),
PCC2(Non−DamPoint, ANFCM ), PCC3(DamPoint , BRE) and
PCC4(DamPoint, BNFCM ). Due to PCC1 < PCC2 and
PCC3 < PCC4, the representative temperature points
ANFCM and BNFCM extracted by the proposed MO-FEO
algorithm are more similar to the man-made selection of
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TABLE 3. Relevant data when selecting the compromise optimal solution for Category A and B.

FIGURE 14. Comparison of representative temperature points of damage
and background areas.

TABLE 4. Similarity between the representative temperature points
extracted by the two methods and the known points.

TABLE 5. Comparison of the rate of decline.

FIGURE 15. (a) The image information of the damage representative
point. (b) Outline damage extraction.

Non−DamPoint and DamPoint , which can verify the superi-
ority of our algorithm. Moreover, the comparison in the
maximum temperature T max and the rate DR of decline
are given to further illustrate the better performance of the
proposed MO-FEO scheme. Table 5 displays separately the
comparisons among DR of Non−DamPoint , ANFCM , ARE ,
and the comparisons among DR of DamPoint , BNFCM , BRE .
Obviously, DR of ANFCM and BNFCM are closer to DR of
Non−DamPoint and DamPoint . Considering the maximum tem-
perature aspects in Figure 21, T max of ANFCM and BNFCM
are more similar to T max of Non−DamPoint and DamPoint ,
when comparing with T max of ARE and BRE . Then, the pro-
posed MO-FEO algorithm can have a better performance of
selecting the representative temperature point, to accurately
evaluate the M/OD impact damages. Moreover, the PCNN
method [30] in Step 4 is applied to build a feedback network
composed by 327680 pixels of damage image. Then, the dam-
age outline of the test piece is extracted in Figure 15. It shows
that the extraction of damage features is realized to verify the
validity of the proposed algorithm.
Remark 2: In addition to the typical impact craters on

inorganic nonmetallic materials for the thermal protection
system of reentry aircraft, there are some other HVI damages
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FIGURE 16. Alloy-steel plate with artificial through-hole damage and
stuffed-hole damage.

on thin-wall structure parts, such as perforation holes and
intrusion objects, which are quite common in on-orbit space-
craft. Various metals like aluminum, steel, copper, titanium,
magnesium and so on are often used as aerospace structural
material. Hence, the simulated typical metallic material with
some similar HIV damages is also designed later in this
research.
Case II: In this case, an alloy-steel plate with artificial

through-hole damage and stuffed-hole damage shown in Fig-
ure 16 is prepared to simulate the typicalM/ODHVI damages
of the usual aerospace structural metallic materials, and the
evaluation experiments are carried out to demonstrate the
availability and applicability of this novel damage evaluation
method. A total of T = 240 frames of thermal image
sequences are collected for the alloy-steel plate in the thermal
wave image technique. The temperature thresholds are set as
TC (1) = TR(1) = 28.2,TC (2) = TR(2) = 31.2, respectively.
The step thresholds for column and row are separately defined
as THRECL1 = 0.98, THRECL2 = 0.96, THRECL3 = 0.94,
THRERL1 = 0.98, THRERL2 = 0.96 and THRERL3 =
0.94. Then, one can obtain the 290 typical temperature points
(TTRs) from the original 327680 temperature points.

In Step 2, let ς = 200, β = 1,L = 3, ε = 10−5. Then,
the total TTRs are clustered into three categories ‘‘Category
A (i.e. A2), Category B (i.e. B2) and Category C (i.e. C2)’’.
After Step 2, there are 229, 237 and 242 in A2, B2 and C2.
Their corresponding cluster centers are ACenter , BCenter and
CCenter . Figure 17 displays the clustering result involving
three categories of TTRs and their cluster centers, where each
TTR is mapped to 3 low dimension by utilizing the PCA
algorithm [31]. It shows a good classification performance.
Next, the proposed MO-FEO algorithm is employed to select
representative temperature points for Category A, Category B
and Category C . Therefore, the multi-objective functions for
the three categories of TTRs are established as follows:

For Category A:

minimize
AX∈A2

AF (AX ) = (Af1 (AX ) , Af2 (AX ) , Af3 (AX ))T ,

Af1 (AX ) =

√√√√ 240∑
ρ=1

(
Axρ − ACenterρ

)2
, AX ∈ A2,

FIGURE 17. Clustering results after PCA dimensionality reduction.

Af2 (AX ) = −

√√√√ 240∑
ρ=1

(
Axρ − BCenterρ

)2
, AX ∈ A2,

Af3 (AX ) = −

√√√√ 240∑
ρ=1

(
Axρ − CCenterρ

)2
, AX ∈ A2.

For Category B:

minimize
BX∈B2

BF (BX ) = (Bf1 (BX ) , Bf2 (BX ) , Bf3 (BX ))T ,

Bf1 (BX ) =

√√√√ 240∑
ρ=1

(
Bxρ − BCenterρ

)2
, BX ∈ B2

Bf2 (BX ) = −

√√√√ 240∑
ρ=1

(
Bxρ − ACenterρ

)2
, BX ∈ B2

Bf3 (BX ) = −

√√√√ 240∑
ρ=1

(
Bxρ − CCenterρ

)2
, BX ∈ B2.

For Category C :

minimize
CX∈C2

CF (CX ) = (C f1 (CX ) , C f2 (CX ) , C f3 (CX ))T ,

C f1 (CX ) =

√√√√ 240∑
ρ=1

(
Cxρ − CCenterρ

)2
, CX ∈ C2,

C f2 (CX ) = −

√√√√ 240∑
ρ=1

(
Cxρ − ACenterρ

)2
, CX ∈ C2,

C f3 (CX ) = −

√√√√ 240∑
ρ=1

(
Cxρ − BCenterρ

)2
, CX ∈ C2,

where ACenter = (ACenter1, · · · , ACenter240), AX =

(Ax1, · · · , Ax240) ∈ A2, BCenter = (BCenter1, · · · ,
BCenter240), BX = (Bx1, · · · , Bx240) ∈ B2, CCenter =
(CCenter1, · · · , CCenter240) and CX = (Cx1, · · · ,
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TABLE 6. Relevant data when selecting the compromise optimal solution for Category A, B and C .

FIGURE 18. Pareto-fronts and the representative temperature point
produced by the MO-FEO algorithm for Category A.

FIGURE 19. Pareto-fronts and the representative temperature point
produced by the MO-FEO algorithm for Category B.

Cx240) ∈ C2. We set N% = 30 and AGP = BGP =
CGP = 0.4, and derive η = N% × 10% = 3, and the
variation threshold in the experiment. As depicted in Fig-
ures 18-20, the PF of Category A, B and C are obtained
after evolutions, which have ANnds = 29, BNnds = 28
and CNnds = 15 non-dominated solutions, respectively.
Then, the standardized satisfaction AU

(
AX k

)
, BU

(
BX k

)
and

CU
(
CX k

)
of these non-dominant solutions are calculated.

Table 6 shows the relevant information of the maximum
standardized satisfaction for Category A, Category B and
Category C . From max

1≤k≤29
AU

(
AX k

)
= AU

(
AX 6

)
≈ 0.0419,

FIGURE 20. Pareto-fronts and the representative temperature point
produced by the MO-FEO algorithm for Category C .

TABLE 7. Similarity between the representative temperature points
extracted by the two methods and the known points.

TABLE 8. Comparison of the rate of decline.

max
1≤k≤28

BU
(
BX k

)
= BU

(
BX 25

)
≈ 0.0511 and max

1≤k≤15

CU
(
CX k

)
= CU

(
CX 7

)
≈ 0.1113, the representative tem-

perature points ANFCM = AX 6, BNFCM = BX 28 and
CNFCM = CX 7 are selected by the proposed MO-FEO
algorithm of Section II, as shown in Figures 18-20.

Next, a 3d matrix is constructed by using ANFCM ,
BNFCM and CNFCM , and three fusion images are obtained
after fusion and transformation with matrix and the original
infrared image. In the following, T max

= max
1≤i≤240

(X (i, :))

and DR = Ta−Tb
Fb−Fc

will be applied to compare the represen-
tative temperature points ANFCM , BNFCM and CNFCM .
Similar to the analysis in Case 1, we study the better per-
formance of the MO-FEO scheme for the simulated typical
aerospace structural metallic material, in comparison with

98542 VOLUME 7, 2019



C. Yin et al.: Research on Damages Evaluation Method With MO-FEO Scheme for M/OD Impact Risk Assessment

FIGURE 21. Comparison of representative temperature points of
through-hole damage, stuffed-hole damage and background areas.

the results extracted by the difference method [19], [20].
In the known test piece, the man-made selection of three
typical TTRs in advance are denoted as three representative
temperature points Non−DamPoint , Dam1Point and Dam2Point
for background areas, through-hole damage and stuffed-
hole damage. On the one hand, we use the difference
method [19], [20] to select the representative temperature
points ARE , BRE and CRE . Table 7 shows the pearson

FIGURE 22. (a) The image information of the damage representative
point. (b) Outline damage extraction of test piece.

correlation (i.e. similarity) PCC1(Non−DamPoint, ARE),
PCC2(Non−DamPoint, ANFCM ), PCC3(Dam1Point , BRE),
PCC4(Dam1Point, BNFCM ), PCC5(Dam2Point , CRE) and
PCC6(Dam2Point, CNFCM ). Due to PCC1 < PCC2,
PCC3 < PCC4 and PCC5 < PCC6, the representative
temperature points ANFCM , BNFCM and CNFCM extracted
by the proposed MO-FEO algorithm are more similar to
the man-made selection of Non−DamPoint , Dam1Point and
Dam2Point , which can verify the superiority of our algorithm.
Moreover, the comparison in T max and DR are given to
further illustrate the better performance of the proposed
MO-FEO scheme. Table 5 displays separately the com-
parisons among DR of Non−DamPoint , ANFCM , ARE , and
the comparisons among DR of DamPoint , BNFCM , BRE .
Obviously, DR of ANFCM , BNFCM and CNFCM are closer
to DR of Non−DamPoint , Dam1Point and Dam2Point . Con-
sidering the maximum temperature in Figure 21, T max of
ANFCM , BNFCM and CNFCM are more similar to T max

of Non−DamPoint , Dam1Point and Dam2Point , when comparing
with T max of ARE , BRE and CRE . Then, the proposed MO-
FEO algorithm can have a better performance of selecting
the representative temperature point, to accurately evaluate
the M/OD impact damages. Moreover, the PCNN algorithm
[31] is applied to build a feedback network composed by
327680 pixels of damage image. The damage outline of the
test piece is extracted in Figure 22. It shows that the extraction
of damage features is realized to verify the validity of the
proposed algorithm.

V. CONCLUSION
In the paper, a multi-objective optimization method has been
introduced into the infrared thermal image feature extraction,
so both the differences and similarities have been considered
in the selection of representative temperature points simul-
taneously. The Tchebycheff aggregation function has been
adopted to transform the multi-objective optimization prob-
lem into several temperature seeking sub-problems. Under
the influence of the selection pressure, the optimal representa-
tive temperature points of damage feature regions have been
selected successfully. Besides the multi-objective optimiza-
tion frame, the damage evaluation method includes variable
step search and classification of temperature has been devel-
oped to enhance the efficiency of detection. Finally, the real
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infrared thermal image testing experiments including M/OD
HVI and artificial test articles were carried out to validate the
feasibility of the proposed damage detection method, and all
of these results indicate that the newly presented algorithm is
more accurate than themethod based on differential selection.
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