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ABSTRACT With the advent of big data era, enormous volumes of data are generated every second. Varied
data processing algorithms and architectures have been proposed in the past to achieve better execution
of data mining algorithms. One such algorithm is extracting most frequently occurring patterns from the
transactional database. Dependency of transactions on time and location further makes frequent itemset
mining task more complex. The present work targets to identify and extract the frequent patterns from
such time and location-aware transactional data. Primarily, the spatio-temporal dependency of air quality
data is leveraged to find out frequently co-occurring pollutants over several locations of Delhi, the capital
city of India. Varied approaches have been proposed in the past to extract frequent patterns efficiently, but
this work suggests a generalized approach that can be applied to any numeric spatio-temporal transactional
data, including air quality data. Furthermore, a comprehensive description of the algorithm along with a
sample running example on air quality dataset is shown in this work. A detailed experimental evaluation is
carried out on the synthetically generated datasets, benchmark datasets, and real world datasets. Furthermore,
a comparison with spatio-temporal apriori as well as the other state-of-the-art non-apriori-based algorithms
is shown. Results suggest that the proposed algorithm outperformed the existing approaches in terms of
execution time of algorithm and memory resources.

INDEX TERMS Air quality, data mining, frequent, itemset, spatio-temporal.

I. INTRODUCTION AND MOTIVATION
Web generates enormous volumes of heterogeneous data
every second via sources such as social media, sensors, busi-
ness enterprises etc. One such data that is focused upon in this
work is air quality dataset, in addition to other transactional
and synthetically generated datasets. There are various data
mining methods that play a significant role in processing and
analysing such data to extract useful information. Particularly
association rule mining plays a critical role in applications
such asmarket basket analysis, business [1] etc. However, due
to the complexity of the real world big datasets [2], the need
for efficient association rule mining algorithms for varied
applications cannot be adjourned.

Prominent among them are the applications which gen-
erate spatio-temporal transactional data. Such datasets have
a property that the information generated at one space and
time behaves differently than the information generated at
other space and time. Henceforth, to mine association rules
among such databases, considering space-time information
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becomes obligatory. Spatio-temporal association rule mining
is used for various applications in the past. Such as for
mining disease [3], road networks [4] and mining bus Id card
databases [5], marine environments [6], traffic [7] etc.

In this paper the main focus is to propose a general-
ize approach that can extract frequent patterns from spatio-
temporal databases. In addition to mining spatio-temporal
databases, our proposed approach calculates frequent spatio-
temporal patterns at multiple levels of granularity. This gran-
ularity is explained in terms of spatial and temporal concept
hierarchy levels. For example, time may be represented by as
Year→Month→Day at different levels of concept hierarchy
in descending order [8]. Furthermore, the present work is an
extension of [9] in which a method to extract frequent items
from categorical attributes is proposed. However, we extend
this work for numeric attributes consisting of mutually exclu-
sive items. Figure 1 shows the concept hierarchy for numeric
attributes so as to make it suitable for spatio-temporal fre-
quent itemset mining.

There were several shortcomings of previously pro-
posed frequent itemset mining approaches. Primary of them
includes repeated accesses of transactional database for
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FIGURE 1. Concept hierarchy for categorical vs numeric attribute.

generating itemsets. This requires extremely large amount of
memory storage as well as sharply increases the execution
time for large databases. We propose hashing based spatio-
temporal frequent itemset mining algorithm in this work
which can be applied to varied spatio-temporal datasets
including the air quality dataset. This work is an advantage
over existing methods in terms of memory and execution
time. Further this work applies the proposed algorithm on
air quality data.

Air pollution levels are rising day by day. Extremely rising
air pollution levels in the urban areas is one of the primary
environmental concern of this era, which is to be addressed
with the use of efficient techniques. Thus, the proposed
spatio-temporal frequent itemset mining algorithm is applied
on the air quality data of Delhi, the capital city of India,
in order to identify frequently co-occurring air pollutant
patterns. The air quality data consisted of parameters such
as pollutant concentrations, location and time. Dependency
of air quality data including concentrations of pollutants on
spatial (latitude, longitude) and temporal (month, year) fea-
turesmakes it a suitable spatio-temporal transactional dataset.
Henceforth, the primary aim of this work is to extract time and
location aware frequent itemsets consisting of co-occurring
pollutant concentrations using the proposed algorithm.

Our research contributions can be summarized as follows:
• The proposed research work is a hybrid version of CMS
based approach and hash based searching techniques
with efficient memory storage as well as execution time.
The proposed Hash Based Spatio-Temporal (HBST)
frequent itemset mining algorithm is computationally
efficient and reduces overall execution time of the
algorithm.

• Two stepmethodology is proposed to address the several
aspects of mining spatio-temporal database i.e.
a Preprocessing step: to reduce the access time of

database.
b Three phase approach: to reduce the number of

accesses to the transactional database.
• The proposed work is an extension of [9] which was able
to handle transactions with categorical attributes only.
While the proposed work is applicable to any spatio-
temporal databases containing numeric attributes, using
discretization based on quantiles.

• Our approach is simple to implement and understand.
Additionally, the proposed HBST algorithm ascertains
reduced candidate generation.

• Finally, time and location aware frequent itemsets for air
pollution data of Delhi are extracted in this work and a
brief discussion about the reasons for co-occurrence of
frequently occurring pollutants is given.

Rest of the paper is organized as follows: Section II
presents the literature survey of existing frequent pattern
mining algorithms in detail. Section III describes the method-
ology. Experiments and results are presented in section IV.
Finally, conclusion is given in section V.

II. RELATED WORK
Atluri et al. [10] majorly classified spatio-temporal data
mining techniques into six major categories: clustering,
predictive learning, change detection, frequent pattern min-
ing, anomaly detection, and relationship mining [8]. This
work primarily focuses upon frequent pattern mining using
association rule mining algorithms prevalant in the past.

Shaheen et al. [11] proposed a spatio-temporal association
rule mining algorithm to identify the associations among
different objects depending upon their context. Positive and
negative frequent itemsets were identified in this work further
utilizing context variable and spatial inputs of temporal series.
Shao et al. [12] proposed ACAR, a supervised approach for
software defect prediction based on atomic class-association
rule mining. Further [13] suggested an algorithm to find
frequent association patterns in data generated from smart
devices and internet of things.

Chee et al. [14] classified frequent itemset mining algo-
rithms into three categories, tree-based search algorithms
(such as EclaT, TreeProjection etc.), pattern growth algo-
rithms (such as FP- Growth, EXTRACT) and join-based
algorithms (such as Apriori, DHP etc.).

Antonelli et al. [15] employed a fuzzy extension of
FP-Growth algorithm for mining frequent patterns. However
disadvantage of FP-Growth is its complex data structure and
inefficiency on sparse datasets. To remove this, varied tree
based data structures have been proposed in the past such
as node list, node set etc. Aryabarzan et al. [16] proposed
negFIN data structure which showed substantial reduction in
total execution time required to mine frequent itemsets.

Wang et al. [17] suggested tree based temporal associa-
tion rule mining algorithm. Liang et al. [18] used tree data
structure to search frequent patterns. Turdukulov et al. [19]
suggested frequent pattern discovery approach for mov-
ing flocks data. Szathmary [20] proposed Eclat- close,
an extension of Eclat which is a vertical miner algorithm.
Zhang et al. [21] proposed an extension of EclaT, a tree
based algorithm. Primary limitation of these algorithms is
high space complexity, specifically for larger transactions.

Qin et al. [22] utilized Apriori algorithm to project spatio-
temporal effects of Particulate Matter in China. However,
traditional algorithms such as EClaT, FP-Growth and Apriori
were unable to adapt to spatio-temporal data environments.

One of the most popular algorithm for mining Spatio-
Temporal association rules is Spatio-Temporal Apriori (STA)
algorithm. STA is an extension of Apriori algorithm, which is
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one of the prominent algorithms to mine association rules,
in addition to FPGrowth, Eclat etc. [23]. Further several vari-
ants of Apriori had also been suggested in the past [24], which
later became quite popular. Lin et al. [25] further utilized
Apriori to find weighted frequent itemsets over uncertain
databases.

In Spatio-Temporal Apriori [26], database was scanned
again and again to generate candidate itemsets. This required
high amounts of resources in terms of storage and execution
times. Secondly, extremely large number of candidates gen-
eration in case of even less number of items, was further a
problem. The algorithm proposed in [26] extensively reduced
the number of accesses to the transactional database while
extracting association rules.

In the present work the target was to reduce the total
execution time of the algorithm. Total execution time con-
stitutes the number of database accesses and time required
to access the database. This work utilized calendar map
schemas (CMS) [27], an additional schema for storing spatio-
temporal information. CMS based approach reduce the num-
ber of database accesses, but limitation of existing CMS
based approach was that repeated access of CMS may even
increase the total execution time of the algorithm. Hence,
hash based method [28], [29] have been employed in the
present work, so that instead of accessing CMS repeatedly,
hash keys are used. Notably, previous works utilized tree
based data structures which are well known for their complex
processing. We have not used tree based data structure in our
work, instead we have utilized CMS data structures along-
with direct address hashing. We have used hashing in this
work, because of its less time complexity. There are various
hashing methods, but direct address hashing is utilized in
order to avoid collision which can further increase the time
complexity. Thus, hybrid of CMS based approach and hash
based approach is proposed in this work, after removing the
limitations of each of these approaches. Suggested arrange-
ment not only have reduced the number of database access,
but also reduced the time required to access the database.

Furthermore, several other research works to mine spatial
and temporal association rules were given in the past [7],
[30]–[32]. Park et al. [29] used hashing to mine association
rules using dynamic hash tree. Winarko and Roddick [33]
proposed ARMADA, an interval based temporal association
rule mining algorithm. Further, [34] proposed STARminer
algorithm an extension over [35] to extract large patterns in
the database by considering only spatio-temporal association
rules with high support and confidence. This algorithm aimed

at finding sequences of object movements between regions.
Notably, most of these approaches focused upon a specific
type of transactional dataset. However, we have further pro-
posed a generalized preprocessing algorithm based on quan-
tile discretization so that our proposed method is suitable for
any categorical or numerical dataset.

III. MATERIALS AND METHODS
A. STUDY AREA
Air quality (AQ) data of 5 locations of Delhi is considered
as a case study in the present work. Delhi is the capital
city of India which is among one of the most polluted cities
of the world. Data from 5 air quality stations of Delhi are
utilized for further analysis. Location areas are categorized
into 3 types namely commercial, industrial and residential
depending upon the land use patterns. Anand vihar and
Shadipur locations are commercial areas, with most of the
traffic intersections around the stations. Dwarka and RK
Puram are the residential areas.

Punjabi Bagh location is mixed, with all the industrial,
commercial and residential zones nearby. Figure 2 illustrates
these locations annotated on maps. Three critical pollutants
which are the primary contributors for degrading air quality in
Delhi, are analysed namely, sulphur dioxide (SO2), nitrogen
dioxide (NO2) and particulate matter 2.5 (PM2.5). Data read-
ings are sampled at every 15 minute intervals over a period
of 12 months i.e January 2016 to December 2016. Details
about the data are given in Table 1.

B. TERMS USED
Terminology adopted for the proposed method is explained
as follows: Spatio-temporal database D contains a set of
transactions, transi. Each transaction contains set of item-
sets, Ik , where k is the number of items. Time and location
based information is associated with each transaction for
database D. Spatio-temporal schema or calendar map schema
accommodate all the valid combinations of space and time
out of all the possible combinations of users’ transactions.
For example, every market has a timing and no purchasing
would occur outside that time window. That time window
represents the temporal information, instead of 24 hours of
the day. Definition for such schema is given as:
Definition 1: Calendar Map Schema (CMS) is the set of

tuples formed by a set of either spatial or temporal granular-
ities. CMS represents all the possible valid combinations of
spatial and temporal information in which a transaction can
occur.

TABLE 1. Data description.
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FIGURE 2. Study area.

Figure 3 illustrates the structure of a CMS with spatial
information represented by Si and temporal information rep-
resented by Ti. Each of the transactions in Spatio-temporal
database, D is associated with any of the tuple of the CMS.
There are two types of tuples in a CMS [27] one containing
basic spatio-temporal calendar map patterns (CMBs) and
other containing ‘*’, star based spatio-temporal calendar map
patterns (CMPs). Note that ‘*’ is a wild card symbol that
denotes upper level of spatio-temporal information at concept
hierarchy containing all the possible combinations at lower
level. CMPs basically represents the transactions occurring in
all the possible granularities of the valid space-time window.
Besides CMS, several other definitions used in this work are
defined as:

FIGURE 3. Figure illustrates the spatio-temporal transactional database,
containing transactions and their corresponding information including a
Calendar Map Schema representing all possible combinations of
spatio-temporal information. Each spatial information and temporal
information is represented by set of values i.e. Domain(S1) =

{S11, S12..Sn1} and Domain(T1) = {T11, T12..Tn1} respectively. Each tuple
of the CMS represents one valid combination of space-time information
in which a transaction can occur.

Definition 2: Basic spatio-temporal Calendar Map pat-
tern (CMB) is denoted by a single tuple in CMS representing
space-time combination in which the occurring transaction
contains no wild card entry symbol.
Definition 3: Star based spatio-temporal Calendar Map

Pattern (CMP) is denoted by a single tuple in CMS rep-
resenting space time combination in which the occurring
transaction contains one or more wild card entry symbol.
Definition 4: A CMP tuple ti is said to have covered

another CMP tuple tj if either each of the corresponding
entries in ti and tj are equal or the corresponding entries in
tj contains a wild card entry symbol in ti.
Definition 5: k-Calendar Map Pattern (k-CMP or k-star

CMP) is the CMP containing k wild card entry symbols.
Definition 6: A pattern is called frequent if its support is

greater than or equal to minimum support for a particular
space-time granularity.

C. METHODOLOGY
This section presents the methodological steps to extract fre-
quent patterns from air quality dataset consisting of pollutant
concentrations and spatio-temporal parameters.
Step 1 (Data Preprocessing): Data are preprocessed in

order to generate transactional spatio-temporal data sets on
which the proposed algorithm can be employed. The air
quality data set is cleaned, preprocessed and segmented into
spatio-temporal partitions. Procedure to do so is illustrated in
detail in Figure 4.
Step 2 (Quantiles Based Discretization to Generate

Codes): Each of the attributes of PM2.5, SO2 and
NO2 comprised of numeric attributes. To convert them into
transactional data, algorithmic steps given in Figure 4 and
algorithm 1 is utilized. Table 2 shows the summary statistics
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FIGURE 4. Data preprocessing steps.

TABLE 2. Summary statistics.

TABLE 3. Sample converted codes for Punjabi Bagh data.

of the data including, minimum value of the attribute (min),
1st quantile (1st Qu.), mean, 3rd quantile (3rd Qu.) and max-
imum value (max). Table 3 shows sample code conversion
for Punjabi Bagh data. Notably, this range is decided using
Table 2 and steps given in algorithm 1.
Step 3 (CMS Generation): In this step, spatio tempo-

ral information were converted to calendar map schema.
The number of spatio temporal partitions considered in this

work are given in Figure 5. CMP (S1,*) denotes the transac-
tion occurring at all the months over location S1. Similar can
be stated for other locations and time.
Step 4 (HBST Algorithm): This step explains in detail

the HBST algorithm. Aim of the proposed HBST frequent
itemset mining algorithm is to identify frequent itemsets
which holds enough number of identical spatio-temporal pat-
terns using optimum resources. Existent disparity in search
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FIGURE 5. Calendar map pattern for the given dataset.

Algorithm 1 Preprocessing Spatio-Temporal Transactions
Input:
Data segment with attributes A1, A2 . . . Am each having n
samples
Output: Database C containing codes of each attribute of
each sample
Description:
1: for each sample Si repeat steps 2 to 5
2: for each attribute Aj in Si repeat steps 3 to 4
3: a) if {(numeric value of Sij > minimum of all

samples in Aj) and (numeric value of Sij < 1st quantile
of all samples in Aj)}

code(Sij) = Cj1
endif

3: b) if {(numeric value of Sij > 1stquantile of all
samples in Aj) and (numeric value of Sij < 3rd quantile
of all samples in Aj)}

code(Sij) = Cj2
endif

3: c) else code(Sij) = Cj3
4: end for
5: end for

techniques allowed us to choose hashing for quick memory
access. Thus, curtailing execution time as well as memory
storage. Proposed algorithm for spatio-temporal frequent
itemset mining is given as per Algorithm 2 and 3 is also given
in [9]. Before the application of algorithms, preprocessing

step is taken. In this step, the whole calendar map schema,
S containing basic and star based spatio-temporal patterns
are concatenated with a hash id or hash address. This
hash address is the concatenation of symbol specifying the
n-star pattern and the unique auto-generated address. So hash
addresses for n-star CMP is given as:

h = n+ 1� unique_id (1)

Definition 7: Hash function, f is defined as f (�) = h,
which takes input value hash id and points to the location of
corresponding specified address in memory.

Thus, whenever coverage of two calendar map patterns
were compared with each other, instead of storing calen-
dar map patterns with respect to frequent items, their hash
addresses were stored. Figure 6 shows the sample exam-
ple explaining the proposed algorithm. Firstly, 2-frequent
itemsets were generated in first scan of the database. Direct
generation of 2-itemsets is done so as to avoid the generation
of redundant 1-itemsets [26]. Each partition specified the
transactions denoted by similar spatio-temporal patterns.
So, for each partitions representing basic CMPs, frequent
2-itemsets were generated. Counts of n-star patterns cov-
ering basic CMPs in each partitions were calculated and
their corresponding hash values were stored. In the next
step, k-candidate itemsets were generated using k-1 frequent
itemsets and the hash addresses of corresponding frequent
calendar map patterns were updated. Itemsets with support
less than user specified minimum support threshold,min_sup
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Algorithm 2Hash Based Spatio-Temporal Frequent Itemsets
Input: D: Transaction database, CMBs: Basic spatio-
temporal calendar map patterns, CMPs: n-star spatio-
temporal calendar map patterns;
Min_sup: the minimum support threshold
Output: frequent itemsets and frequent Spatio-Temporal pat-
terns
Description:
1: for each partition p ∈ Pi {

// partition Pi is a set of transactions belonging to
same tuple in CMB

2: L2 = find_frequent_2-itemsets (Pi, s1); //find
2-frequent itemsets in all basic space-time intervals

3: end for
4: for each l2 ∈ L2
5: l2.h1i = f (1_starCMPs(l2)) such that

CMPs(l2) ⊆ 1_starCMPs(l2) //L2.H1 is a set
of hash values of all 1_star CMPs containing l2

6: Update l2.h1i .count //using hash updation procedure
7: for(i = 2; i = n; i++) {
8: if CMPs(L1) ⊆ i− starCMPs{
9: l2.hij = f ((i− 1)_starCMPs(l2))
10: Update l2.hij.count //using hash updation procedure
11: end for
12: end for
13: C2 = L2
14: for(k = 3; Lk−1 = ϕ; k + +) //for each candidate k-

itemset Ck
15: Calculate HI jq for each item I jq in Ck
16: Update ck .H .count //using hash updation procedure
17: end for
18: return return C =

⋃
k Ck and v.C

⋃
k h.Ck |Ck .count >

min_sup;

were removed. In step 3, counts on n star CMPs were
updated using n-1 star CMPs. Lastly, step 2 and 3 were
repeated until no more frequent itemsets can be generated.
Algorithm 2 and 3 explains the procedure for generating
frequent itemsets.
Definition 8: Support of an item is defined as the fre-

quency of occurrence of an item in a partition representing
the similar space-time information.

Figure 6 shows a spatio-temporal database with a set of
transactions D and each transaction is associated with a
spatial and temporal information, S and T. CMS represents all
the possible valid combinations of spatial and temporal infor-
mation. Spatial granularity, S can contain values S1 and S2
and Temporal granularity, T can contain values T1 and
T2 including a wild card entry symbol i.e. Domain(S) =
{S1, S2, . . . , Sm, ∗} and Domain(T ) = {T1,T2, . . . ,Tn, ∗}.
Wild card entry symbol * in S represents that a transaction
is occurring in all the spatial locations. Similar can be stated
for T.

In step 1 of figure 6, hash ids were inserted which were
a combination of (n+1) value and a unique id. For example

Algorithm 3Hash Updation Procedure to Generate Frequent
Itemsets
Input: Lk : Set of k-itemsets, CMBs: Basic spatio-temporal
calendar map patterns, CMPs: n-star spatio-temporal calen-
dar map patterns;
Output: updated hash counts in spatio-temporal patterns
Description:
1: if {lk /∈ Lk}
2: insert lk in Lk and include the hash value of

corresponding n-star CMPs in lk .Hn.
3: lk .hni .count = 1.
4: end if
5: if {lk ∈ Lk and lk .hni /∈ lk .Hn}
6: include the hash value of corresponding n-star CMPs

in lk .Hn.
7: lk .hni .count = 1.
8: end if
9: if {lk ∈ Lk and lk .hni ∈ lk .H

n}
10: lk .hni .count++.
11: end if
12: return lk .Hn // set of all the hash values of n-star

candidate calendar-map patterns of lk

all the 1* CMPs were a concatenation of ‘2’ and an iden-
tifier id. So, CMPs with the hash ids 21 and 22 represents
1*CMPs as per the figure. In step 2, database is partitioned
according to the transactions having the same spatio-temporal
information. 2-frequent itemsets were generated in each of
these partitions corresponding to 1 basic CMP. Figure shows
several partitions representing the basic CMPs in which trans-
action occurs. In step 3, the counts of 2-frequent itemsets in
each partition were updated with respect to the corresponding
1*CMPs in which they occur. Alongwith the counts, the hash
ids were also updated. Procedure for updation is shown in
Algorithm 3. This process is repeated in step 4 for 2* CMPs.
In step 5, 3-itemsets were generated using previously gen-
erated 2-itemsets and their frequency counts were updated
using Algorithm 3. And this process is repeated for all the k-
itemsets. After completion of these steps, output is compiled
by the union of all the k-itemsets and their support counts
generated at each step. All the itemsets whose minimum
support is greater than or equal to min_sup were considered
as frequent. Formula for support is given as:

Support(X ) =
Support count of item X
Number of Transactions

(2)

IV. EXPERIMENTS AND RESULTS
A. DATA AND TOOLS
To evaluate the performance of our algorithm, experi-
ments are performed on 3 kinds of datasets. First is
benchmark datasets obtained from FIMI repository [36].
Three benchmark datasets are utilized whose descriptions are
given in Table 4. Second is synthetically generated dataset
which is also available online [36]. For generating random
transactions, random simulation method is used assuming
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FIGURE 6. Steps depicting Hash Based Spatio-Temporal (HBST) frequent itemset generation procedure for air
quality data. Note that ‘+’ indicates the hash address, where hash function points to.

TABLE 4. Datasets description.

all the transactions occur independently irrespective of the
correlations among them. Third, we have applied the pro-
posed algorithm on air quality dataset of India, comprising of
numerical attributes and the results are obtained. Description
of air quality dataset is given in detail in section III.

For generating spatio-temporal partitions over the available
benchmark datasets, R programming tool Version 1.1.453 is
used. For implementation of algorithms, we have used Scien-
tific PYthon Development EnviRonment 3.2.8 with Python
3.6.5 64bits, Qt 5.9.4, PyQt5 5.9.2. We have conducted all
our experiments on Windows 10, with Intel(R) core TM
i7-4790 CPU @3.60 GHz processor and 32.0 GB
memory.

B. PERFORMANCE EVALUATION
Two groups of experiments are performed to evaluate the per-
formance of the proposed algorithm. First is the comparison
of our proposed HBST algorithm against non-Apriori based
state-of-the-art algorithms such as FPGrowth and Eclat [14].
Second one is the comparison of our algorithm with
Spatio-Temporal Apriori (STA) algorithm given in [9], which
followed the similar structure as HBST.

We ran our proposed algorithm and the state-of-the-arts on
all the datasets for varying support values, i.e. 10%, 20%,
30% and 50%. Evaluation is done over various parameters
namely:
• Effect of the size of transactional database
• Execution time for k-Frequent Itemsets Generation
• Memory Usage

C. RESULTS 1: MEMORY USAGE
Memory required at each step of the algorithm is reduced by
using hashing addresses or ids in place of storing the whole
CMPs repeatedly. This saved the memory storage as well
as reduce the execution time of the algorithm. Further, for
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FIGURE 7. Candidate k-itemset generated for basic CMP.

FIGURE 8. Time taken to generate candidate k-itemset generated for basic CMB with varying number of transactions.

Apriori technique nCk number of candidate itemsets were
generated, where n is the number of items and k is the
itemset. So, for our datasets, number of 2-itemsets is nC2
and this number kept on growing exponentially for upto
k-itemsets. Similarly, for Spatio-Temporal Apriori, number
of candidates generated at each step grow exponentially. But
in our proposed approach, instead of scanning the database
again and again, candidates were generated from previously
large 2-frequent itemsets only. Thus, reduced number of can-
didates generation, further curtailed the time and memory
resources. Figure 7 shows the number of candidate k-itemsets
generated for these two algorithms for the month of May and
October over all the locations.

D. RESULTS 2: EFFECT OF THE SIZE OF
TRANSACTIONAL DATABASE
Figure 8 depicts the time required to generate basic CMS
spatio-temporal frequent itemsets on the HBST algorithm,
performed over given partitions. Note that the maximum
k-itemset size on all the CMB data partitions are the same,
however the data partition size varies. Aim is to evaluate the
performance of our algorithm over datasets of varying sizes.
For this experiment, we have partitioned data of different
locations into different transactions.

Figure shows the performance of HBST algorithm is not
much affected by the size of the database partition. Figure 8a
shows evenwith the abrupt increase in size of data, there is not
much increase in execution time of the algorithm, illustrated
in Figure 8b.

FIGURE 9. Comparison between STA and HBST.

The reason for this might be because of reduced num-
ber of transactional database accesses, the effect of large
sizes of the databases masked out. Furthermore, our pro-
posed HBST algorithm reduced the number of transactional
database accesses in step 1 of the algorithm by calculating
the 2-frequent itemsets directly. This further reduced the
generation of 1-itemsets which were not frequent. Secondly,
after computing 2-frequent itemsets, our proposed algorithm
calculated support counts for each partition, by using CMS
only, hence the transactional database was not required
to be loaded into memory again and again. Subsequently,
3-itemsets were generated using 2-itemsets and so on.

E. RESULTS 3: EXECUTION TIME
Total execution time of an algorithm comprised of the num-
ber of accesses to the transactional database and generated
candidates plus the time required to access the intermediate
storage variables containing candidates generated including
the transactional database. For this experiment, whole dataset
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TABLE 5. Sample candidate itemset generation for Anand Vihar, over the
month of January.

is considered containing 60 basic CMB patterns and 18 1-star
and 2-star partitions. All the steps of the proposed algorithm
were executed as per Figure 6 and stepwise total execution
time of the algorithm is calculated. In Figure 9, a comparison
between total execution time calculated for two algorithms
STA and HBST is given which suggests that our algorithm
drastically improves this candidate generation time and over-
all execution time of the algorithm.

F. RESULTS 4: COMPARISON OVER NON-APRIORI
BASED METHODS
This section presents a comparison of proposed HBST
algorithm with other non-Apriori based methods such as
FPGrowth [15] and Eclat [21], which are one of the most
popular and well established algorithms for frequent itemset
mining. Results over 3 types of datasets are presented in
this section. Firstly, our algorithm is employed over air
quality dataset of India and results were evaluated. Figure 10
illustrates the stepwise time taken by the algorithm for gener-
ating frequent itemsets (FIs). Figures suggests a remarkable

improvement in execution times of our proposed algorithms
over state-of-the-arts. Secondly, we have employed our algo-
rithm over a few benchmark datasets named ‘Accidents1’,
‘Chess’ and ‘Mushroom’ dataset and a synthetically gener-
ated dataset named ‘T10I4D100K’. Note that all of these
datasets are not spatio-temporal datasets, so we have par-
titioned these into different spatial and temporal partitions
randomly. Sampling without replacement method is used to
generate a set of spatio-temporal partitions. Results over all
these datasets are illustrated in Figure 11. Further, figure illus-
trates the significant improvement of HBST algorithm over
existing state-of-the-arts in terms of total execution times of
algorithm, calculated for varying support values. Note that
‘T10I4D100K’ dataset has the maximum number of items,
but still the results suggests an improvement in our algorithm
over existing ones in terms of total execution time of the
algorithm.

G. RESULTS 5: FREQUENT ITEMSETS
Table 5 shows the sample candidate itemsets generated for
location S1 and time T1 over different support counts, for
the air quality dataset of India. Similarly, Table 6 and 7
shows several CMBs and CMP patterns generated. Note that
formula for calculating support is used as per equation given
in previous section. Note that codes utilized in these tables are
explained in detail in Step 2 and Step 3 of section III. Table 6
shows several 2-frequent itemsets and 3-frequent itemsets for
several locations and on several time periods respectively for
air quality dataset of India. Table 7 shows several 3-frequent
spatio-temporal itemsets generated over air quality dataset of
India, depicting co-occurring pollutants at varied space-time
granularities.

H. DISCUSSION
Table 7 showed 3-itemsets generated for 2 star and 1 star
CMPs. The extracted frequent itemsets are taken for
manual sampling and analyses. Since, we have no other way

FIGURE 10. Runtime comparison against state-of-the-arts. X axis depicts various steps of the algorithm and Y axis depicts
the execution time in seconds.
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FIGURE 11. Runtime comparison against benchmark datasets over varying support values. X axis depicts minimum support in
percentage and Y axis depicts the execution time in seconds.

TABLE 6. Frequent itemsets for several basic CMBs.

TABLE 7. 3-frequent itemsets for 1-star and 2-star CMPs.

to characterize the truth about the extracted results, we uti-
lized literature and print media sources to verify the ground
truth about the results. Results suggested the co-occurrence of
low PM2.5, low NO2 and low SO2 {‘so21’, ‘no21’, ‘pm1’}

for all the regions and all the months of a year as fre-
quent itemset which is quite obvious. However, the results
also suggested the co-occurrence of high NO2 with average
PM2.5 and average SO2 {‘pm2’, ‘no23’, ‘so22’}. A detailed
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TABLE 8. Analysis of pollution sources at various locations of Delhi.

analysis of reasons for high concentration of NO2 in several
parts of India is given in [37]. Several studies suggested
hotspots for increasing SO2 andNO2 [38] in several locations
of India along with PM2.5 justifying itemset {‘pm2’, ‘no22’,
‘so22’} to be frequent with medium concentrations of each
of these pollutants. However, these results are specific to a
time and location [39], [40]. For example, winter months
suffer from a great pollution than other months justifying the
presence of {‘pm2’, ‘no21’, ‘so22’} in (*, T10). Similarly,
locations with more industrial areas, traffic intersections,
thermal power plants etc. suffer from high pollution levels
usually. Location of Punjabi bagh (S3,*) is surrounded by
industrial areas from various sides [37]. Hence, the presence
of ‘so23’ and ‘no23’ in their itemsets is more frequent than
other spatial locations. Table 8 illustrates the possible reasons
for the findings. Finally, frequent itemsets in (*,*) CMP
for all locations and all the months suggests that presence
of low values of pollutants is correlated at all the places,
howevermedium values of NO2 and SO2 are accompanied by
medium or high values of PM2.5. The important point that has
been noted further in the above results is for most of the loca-
tions, there have been very few instances of co-occurrence
of high pollutants with each other. Possible reason for this
could be the fact that all the different pollutants are emitted
from the different sources which might not be overlapping.
Similarly, the locations with source of one pollutant might not
be the source for other pollutants. Thus, we have identified
the time and location based dependency of pollutants in the
air of Delhi.

V. CONCLUSION
With the commencement of associated location and tempo-
ral information along with the transactions, efficient algo-
rithms are required for extracting frequent itemsets from
such databases. Existing algorithms require huge amounts of
resources in terms of execution time for candidate generation,
number of accesses to the database as well as the time
required to access large spatio-temporal databases. In this
work, the number of database accesses are reduced by using
CMS. But issue with existing approach is that the repeated
access of CMS may even reduce the execution time of the
algorithm. So, we suggested the use of direct address hashing.
Furthermore, this work proposed spatio-temporal frequent
itemsets mining algorithm to extract frequent items at mul-
tiple levels of granularities. Direct address based hashing

technique is used, so as to optimize collisions as well as the
execution time of the algorithm. Experiments are performed
over benchmark datasets, synthetically generated datasets as
well as real world numeric dataset containing concentrations
of several pollutants in air of Delhi. Additionally, a compar-
ison with the already existing apriori based algorithms such
as STA is given. Results suggested that the time required to
execute the different steps of the these algorithms was far
less in proposed HBST than STA. Secondly, even for large
number of items, our algorithm performed drastically better
than STA in terms of total execution time of the algorithm.
Thirdly, memory taken at each step of the algorithm is
reduced when HBST algorithm is applied on the datasets.
Furthermore, the results are compared over various other non
apriori based methods such as FPGrowth and Eclat. Results
suggested that our algorithm outperformed the existing algo-
rithms in terms of memory and execution times. Further
frequent co-occurring pollutant patterns are extracted for air
quality data of Delhi using the proposed algorithm and a
detailed discussion over the results is provided. In future we
plan to implement this work for various other web datasets.
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