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ABSTRACT This paper considers the transceiver design for uplink massive multiple-input multiple-output
(MIMO) systems with channel sparsity in the angular domain. Recent progress has shown that sparsity-
learning-based blind signal detection is able to retrieve the channel and data by using massage-passing-
based sparse matrix factorization methods. Short pilot sequences are inserted into user packets to eliminate
the so-called phase and permutation ambiguities inherent in sparse matrix factorization. In this paper,
to exploit the knowledge of these short pilot sequences more efficiently, we propose a semi-blind channel-
and-signal estimation (SCSE) scheme in which the knowledge of the pilot sequences are integrated into
the message passing algorithm for sparse matrix factorization. The SCSE algorithm involves enumeration
over all possible user permutations, and so is time-consuming when the number of users is relatively large.
To reduce complexity, we further develop the simplified SCSE (S-SCSE) to accommodate systems with a
large number of users. The numerical results show that our semi-blind signal detection scheme substantially
outperforms the state-of-the-art blind detection and training-based schemes in the short-pilot regime.

INDEX TERMS Massive MIMO, channel sparsity, semi-blind, message passing, training-based, blind
detection.

I. INTRODUCTION
Massive multiple-input multiple-output (MIMO) sys-
tems [1]–[4] achieve significant performance improvement
over the traditional communication systems in many aspects,
such as increasing channel capacity, suppressing channel
fading, and enhancing energy efficiency, etc. In a massive
MIMO scenario, a base station (BS) typically equipped
with an array of a few hundred antennas simultaneously
serves many tens of terminals in a single time-frequency
resource slot [5]. As the scale of the terminals or the array
increases, the acquisition of channel state information (CSI)
becomes one of the key obstacles for the utilization ofmassive
MIMO [6].

Many studies have been attracted to the design of efficient
and reliable techniques for channel acquisition. We are par-
ticularly focused on the uplink case, where users transmit
signals to a BS [7]. In a training-based approach, each trans-
mission frame is divided into two phases, namely, a training
phase and a data transmission phase [7], [8]. In the train-
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ing phase, pilots are transmitted to facilitate the estimation
of the channel coefficients at the receiver side; in the data
transmission phase, data are transmitted and the receiver
performs detection based on the estimated channel.

Compared to separate signal processing for the two phases,
joint channel-and-signal estimation is able to improve the
system performance since partially detected data can be used
as soft pilots to enhance the channel estimation accuracy in
an iterative fashion [9]. However, no matter whether separate
or joint signal processing is employed, it is required in the
training-based approach that the number of pilot symbols is
no less than that of users, so as to ensure a vanishing channel
estimation error [8], [10]. As such, channel acquisition gen-
erally consumes a substantial portion of the system resource.

To reduce the channel acquisition overhead, another line of
research is called the blind detection approach, in which the
channel and data were estimated with little prior information
of the signals from the transmitter side [11]–[13]. In partic-
ular, it has been recently evidenced that a massive MIMO
system exhibits channel sparsity in the angular domain, since
signals usually impinge upon a massive antenna array from
a limited range of angles [14]–[17]. Based on the channel
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sparsity, a blind iterative detection technique [18] has been
developed to avoid the use of pilots in channel acquisition.
Approximate message passing algorithms [19], [20] are used
to simultaneously estimate the channel and data by factoriz-
ing the received noisy observation matrix.

Sparsity-learning based blind detection in [18], however,
can be improved in a number of aspects. For example,
the blind detection scheme in [18] imposes a relatively strin-
gent requirement on the channel sparsity level and the signal-
to-noise ratio (SNR) of the system to achieve a satisfactory
error performance. More importantly, blind detection suffers
from the so-called phase and permutation ambiguities inher-
ent in matrix factorization. In [18], a reference symbol and
a user label are inserted in each user packet to eliminate the
phase and permutation ambiguities after matrix factorization.
Yet, as the reference symbols and the user labels (similar to
pilots) are a priori known by the receiver, such knowledge can
be integrated into the iterative process of matrix factorization
to enhance the detection performance, rather than used for
afterwards compensation.

To address the above issues, we propose a semi-blind
detection scheme to jointly estimate the channel and the user
signals in a sparse massive MIMO system. We focus on the
scenario that a short pilot sequence is inserted into each user
packet to assist the matrix factorization for joint channel and
signal estimation. Here ‘‘short pilot’’ means that the pilot
sequence is not long enough to generate a relatively accurate
initial channel estimate, and so the existing training-based
approaches [7], [9] are unable to achieve a good performance.
We show that, to efficiently exploit the short pilots, the phase
and permutation ambiguities need to be skilfully estimated
in the iterative process of the matrix factorization. As such,
a message-passing based semi-blind channel and signal
estimation (SCSE) algorithm is developed, building upon
the framework of approximate message passing algorithms.
The main contributions of this paper are summarized as
follows.

• SCSE algorithm for massive MIMO:We propose a novel
semi-blind detection scheme for massive MIMO sys-
tems to jointly estimate the channel and the signals.
The proposed semi-blind detection scheme is able to
efficiently exploit the information of short pilots in the
iterative process of sparse matrix factorization.

• Simplified SCSE algorithm for complexity reduction:
The SCSE algorithm involves an exhaustive search of
all possible user permutations, which is computationally
infeasible when the number of users is relatively large.
Thus, we develop a simplified SCSE (S-SCSE) algo-
rithm to avoid the burden of permutation enumeration.

• We show that our proposed S-SCSE is able to sub-
stantially outperform the state-of-the-art training-based
and blind detection approaches [9], [18] in the short-
pilot regime. We also show that, compared to the SCSE
algorithm, the S-SCSE algorithm significantly reduces
the computational complexity while maintaining a

similar performance, thereby striking a favorable bal-
ance between complexity and performance.

The remainder of this paper is organized as follows:
Section II describes the sparse channel model and the system
model for uplink MIMO systems. In Section III, we for-
mulate the joint channel and signal inference problem by
including the estimation of the phase and permutation ambi-
guities inherent in sparse matrix factorization. Based on the
formulated problem in Section III, the SCSE and S-SCSE
algorithms are derived based on the message-passing prin-
ciples in Section IV. Besides, the parameter tuning method
based on the expectation maximization (EM) algorithm [21],
the computational complexity comparisons between our pro-
posed algorithms and the existing approaches, and the selec-
tion metric for random initializations are also described in
Section IV. Numerical results are presented in Section V to
verify the effectiveness of our proposed algorithms. Finally,
we conclude the paper in Section VI.
Notations: Capital bold letters, lowercase bold letters,

and regular letters represents matrices, vectors, and scalars,
respectively. For any matrix A, ai refers to the ith column
of A, and ai,j refers to the (i, j)th entry of A. C denotes the
complex field; R denotes the real field; S denotes a set; P
denotes an arbitrary permutation matrix. For any set S, |S|
represents the cardinality of S; ei = [0, . . . , 0, 1, 0, . . . , 0]T

with the only non-zero element being at the ith position; for
any scalar x, |x| represents the absolute value of x; ‖ · ‖2 rep-
resents the `2-norm; ‖·‖F represents the Frobenius norm. The
superscripts (·)T, (·)H, (·)−1 represent the transpose, the con-
jugate transpose, and the inverse of a matrix, respectively;
E(·), δ(·) and e(·) represent the expectation, the Dirichlet
function, and the exponential function; diag{a} represents the
diagonal matrix with the diagonal specified by a; dae repre-
sents the minimum integer larger than a. For any integer IN
denotes the set of integers from 1 toN . CN (·, µ, ν) represents
a complex circularly symmetric Gaussian distribution with
the mean µ and covariance ν.

II. SYSTEM MODEL
A. SPARSE CHANNEL MODEL
Consider an uplink massive MIMO system with K single-
antenna transmitters and a receiver equipped withN antennas
deployed as a uniform linear array (ULA), where N�K�1.
Denote by θ`,k the angle of arrival (AoA) of the `th path from
transmitter k . The array steering vector for an incident signal
from angle θ`,k can be written as

ar (θ`,k ) =
[
1, e−j2π

d
λ
cos(θ`,k ), . . . , e−j2π

(N−1)d
λ

cos(θ`,k )
]T

(1)

where d is the interval between any two adjacent receive
antennas, and λ is the wavelength of propagation. We use
the virtual representation method in [14] to divide the signal
AoAs into N resolution bins with the kth bin represented by
θ`,k = arccos( `λdN ), ` ∈ IN , {0, 1, . . . ,N − 1}. Then,
the physical channel of a massive MIMO system can be
modeled as

Ȟ = ArH (2)
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where Ar =
1
√
N

[
1, ar (arccos λ

dN ), . . . , ar (arccos
(N−1)λ
dN )

]
∈

CN×N is the discrete Fourier transform (DFT) matrix, 1 is a
K -dimensional all-one vector, and H = [h1,h2, . . . ,hK ] is
the projection of the physical channel in the angular domain.
Note that each hk = [h1,k , h2,k , . . . , hN ,k ]T is the com-
plex channel coefficient vector of user k , where hn,k is the
aggregate channel coefficient in the resolution bin centered
around θ`,k .

The physical channel of a massive MIMO system exhibits
a sparse structure in the angular domain, since only a small
portion of resolution bins receive electromagnetic waves from
the transmitters. Therefore, the angular-domain channel rep-
resentation H is a sparse matrix with a large portion of the
elements being zero or close to zero [14]. Define the sparsity
level of the massive MIMO channel by

ρ =
|S|
NK

< 1 (3)

where S is the support of H.
We assume that each entry of hk is independently drawn

from a Bernoulli circularly symmetric complex Gaussian
(B-CSCG) distribution (1−ρ)δ(h)+ρCN (h; 0, σ 2

h,k ), where
δ(·) is the Dirac delta function, and σ 2

h,k is the average power
of the non-zero coefficients of the channel hk . Note that
σ 2
h,k is determined by the large-scale fading of user k , and

is generally unknown to the receiver.1 Based on the above
discussion, the distribution of the channel is given by

PH(H) =
N∏
n=1

K∏
k=1

(1− ρ)δ(hn,k )+ ρCN (hn,k ; 0, σ 2
h,k ). (4)

B. SYSTEM MODEL
Assume that the channel is block-fading with coherence time
T . The massive MIMO system in the angular domain over T
time slots can be modeled as

Y = HX+W = Z+W (5)

whereY ∈ CN×T is the transformed observationmatrix in the
angular domain, W ∈ CN×T is an additive white Gaussian
noise (AWGN) with each entry independently drawn from
CN (0,N0) with N0 being the noisy power, H ∈ CN×K

is the angular-domain channel matrix as aforementioned,
X = [x1, x2, . . . , xK ]T ∈ CK×T is the signal matrix, and
Z = HX ∈ CN×T . Each entry of X is modulated by
using a constellation C = {c1, c2, . . . , c|C|}, where |C| is
the cardinality of C. That is, xk,t is uniformly drawn from
C for ∀k, t , where xk,t is the tth entry of xk . Assume that
C is rotationally invariant for any rotation angle θ ∈ �,
where � = {ω1, ω2, . . . , ω|�|} is an angle set. For example,
� = {0◦, 90◦, 180◦, 270◦} for standard quadrature amplitude
modulation (QAM). For each user k , the first TP symbols
of xk (denoted by xP,k ∈ CP×1) are assigned as pilots,

1Weassume that {σ 2h,k } are independently drawn from a certain known dis-
tribution. The distribution will be specified in the simulations in Section V.
The estimation of {σ 2h,k } will be discussed later in Section IV-D.

and the remaining T − TP are data symbols. We use TP to
represent the set {1, 2, . . . ,TP}, and TD to represent the set
{TP+1,TP+2, . . . ,T }. Let XP = [xP,1, xP,2, . . . , xP,K ]T be
the pilot matrix occupying the first TP columns of X, and let
XD = [xD,1, xD,2, . . . , xD,K ]T be the data matrix occupying
the remaining T − TP columns of X, i.e., X = [XP,XD].
Similarly, Y can be expressed as Y = [YP,YD], where
YP and YD correspond to XP and XD, respectively. Assume
that the entries of X are independent of each other, i.e.,

PX(X) =
K∏
k=1

T∏
t=1

pxk,t (xk,t ). (6)

Denote by P the total power budget of the transmitters and
αkP the average transmission power of the kth transmitter.
Then, each transmitter is power-constrained as

1
T
E[xHk xk ] 6 Pk , for all k ∈ IK , {1, 2, . . . ,K } (7)

where Pk is the power upper bound of user k .

III. PROBLEM DESCRIPTION
In this paper, our goal is to retrieve both the channel matrixH
and the symbol matrix XD from the observed data matrix Y
together with the prior knowledge of the pilot matrix XP.
This problem can be formulated by using the maximum a
posteriori (MAP) principle as(

Ĥ, X̂D

)
= arg max

H,XD
pH,XD|Y,XP (H,XD|Y,XP) (8)

where Ĥ and X̂D are the estimates of the channel matrix H
and the signal matrix XD, respectively.
A straightforward approach to solving (8) is first to esti-

mate the channel H based on YP (with known XP) and
then to estimate the data matrix XD based on YD and the
channel estimate Ĥ. This approach is referred to as the sep-
arate channel-and-signal estimation method scheme in the
following. In principle, the estimated data can be used to
further refine the channel estimate and hence improve the
system performance. To this end, the authors in [9] proposed
a joint channel and signal estimation method which involves
approximate message passing over the factor graph obtained
by factorizing the probability distribution pH,XD|Y,XP in (8).

In this paper, we focus on the ‘‘semi-blind’’ scenario where
the pilot length TP is not large enough to provide a relatively
accurate initial channel estimate for data detection. In this
scenario, both the separate and joint training-based estimation
approaches discussed above do not work well. The main
reason is that when TP is small, the scheme in [9] is close
to blind channel-and-signal estimation in which the issue of
phase and permutation ambiguities arise [18]. For a small TP,
the knowledge of XP is not ‘‘strong’’ enough to correct the
phase and permutation ambiguities in the iterative estimation
process. As a result, the scheme in [9] may perform even
worse than the blind detection method in [18].

Instead, we aim to find a method that can efficiently
exploit the knowledge of XP in the presence of phase and
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permutation ambiguities. To this end, we need to estimate
the phase and permutation ambiguities in the iterative process
of message passing. Denote by 5 = [π1,π2, . . . ,πK ]T ∈
RK×K an arbitrary permutation matrix, and by 6 =

diag{σ1, σ2, . . . , σK } a diagonal matrix where each phase
shift σi = ejωi with ωi independently and uniformly taken
from �. It is known in [18] that blind detection suffers from
the phase and permutation ambiguities, i.e., if (Ĥ, X̂) is a valid
factorization givenY in (5), then (Ĥ5−16−1, 65X̂) is also a
valid factorization. We will estimate5 and6 in the message
passing process by exploiting the knowledge of XP. To this
end, we define auxiliary variables

H̃ = H5−16−1 and X̃ = 65X. (9)

Recall from (4) that the columns ofH are independent and
identically distributed (i.i.d.). Thus, for any permutation 5,
H5−1 has the same distribution as H does. Then,

p(H5−1,5) = p(H5−1|5)p(5) = p(H5−1)p(5). (10)

That is,H5−1 is independently of5. Similarly, for any phase
ambiguity matrix 6, H̃ = H5−16−1 has the same distribu-
tion asH does. Therefore, X̃ is independent of5 and6. Since
H, X, 5, and 6 are independent of each other, we conclude
that H̃, X̃, 5, and 6 are also independent of each other, i.e.,

pH̃,X̃,5,6(H̃, X̃,5,6) = pH̃(H̃)pX̃(X̃)p5(5)p6(6). (11)

Then we recast the problem in (8) as

max
H̃,X̃,6,5

pH̃,X̃,6,5|Y,XP
(H̃, X̃, 6,5|Y,XP). (12)

From the Bayes’ rule, we obtain

pH̃,X̃,6,5|Y,XP (H̃, X̃, 6,5|Y,XP)

=
pY,XP,H̃,X̃,6,5

(Y,XP, H̃, X̃, 6,5)

pY,XP (Y,XP)
(13a)

∝ pY|XP,H̃,X̃,6,5
(Y|XP, H̃, X̃, 6,5)

× pXP|H̃,X̃,6,5
(XP|H̃, X̃, 6,5)pH̃,X̃,6,5(H̃, X̃, 6,5)

(13b)

= pY|H̃,X̃(Y|H̃, X̃)pXP|X̃,6,5
(XP|X̃, 6,5)

×pH̃(H̃)pX̃(X̃)p6(6)p5(5) (13c)

=

[∏
n

∏
t

pyn,t |zn,t

(
yn,t |zn,t =

∑
k

h̃n,k x̃k,t

)]

×

[∏
n

∏
k

ph̃n,k (h̃n,k )

][∏
k

∏
t

px̃k,t (x̃k,t )

]

×δ(X̃P −65XP)

[∏
k

pσk (σk )

]
p5(5) (13d)

where (13a) follows from the Bayes’ rule; the notation ∝
in step (13b) means equality up to a constant scaling factor;
(13c) is from the facts that (i) (X̃P, 6,5) → (H̃, X̃) → Y
forms a Markov chain, (ii) XP is independent of H̃ for any
given X̃, 6, and 5, and (iii) H̃, X̃, 6, 5 are independent

of each other by (11); pσk (σk ) in (13d) is the probability
density of the phase shift of user k . Recall that
pσk (σk ) =

1
|�|

∑
ω∈� δ(σk−e

jω), where |�| is the cardinality
of�. The factorization in (13)will be used in the development
of message passing algorithms in the subsequent section. We
will show that the message passing algorithms developed
based on (13) performs much better than the one based on
the factorization of pH,XD|Y,XP as in [9]

IV. SEMI-BLIND MESSAGE PASSING ALGORITHMS
A. FACTOR GRAPH REPRESENTATION
To describe the message passing process more clearly,
we introduce an auxiliary variable P ∈ RK×K to denote a ran-
dom permutation matrix, where P ∈ P , {P1,P2, · · · ,PK !}
with an equal probability with P being the set of all permuta-
tions.2 Then, the fact that 5 is a random permutation can be
represented by the following joint distribution:

p5,P(5,P) = pP(P)δ
(
[π1,π2, . . . ,πK ]T − P

)
(14)

where pP(P) = 1
k!

∑K !
`=1 δ(P − P`), πT

k is taken from the
set {ei}Ki=1 with ei = [0, . . . , 0, 1, 0, . . . , 0]T being the ith
column of the K -by-K identity matrix. With the inclusion of
the auxiliary variable P, the factorization in (13) converts to

pH̃,X̃,6,5,P|Y,XP (H̃, X̃, 6,5,P|Y,XP)

=

[∏
n

∏
t

pyn,t |zn,t

(
yn,t |zn,t =

∑
k

h̃n,k x̃k,t

)]

×

[∏
n

∏
k

ph̃n,k (h̃n,k )

][∏
k

∏
t

px̃k,t (x̃k,t )

]

×

[
K∏
k=1

δ(x̃P,k − σkπT
kXP)

][∏
k

pσk (σk )

]
× pP(P)δ

(
[π1,π2, . . . ,πK ]T − P

)
. (15)

The factorized posterior distribution in (15) can be repre-
sented by a factor graph, as depicted in Fig. 1. In Fig. 1, we use
a brief form of δk to represent δ(x̃P,k − σkπT

kXP), k ∈ IK ,
and δ5 to represent δ([π1,π , . . . ,πK ]T − P). Each hollow
circle in Fig. 1 represents a ‘‘variable node’’ corresponding
to a random variable involved in (15), and each black solid
square represents a ‘‘factor node’’ corresponding to a factor
function in (15). A variable node is connected to a factor node
if the variable appears in the factor function.

In Fig. 1, we divide the whole factor graph into two
parts. In part I, we estimate the channel matrix H̃ and signal
matrix X̃ based on Y and the knowledge that H̃ is sparse; in
part II, we use the knowledge ofXP to improve the estimation
of X̃P and estimate 5 and 6 based on the constraint of
X̃P = 65XP. We derive the semi-blind detection algorithm

2It is possible to designmessage passing directly based on the factorization
in (12). However, the introduction ofP yields a unified view of the derivations
of the SCSE and S-SCSE algorithms. In particular, we show in Section IV-C
that the S-SCSE algorithm is derived simply by deleting the constraint δ5
in Fig. 1.
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FIGURE 1. The factor graph representation for the joint probability in (15) with N = 4, K = 3, TP = 3, and T = 6.

based on the message passing principles over the factor graph
in Fig. 1. Note that the constraints in part I are related to
factorizing the matrix product H̃X̃. This part can be realized
by following the BiG-AMP algorithm in [20]. Therefore,
in what follows, we focus on the derivation of the message
passing algorithm for part II.

B. SCSE ALGORITHM
The messages involved in part II are described as follows.
Denote by 1a→b(·) the message from node a to node b and
by 1c(·) the marginal posterior of variable c.

1) The message from x̃k,t to δk is given by

1x̃k,t→δk (x̃k,t ) ∝ px̃k,t (x̃k,t )
N∏
n=1

1pyn,t |zn,t→x̃k,t (x̃k,t ). (16)

2) The message from σk to δk is given by

1σk→δk (σk ) = pσk (σk ) =
1
|�|

∑
ω∈�

δ(σk − ejω). (17)

3) The message from δk to πk is given by

1δk→πk (πk )

∝
∫
σk ,{xk,t }

TP
t=1

δ(x̃P,k − σkπT
kXP)

× pσk (σk )
TP∏
t=1

1x̃k,t→δk (x̃k,t ). (18)

Since x̃k,t , πk , and σk are discrete variables, we write the
message in (18) in its discrete form as

Pδk→πk (πk = ei)

=
1
C

∑
ω∈�

TP∏
t=1

Px̃k,t→δk (x̃k,t = ejωxi,t ), i ∈ IK (19)

where Px̃k,t→δk (x̃k,t = ejωxi,t ) denotes the probability of
x̃k,t = ejωxi,t specified in the message 1x̃k,t→δk (x̃k,t ), and C
is a generic normalization factor. Clearly, the message from
πk to δ5 is

1πk→δ5 (πk ) = 1δk→πk (πk ). (20)

4) The message from P to δ5 is given by

1P→δ5 (P) = pP(P) =
1
K !

K !∑
`=1

δ(P− P`). (21)

5) Combining the message from P to δ5 and the messages
from {πk ′}Kk ′ 6=k to δ5, we obtain

1δ5→πk (πk )

∝
∫
P,{πk′ }

K
k′=1 6=k

δ([π1,π2, . . . ,πK ]T − P)

×

K∏
k ′=1 6=k

1πk′→δ5 (πk ′ )pP(P). (22)

Denote by p`,k the transpose of the kth row ofP`. The discrete
form of the above message can be written as

Pδ5→πk (πk = ei)

=
1
C

K !∑
`=1

`: p`,k=ei

K∏
k ′=1 6=k

Pπk′→δ5 (πk ′ = p`,k ′ ), i ∈ IK (23)

where Pπk′→δ5 (πk ′ = p`,k ′ ) denotes the probability of
πk ′ = p`,k ′ specified by the message 1πk′→δ5 (πk ′ ). Similar
to (20), the message from πk to δk is

1πk→δk (πk ) = 1δ5→πk (πk ). (24)
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6) The message from δk to x̃k,t is given by

1δk→x̃k,t (x̃k,t )

∝
∫
πk ,σk ,{xk,t′ }

TP
t′=1 6=t

δ(x̃P,k − σkπT
kXP)

× pσk (σk )1πk→δk (πk )
TP∏

t ′=1 6=t

1x̃k,t′→δk (x̃k,t ′ ). (25)

We write the above message in its discrete form as

Pδk→x̃k,t (x̃k,t = c)

=
1
C

∑
i∈IK ,ω∈�
for ejωxi,t=c

Pδ5→πk (πk = ei)

×

TP∏
t ′=1 6=t

Px̃k,t′→δk (x̃k,t ′ = ejωxi,t ′ ), c ∈ C. (26)

7) The message from x̃k,t to pyn,t |zn,t is given by

1x̃k,t→pyn,t |zn,t (x̃k,t )

∝ px̃k,t (x̃k,t )1δk→x̃k,t (x̃k,t )

×

N∏
n′=1 6=n

1pyn′,t |zn′,t→x̃k,t (x̃k,t ). (27)

where px̃k,t (x̃k,t ) = pxk,t (x̃k,t ) is the prior distribution of x̃k,t
determined by the modulation of the data, and 1δk→x̃k,t (x̃k,t )
is the message provided by the prior knowledge of XP. The
message passing process of part II can be realized by the
BiG-AMP algorithm in [20]. Note that the marginal pos-
terior 1x̃k,t (x̃k,t ) = 1δk→x̃k,t (x̃k,t )1x̃k,t→δk (x̃k,t ) rather than
1x̃k,t→pyn,t |zn,t (x̃k,t ) is needed in the BiG-AMP algorithm for
complexity reduction. The discrete form of1x̃k,t (x̃k,t ) is given
by

Px̃k,t (x̃k,t = c)

∝ Pδk→x̃k,t (x̃k,t = c)Px̃k,t→δk (x̃k,t = c)

=
1
C

∑
i∈IK ,ω∈�
for: ejωxi,t=c

Pδ5→πk (πk = ei)

×

TP∏
t ′=1 6=t

Px̃k,t′→δk (x̃k,t ′ = ejωxi,t ′ )

×Px̃k,t→δk (x̃k,t = c)

=
1
C

∑
i∈IK ,ω∈�
for ejωxi,t=c

Pδ5→πk (πk = ei)

×

TP∏
t ′=1

Px̃k,t′→δk (x̃k,t ′ = ejωxi,t ′ ), c ∈ C. (28)

The estimates of H̃ and X̃ from the message passing iter-
ation contain phase and permutation ambiguities. We now

describe how to estimate the phase and permutation ambigui-
ties. Specifically, the marginal posterior of σk can be depicted
as

1σk (σk )

∝ 1δk→σk (σk )pσk (σk )

∝
∫
πk ,{xk,t }

TP
t=1

δ(x̃P,k − σkπT
kXP)

TP∏
t=1

1x̃k,t→δk (x̃k,t )

×1πk→δk (πk ). (29)

The discrete form of the message above can be written as

Pσk (σk = ejω)

=
1
C

∑
i∈IK

Pδ5→πk (πk = ei)

×

TP∏
t=1

Px̃k,t→δk (x̃k,t = ejωxi,t ), ω ∈ �. (30)

Then, an estimate of6 is given by 6̂ = diag{σ̂1, σ̂2, . . . , σ̂K },
where σ̂k = argmaxω∈� Pσk (e

jω). The marginal posterior
of P can be depicted as

1P(P)

∝ 1δ5→P(P)pP(P)

∝
∫
{πk }

K
k=1

δ([π1,π2, . . . ,πK ]T − P)
K∏
k=1

1πk→δ5 (πk ).

(31)

We write (31) in its discrete form as

PP(P = P`) =
1
C

K∏
k=1

Pπk→δ5 (πk = p`,k ), ` ∈ IK !. (32)

Then, we obtain an estimate of 5 by 5̂ = argmaxPP(P`).
We are now ready to present the overall message pass-

ing algorithm in Algorithm 1. In specific, steps 1 and 2
update the estimate of the variance {v̄pn,t (l)} and the mean
{p̄n,t (l)} of {zn,t }, where l denotes the inner iteration number.
Steps 3 and 4 update the estimate of the variance {vpn,t (l)}
and the mean {p̂n,t (l)} of {zn,t } by the ‘‘Onsager’’ correc-
tion [22]. Steps 5 and 6 give the estimate of the marginal
posterior variance {vzn,t (l)} and mean {ẑn,t (l)} of {zn,t }.
Steps 7 and 8 calculate the inverse-residual-variances {vsn,t (l)}
and the scaled residual {ŝn,t (l)}. Steps 9 and 10 update the
estimate of the variance {vqn,k (l)} and mean {q̂n,k (l)} of {h̃n,k}
based on the messages from check nodes {pyn,t |zn,t }. Then,
steps 13 and 14 give the estimate of the marginal poste-
rior of {hn,k} with the mean {ĥn,k (l + 1)} and the variance
{vhn,k (l + 1)}. Steps 11 and 12 process the same operations
as steps 9 and 10 and steps 15 and 16 process the same
operations as steps 13 and 14 for {x̃k,t ∈ XD}. Step 17 updates
the messages from {x̃k,t } to {δk}, where CN (·; r̂k,t (l), vrk,t (l))
is a Gaussian distribution obtained by

∏N
n=11pn,t→x̃k,t (x̃k,t ).

Step 18 calculate the probability of {πk = ei} with phase
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Algorithm 1: The SCSE Algorithm

Input: Y, prior distribution pH̃(H̃), pX̃(X̃), and pY|Z(Y|Z)

Initialization : ∀n, k, t , ˆ̃hn,k (1) = 0, vh̃n,k = 1, ˆ̃xk,t (1) is
randomly drawn from C, vx̃k,t (1) = 1, and ŝn,t (0) = 0
for m = 1, . . . ,Mmax %outer iteration
for l = 1, . . . ,Lmax %inter iteration

% Message passing for part I
1: ∀n, t: v̄pn,t (l) =

∑K
k=1 |
ˆ̃hn,k (l)|2vx̃k,t (l)+ v

h̃
n,k (l)|

ˆ̃xk,t (l)|2

2: ∀n, t: p̄n,t (l) =
∑K

k=1
ˆ̃hn,k (l) ˆ̃xk,t (l)

3: ∀n, t: vpn,t (l) = v̄pn,t (l)+
∑K

k=1 v
h̃
n,k (l)v

x̃
k,t (l)

4: ∀n, t: p̂n,t (l) = p̄n,t (l)− ŝn,t (l − 1)v̄pn,t (l)

5: ∀n, t: vzn,t (l) =
vpn,t (l)σ

2

vpn,t (l)+σ 2

6: ∀n, t: ẑn,t (l) =
vpn,t (l)σ

2

vpn,t (l)+σ 2
(yn,t − p̂n,t (l))+ p̂n,t (l)

7: ∀n, t: vsn,t (l) = (1− vzn,t (l)/v
p
n,t (l))/v

p
n,t (l)

8: ∀n, t: ŝn,t (l) = (ẑn,t (l)− p̂n,t (l))/v
p
n,t (l)

9: ∀n, k: vqn,k (l) = (
∑T

t=1 |
ˆ̃xk,t (l)|2 vsn,t (l))

−1

10: ∀n, k: q̂n,k (l) =
ˆ̃hn,k (l)(1−

∑T
t=1 v

x̃
k,t (l)v

s
n,t (l))

+ vqn,t (l)
∑T

t=1( ˆ̃xk,t (l))
∗ŝn,t (l)

11: ∀k, t: vrk,t (l) = (
∑N

n=1 |
ˆ̃hn,k (l)|2 vsn,t (l))

−1

12: ∀k, t: r̂k,t (l) = ˆ̃xk,t (l)(1−
∑N

n=1 v
h̃
n,k (l)v

r
k,t (l))

+ vrk,t (l)
∑N

n=1(
ˆ̃hn,k (l))∗ŝn,t (l)

13: ∀n, k: ˆ̃hn,k (l + 1) = E[h̃n,k |q̂n,k (l), v
q
n,k (l)]

14: ∀n, k: vh̃n,k (l + 1) = E[|h̃n,k − ˆ̃hn,k (l + 1)|2|q̂n,k (l), v
q
n,k (l)]

15: ∀k, t ∈ TD: ˆ̃xk,t (l + 1) = E[x̃k,t |r̂k,t (l), vrk,t (l)]
16: ∀k, t ∈ TD: vx̃k,t (l + 1) = E[|x̃k,t − ˆ̃xk,t (l + 1)|2|r̂k,t (l), vrk,t (l)]
% Message passing for part II
17: ∀k, t ∈ TP: Plx̃k,t→δk (x̃k,t = c) = 1

C Px̃k,t (x̃k,t = c)
× CN (x̃k,t = c; r̂k,t (l), vrk,t (l)), c ∈ C % Eq.(16)

18: ∀k: p(πk = ei, σ k = ω)
=

1
C
∏TP
t=1

[
Plx̃k,t→δk (x̃k,t = ejωxi,t )

]
, i ∈ IK , ω ∈ �

19: ∀k: Plπk→δ5 (πk = ei)
=

1
C
∑
ω∈� p(πk = ei, σ k = ω) % Eq.(19),(20)

20: ∀k: Plδ5→πk (πk = ei) = 1
C
∑K !

`=1
`: p`,k=ei∏K

k ′=1 6=k

[
Pπk′→δ5 (πk ′ = p`,k ′ )

]
, i ∈ IK %Eq.(23),(24)

21: ∀k, t ∈ TP: Pl+1x̃k,t
(x̃k,t = c) = 1

C
∑

i∈IK ,ω∈�
ejωxi,t=c

Plδ5→πk (πk =

ei) p(πk = ei, σ k = ω), c ∈ C % Eq.(28)
22: ∀k, t ∈ TP: ˆ̃xk,t (l + 1) = E[xk,t |r̂k,t (l), vrk,t (l),XP]
23: ∀k, t ∈ TP: vx̃k,t (l + 1) =

E[|xk,t − ˆ̃xk,t (l + 1)|2|r̂k,t (l), vrk,t (l),XP]
24: if

∑
n,t |p̄n,t (l)− p̄n,t (l − 1)|2 ≤ ε

∑
n,t |p̄n,t (l)|

2, stop
end
∀k, t: ˆ̃xk,t (1) = ˆ̃xk,t (l + 1); vx̃k,t (l) = vx̃k,t (l + 1);

∀n, k: ˆ̃hn,k (1) = 0; vh̃n,k = 1 % Re-initialization
end
%Eliminate ambiguities
25: ∀k: Pσk (σk = ejω) = 1

C
∑

i∈IK P
Lmax
δ5→πk

(πk = ei)

×
∏TP
t=1 P

Lmax
x̃k,t→δk

(x̃k,t = ejωxi,t ), ω ∈ � %Eq.(30)

26: ∀k: σ̂k = argmaxω∈� Pσk (e
jω), 6̂ = {σ̂1, σ̂2, . . . , σ̂K }

27: PP(P = P`) = 1
C
∏K
k=1 P

Lmax
πk→δ5

(πk = p`,k ), ` ∈ IK !
%Eq.(32)

28: 5̂ = argmax`∈IK ! PP(P`)
Output: : Ĥ = H̃6̂5̂, X̂D = 5̂

−16̂−1X̃D

FIGURE 2. The simplified factor graph representation for Part II in Fig. 1
with K = 3 and TP = 3.

shift {ejω}. Steps 19 and 20 update the messages between
πk and 5. Step 21 updates the marginal posterior of {x̃k,t }
by merging the messages from {pyn,t |zn,t } and {δk} with the
priors {px̃k,t (x̃k,t )}. Steps 22 and 23 give the posterior mean
and variance of {x̃k,t } ∈ XP, where the expectations are taken
over the distribution given by step 19. Step 24 gives a stop-
ping condition based on the (normalized) change of p̄n,t (l)
in two consecutive iteration and a user-defined parameter ε.
Steps 25 and 27 give the posterior message of {σk} and {πk}.
Steps 26 and 28 give estimates of6 and5. Note that steps 25-
28 are out of the loop since the estimates of the phase and per-
mutation ambiguities are not needed in the iterative process
but are needed in correcting the estimates of H and X after
message passing.

It is interesting to compare the joint channel-and-signal
estimation scheme in [9] with SCSE in Algorithm 1. In fact,
Algorithm 1 can be modified for the joint channel-and-signal
scheme as follows: i) In initialization, set ˆ̃xk,t (1) = xk,t ,
∀k, t ∈ TP; ii) delete steps 17-23, and 25-28. That is, the main
difference of SCSE from the joint channel-and-signal esti-
mation scheme is that the former includes the estimation of
the phase and permutation ambiguities, i.e., 6, and5, in the
iterativemessage passing process.Wewill show by numerical
simulations that SCSE is able to significantly outperform the
joint channel-and-signal estimation scheme in the short-pilot
regime.

C. S-SCSE ALGORITHM
The SCSE algorithm is computationally infeasible for a rel-
atively large k , since it involves enumeration over all length-
k permutations in step 20 of Algorithm 1. To reduce the
complexity, we relax the constraint that5 is a permutation to
the one that each row k of5 (denoted byπT

k ) is independently
taken from the set {e`}K`=1. That is,

p5(5) = p5(π1,π2, . . . ,πK ) ≈
K∏
k=1

pπk (πk ) (33)

where pπk (πk ) = 1/K , and πk ∈ {e1, e2, . . . , eK }. The cor-
responding factor graph of part II in Fig. 1 is given in Fig. 2.
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Compared with part II in Fig. 1, the factor graph in Fig. 2
is almost the same, except that the nodes {pP,P, σ5} are
replaced by {pπk }.
We now describe message passing over the factor graph

in Fig. 2. The messages from x̃k,t to δk and from σk to δk
have the same form as in (16) and (17). The message from
πk to δk is given by

1πk→δk (πk ) = pπk (πk ) =
1
K

K∑
i=1

δ(πk = ei). (34)

Then, the message from δk to x̃k,t is given by

1δk→x̃k,t (x̃k,t )

∝
∫
σk ,πk ,{xk,t′ }

TP
t′=16=t

δ(x̃P,k − σkπT
kXP)

× pπk (πk )pσk (σk )
TP∏

t ′=1 6=t

1x̃k,t′→δk (x̃k,t ′ ). (35)

Since x̃k,t , πk , and σk are discrete variables, we can write the
above message in its discrete form as

Pδk→x̃k,t (x̃k,t = c)

=
1
C

∑
i∈IK ,ω∈�
for: ejωxi,t=c

TP∏
t ′=1 6=t

Px̃k,t′→δk (x̃k,t ′ = ejωxi,t ′ ), c ∈ C.

(36)

Then, for any c ∈ C, the marginal posterior of x̃k,t can be
updated as

Px̃k,t (x̃k,t = c)

∝ Pδk→x̃k,t (x̃k,t = c)Px̃k,t→δk (x̃k,t = c)

=
1
C

∑
i∈IK ,ω∈�
for: ejωxi,t=c

TP∏
t ′=1

Px̃k,t′→δk (x̃k,t ′ = ejωxi,t ′ ), c ∈ C.

(37)

The other messages are calculated by following the SCSE
algorithm. Compared to SCSE, S-SCSE omits the calculation
of Pδ5→πk (πk = ei) in (23), which significantly reduces the
computation complexity from O(K !) to O(K 2).

The phase and permutation ambiguities are estimated as
follows. The marginal posterior of σk can be depicted as

1σk (σk )

∝ 1δk→σk (σk )pσk (σk )

∝
∫
πk ,{xk,t }

TP
t=1

δ(x̃P,k − σkπT
kXP)

TP∏
t=1

1x̃k,t→δk (x̃k,t ). (38)

The discrete form of the above message can be written as

Pσk (σk = ejω)

=
1
C

∑
i∈IK

TP∏
t=1

Px̃k,t→δk (x̃k,t = ejωxi,t ), ω ∈ �. (39)

Algorithm 2: The S-SCSE Algorithm

Input: Y, prior distribution pH̃(H̃), pX̃(X̃), and pY|Z(Y|Z)

Initialization : ∀n, k, t , ˆ̃hn,k (1) = 0, vh̃n,k = 1, ˆ̃xk,t (1) is
randomly drawn from C, vx̃k,t (1) = 1, and ŝn,t (0) = 0
for m = 1, . . . ,Mmax %outer iteration
for l = 1, . . . ,Lmax %inter iteration
% Message passing for part I
Perform steps 1-16 in Algorithm 1.
% Message passing for part II
Perform steps 17-18 in Algorithm 1.

1: ∀(k, t) ∈ XP: P
l+1
x̃k,t

(x̃k,t = c) = 1
C

×
∑

i∈IK ,ω∈�
ejωxi,t=c

p(πk = ei, σ k = ω) c ∈ C

% Eq. (37)
2: ∀k, t ∈ TP: ˆ̃xk,t (l + 1) = E[xk,t |r̂k,t (l), vrk,t (l),XP]
3: ∀k, t ∈ TP: vx̃k,t (l + 1) =

E[|xk,t − ˆ̃xk,t (l + 1)|2|r̂k,t (l), vrk,t (l),XP]
4: if

∑
n,t |p̄n,t (l)− p̄n,t (l − 1)|2 ≤ ε

∑
n,t |p̄n,t (l)|

2, stop
end
∀k, t: ˆ̃xk,t (1) = ˆ̃xk,t (l + 1); vx̃k,t (l) = vx̃k,t (l + 1);

∀n, k: ˆ̃hn,k (1) = 0; vh̃n,k = 1 % Re-initialization
end
% Eliminate ambiguities
5: ∀k: Pσk (σk = ejω)
=

1
C

∑
i∈IK

∏TP
t=1 P

Lmax
x̃k,t→δk

(x̃k,t = ejωxi,t ), ω ∈ �

% Eq. (39)
6: ∀k: Pπk (πk = e`)
=

1
C

∑
ω∈�

∏TP
t=1 P

Lmax
x̃k,t→δk

(x̃k,t = ejωxi,t ), ` ∈ IK
% Eq. (41)

7: ∀k: σ̂k = argmaxω∈� Pσk (e
jω), 6̂ = {σ̂1, σ̂2, . . . , σ̂K }

8: ∀k: π̂k = argmax`∈IK Pπk (e`), 5̂ = {π̂1, π̂2, . . . , π̂K }

Output: : Ĥ = H̃6̂5̂, X̂D = 5̂
−16̂−1X̃D

Then, an estimate of6 is given by 6̂ = diag{σ̂1, σ̂2, . . . , σ̂K },
where σ̂k = argmaxω∈� Pσk (e

jω). The marginal posterior of
πk can be depicted as

1πk (πk )

∝ 1δk→πk (πk )pπk (πk )

∝
∫
σk ,{xk,t }

TP
t=1

δ(x̃P,k − σkπT
kXP)

TP∏
t=1

1x̃k,t→δk (x̃k,t ). (40)

Similarly, the discrete form of the above message can be
written as

Pπk (πk = ei)

=
1
C

∑
ω∈�

TP∏
t=1

Px̃k,t→δk (x̃k,t = ejωxi,t ), i ∈ IK . (41)

Then, an estimate of 5 is given by 5̂ = [π̂1, π̂2, . . . , π̂K ]T,
where π̂k = argmax`∈IK Pπk (e`).
The S-SCSE algorithm is presented in Algorithm 2.

In Algorithm 2, the S-SCSE algorithm performs the
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steps 1-18 of Algorithm 1 first. Then, step 1 of Algorithm 2
updates the marginal posterior of {x̃k,t } by S-SCSE algo-
rithm. Steps 2 and 3 give the posterior mean and variance
of {x̃k,t } ∈ XP, where the expectations are taken over the
distribution given by steps 1. Steps 5 and 6 give the posterior
messages of σk and πk by S-SCSE algorithm, respectively.
Steps 7 and 8 give estimates of 6 and 5, respectively.3 In
addition, the damping technique is used in the algorithm to
improve convergence in simulation. We refer readers to [20]
and [23] for more details.

D. PARAMETER TUNING
Note that both the SCSE and S-SCSE algorithms require
the knowledge of the distributions of pH̃(H̃), pX̃(X̃), and
pY|Z(Y|Z) to perform the message passing process. How-
ever, the parameters {ρ, σ 2

h,k ,∀k,N0} are usually difficult to
acquire prior to the detection procedure [20]. Therefore, these
model parameters need to be estimated as well.

In this paper, we use the EM algorithm to tune these model
parameters by taking H̃ and X̃ as the hidden variables. The
specifical update rules are given as follows.

ρ(m+1) = argmax
ρ

E
[
log p

(
H̃, X̃,Y; ρ, (σ 2

h,1)
(m), . . . ,

(σ 2
h,K )

(m),N (m)
0

)]
. (42)

(σ 2
h,k )

(m+1)
= argmax

σ 2h,k

E
[
log p

(
H̃, X̃,Y; ρ(m+1),

(σ 2
h,1)

(m+1), . . . , (σ 2
h,k−1)

(m+1), (σ 2
h,k ),

(σ 2
h,k+1)

(m), . . . (σ 2
h,K )

(m),N (m)
0

)]
, ∀k.

(43)

N (m+1)
0 = argmax

N0
E
[
log p

(
H̃, X̃,Y; ρ(m+1),

(σ 2
h,1)

(m+1), . . . , (σ 2
h,K )

(m+1),N0

)]
. (44)

The EM update is performed in each outer iteration and
the expectations in (42)-(44) are taken over the approximate
marginal posteriors

{
ph̃n,k |Y, px̃k,t |Y, pz̃n,t |Y

}
∀n,k,t

obtained

from every Lmax th inner iteration.

E. COMPLEXITY ANALYSIS
We now compare the computational complexity of our pro-
posed algorithms with the existing approaches. Since both
the joint channel-and-signal (JCSE) scheme in [9] and the
blind detection scheme in [18] are based on the BiG-AMP
algorithm [20], we only need to compare the computational
complexity of the BiG-AMP, SCSE, and S-SCSE algorithms.

The computational complexity in steps 4-8 of Algorithm 1
isO(NT ), and that in steps 1-3 and steps 9-16 isO(NK+KT ).

3To identify users uniquely, TP is required to be large enough to ensure
that for each xP,k and xP,k ′ , xP,k 6= ejωxP,k ′ , ω ∈ �. This implies that,
when the data are modulated by quadrature phase shift keying, TP should be
no less than 1+ d 12 log2 Ke, where one symbol is used to correct the phase
shift of each user k , and d 12 log2 Ke symbols are used to guarantee that the
pilot sequences of the K users are different from each other.

TABLE 1. Computational complexity.

Since the BiG-AMP algorithm only perform steps 1-16 in
Algorithm 1 for each iteration, the computational complexity
of the BiG-AMP algorithm isO(NT )+O(NK+KT ) [20]. The
computational complexity of steps 17-21 in Algorithm 1 is
O(KTP), O(K 2 TP), O(K ), O(K 2K !), and O(K 2 TP), respec-
tively. With the increase of K , O(K 2K !) dominates the com-
plexity. Then, the overall computational complexity of the
SCSE algorithm isO(NT )+O(NK+KT )+O(K 2K !) per iter-
ation. The computational complexity of step 1 in Algorithm 2
is O(K 2 TP). Thus, the computational complexity of the
S-SCSE algorithm isO(NT )+O(NK +KT )+O(K 2 TP) per
iteration. The computational complexities for our considered
algorithms are summarized in Table 1.

From Table 1, we see that, compared to the JCSE and
blind detection schemes, the complexity of the S-SCSE algo-
rithm is dominated by the third term O(K 2K !) caused by
the estimation of 6 and 5. By relaxing the permutation
constraint, the S-SCSE algorithm can significantly reduce
the computational complexity of estimating 6 and 5 from
O(K 2K !) to O(K 2 TP).

F. METRIC FOR RANDOM INITIALIZATIONS
The semi-blind detection problem in (12) is non-convex, and
the SCSE and S-SCSE algorithms are prone to be stuck at
local optima. To alleviate this issue, multiple random initial-
izations and multiple re-initializations are conducted.

We next describe how to choose a desirable result
amongmultiple random initializations. In a practical receiver,
the metrics such as the mean-square error of the channel
and the symbol error rate of the signal are not useful in
evaluating the performance of random initializations since the
ground truth is not available to the receiver. In this regard,
we propose to use the following heuristic metric for evaluat-
ing random initializations:

J (τ ) = ‖Y−H(τ )X(τ )‖2F (45)

where τ is the index of random initializations. We choose the
initialization with the minimum value of J (τ ).

V. NUMERICAL RESULTS
In simulations, the signals are taken from quadrature phase
shift keying (QPSK) or 16 QAM with Gray-mapping. We
set Pk = 1,∀k . The SNR is defined by K

N0
. Following

[9], [18], we divide all the AoA into N grids and assume
that all received signals from angle e−j2π

(n−1)d
2λ cos(θ`,k ) to angle

e−j2π
nd
2λ cos(θ`,k ) belong to the nth grid. Thus, the array steering

matrix Ar can be regarded as a DFT matrix. The aggregated
channel gains are generated from the B-CSCG distribution
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FIGURE 3. The normalized MSE of H versus SNR with the number of
initializations ranging from 1 to 4 for the S-SCSE scheme with QPSK
modulation. K = 20, N = 200, ρ = 0.2, T = 50, TP = 4, and σ2

h,min = 1.

in (4). The channel powers σ 2
h,k ,∀k are randomly drawn

from a uniform distribution over [σ 2
h,min, 1]. For the simulated

algorithms, the maximum number of inner iterations Lmax is
set to 200, and the maximum number of outer iterationsMmax
is set to 10. The simulation results presented in this paper are
obtained by taking average over 100 random realizations. We
compare the numerical results of various approaches, as listed
below.
• OMP:A separate channel-and-signal detection approach
to estimate H by orthogonal matching pursuit
(OMP) [24] with the pilots only.

• CoSaMP: A separate channel-and-signal detection
approach to estimateH by compressive samplingmatch-
ing pursuit (CoSaMP) [25] with the pilots only.

• Turbo-CS: A separate channel-and-signal detection
approach to estimate H by turbo compressed sensing
(Turbo-CS) [26] with the pilots only.

• JCSE: The joint channel-and-signal detection scheme
in [9].

• BD: The blind detection scheme based on the BiG-AMP
algorithm [20].

• SCSE: The SCSE algorithm proposed in this paper.
• S-SCSE: The S-SCSE algorithm proposed in this paper.
• LB-H: To estimateH by the BiG-AMP algorithm in [20]
with perfectly known X.

• LB-X: To estimateX by the BiG-AMP algorithm in [20]
with perfectly known positions of the non-zero elements
of H.

Fig. 3 compares the normalized mean-square error (MSE)
ofH versus SNRwith different numbers of random initializa-
tions varying from J = 1 to J = 4 for the S-SCSE algorithm
with QPSK modulation. The other settings are K = 20,
N = 200, ρ = 0.2, T = 50, and σ 2

h,min = 1. We see that with
themetric in (45), random initialization substantially improve
the performance of the semi-blind scheme.

FIGURE 4. Comparison of the BER of X versus the number of users K for
SCSE and S-SCSE with the number of pilots TP = 3, 4, and 5, SNR = 0 dB,
N/K = 10, ρ = 0.5, T = 50, and σ2

h,min = 1.

FIGURE 5. Comparison of the normalized MSE of H versus SNR for the
OMP, CoSaMP, Turbo-CS, JCSE, BD, S-SCSE, and the LB-X with the pilots
number TP = 8, K = 20, N = 128, ρ = 0.3, T = 50, and σ2

h,min = 1.

Fig. 4 compares the average bit error rate (BER) of X
versus the number of users K for SCSE and S-SCSE with
the number of pilots TP = 3, 4, and 5. The other settings are
SNR = 0 dB, N/K = 10, ρ = 0.5, T = 50, σ 2

h,min = 1,
and J = 5. We can see that for a relatively large TP (say,
TP = 5 for the configuration in Fig. 4), S-SCSE is able to
perform close to SCSE. Note that due to high computational
complexity for SCSE, we henceforth only present the simu-
lation results of S-SCSE.

Fig. 5 compares the normalized mean-square error (MSE)
of H versus SNR for the OMP, CoSaMP, Turbo-CS, JCSE,
BD, S-SCSE, and LB-X with the pilots number TP = 8.
The other setting are K = 20, N = 128, ρ = 0.3,
T = 50, σ 2

h,min = 1, and J = 5. From Fig. 5, we see that
our S-SCSE algorithm significantly outperforms the training-
based schemes (including OMP, CoSaMP, Turbo-CS, and
JCSE) and blind detection scheme. We also see that with the
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FIGURE 6. The BER of X versus SNR for the JCSE, BD, S-SCSE, and LB-X
with different numbers of pilots. K = 20, N = 128, ρ = 0.3, T = 50, and
σ2

h,min = 1.

increase of SNR, the performance of our S-SCSE algorithm
can approach that of the LB-X.

Fig. 6 presents the bit error rate (BER) ofX versus SNR for
the JCSE, BD, S-SCSE, and LB-X with different numbers of
pilot symbols. The other settings are K = 20, N = 128,
ρ = 0.3, T = 50, and σ 2

h,min = 1. For Fig. 6(a), we set
J = 5, while for Fig. 6(a), we set J = 12. Note that
when the modulation is changed from QPSK (in Fig. 6(a)) to
16-QAM (in Fig. 6(b)), a lager number of random initializa-
tions is required to ensure stable semi-blind detection. Also
note that the blind detection system needs one reference sym-
bol and a user label. For the simulation settings considered
here, this amounts to a cost of 1 + d 12 log2 Ke = 4 symbols
for QPSK modulation, and 1+ d 12 log4 Ke = 3 symbols for
16-QAM modulation.

FIGURE 7. Comparison of the BER of X versus SNR for no tuning, EM, and
known σh,k with −10 log10(σ2

h,min) = 10/15/20 dB of the S-SCSE
algorithm, K = 20, N = 128, ρ = 0.3, and T = 50.

In Fig. 6(a), we see that for TP = 4 and 8, S-SCSE
significantly outperforms the JCSE scheme. We also see
that for TP = 4, S-SCSE slightly outperforms the blind
detection scheme, while for TP = 8, SCSE outperforms the
blind detection scheme by about 4 dB at BER = 10−5. For
TP = 12, the S-SCSE and JCSE schemes perform close
to each other and approximate the lower bound. The reason
is that in this case TP is large enough to provide a rela-
tively accurate initial channel estimate, and so the training-
based scheme can work well. In Fig. 6(b), S-SCSE can
outperforms the blind detection scheme by about 6 dB at
BER = 10−3 for TP = 3, and by about 10 dB at BER
= 10−4 for TP = 9. Similarly, S-SCSE significantly
outperforms the JCSE scheme for TP = 3 and 6. The
S-SCSE and JCSE schemes perform close to each other for
TP = 12. Fig. 6 shows that both the JCSE and S-SCSE
schemes achieve better performance with the increase of TP.
However, such performance improvement is achieved at the
cost of a decrease in spectrum efficiency, since the pilots can-
not transmit information. This issue will be elaborated later
in Fig. 9.

We next study the impact of large-scale fading on the sys-
tem performance. In simulations, we set−10 log10(σ

2
h,min) =

10/15/20 dB. The other setting are K = 20, N = 128,
ρ = 0.3, T = 50, and J = 5. We consider the differ-
ent configurations of the S-SCSE algorithm: i) no tuning
(in which σ 2

h,k = 1,∀k); ii) EM (in which the EM algo-
rithm in Section IV-D is used for learning {σ 2

h,k}); iii) lower
bound (in which {σ 2

h,k} are exactly known by the receiver
in prior). From Fig. 7, we see that all the three approach
perform close to each other when−10 log10(σ

2
h,min) = 10 dB,

whereas the EM approach significantly outperforms the no
tuning approach and performs close to the lower bound for
−10 log10(σ

2
h,min) = 15 and 20 dB. This implies that the

S-SCSE algorithm with EM tuning is able to efficiently
handle the effect of large-scale fading.
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FIGURE 8. The BER of X versus SNR for the JCSE, BD, and S-SCSE with
different numbers of pilots. K = 20, N = 128, ρ = 0.3, T = 50, and
−10 log10(σ2

h,min) = 20 dB.

FIGURE 9. Comparison of the throughput between different sparsity with
16 QAM modulation versus SNR for the JCSE, BD, and S-SCSE, K = 20,
N = 200, T = 50, and σ2

h,min = 1.

We now compare the performance of the various schemes
in the presence of large-scale fading. In simulations, we set
−10 log10(σ

2
h,min) = 20 dB, and the EM algorithm in

Section IV-D is employed for the tuning of {σ 2
h,k}. The other

settings are the same as those in Fig. 6(a). From Fig. 8,
we see that the trends of the curves are very similar to those
in Fig. 6(a), except that the SNR is shifted by about 15 dB.

Fig. 9 shows the throughput of the JCSE, BD, and
S-SCSE with 16-QAM and Gray mapping versus SNR.
We say that a system performs successful recovery when
BER < 10−3. For the S-SCSE and JCSE schemes, for each
given SNR, we increase the number of pilots TP until the
system performs successful recovery. For BD, TP is fixed
at 3. Then, the throughput is calculated by 4K (1− TP/T ) bit
per channel use. The other settings are K = 20, N = 200,

T = 50, and σ 2
h,min = 1. For example, in the third subfigure of

ρ = 0.3, when SNR = 24 dB, the required pilots to ensure
successfully recovery for S-SCSE and JCSE are TP = 3 and
TP = 9, respectively. So the throughput of the two schemes
are calculated by 4× 20× (1− 3/50) = 75.2 and 4× 20×
(1 − 9/50) = 65.6, respectively. From Fig. 9, we see
that S-SCSE considerably outperforms the JCSE scheme for
ρ = 0.1, 0.2, and 0.3. For ρ = 0.4, the sparsity level
ρ is too large so that the blind matrix factorization cannot
providemuch useful information. Both the S-SCSE and JCSE
schemes rely on the knowledge of pilots for channel-and-
signal estimation, and perform closely in Fig. 9(d). For com-
parison, we also include the SNR threshold beyond which
the blind detection scheme is able to perform successful
recovery. Note that the threshold is not included in Fig. 9(d)
since for ρ = 0.4, the blind detection scheme does not
work in the SNR range of interest. We see that the blind
detection scheme works well only when the SNR is suffi-
ciently high. This demonstrates the advantage of semi-blind
detection.

VI. CONCLUSIONS
In this paper, we proposed a semi-blind signal detection
scheme for uplink massive MIMO in which short pilot
sequences are inserted into user packets and the knowl-
edge of pilots is intergraded into the message passing
algorithms for reliable matrix factorization. We derived
two semi-blind estimation algorithms, namely SCSE and
S-SCSE, based on the message-passing principles. In spe-
cific, the S-SCSE is a simplified version of SCSE with much
lower computation complexity, but achieve almost the same
performance. Numerical results showed that our proposed
semi-blind scheme substantially outperforms the existing
blind detection and training-based schemes in the short-pilot
regime.
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