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ABSTRACT For the sake of positioning the illegal unmanned aerial vehicle operators, the paper proposes
a direction of arrival (DOA) estimation algorithm based on the reconnaissance plane with multiple array
sensors. First, the number of unmanned aerial vehicle signals is determined by information theory criteria.
Then combined support vector regression, the direction of the operator is calculated according to some
approximating function through training. Finally, the location can be estimated by integrating the DOAs
acquired with the array sensors on the reconnaissance aircraft. This algorithm is convenient and fast to
be realized, moreover, as a result of adopting super resolution and multiple kernel learning, it can locate
numerous radio signals simultaneously and performs well in the circumstance that signals impinge on the
sensor array with small-angle interval, as well as the conditions of small samples and low signal to noise ratio,
besides, the algorithm also applies to the array which gain-phase inconsistency exists among the sensors.

INDEX TERMS Sensor array, radio positioning, direction of arrival, support vector regression, gain-phase
inconsistency.

I. INTRODUCTION
In recent years, industry of civil unmanned aerial vehi-
cle (UAV) has risen rapidly and shown a blowout
growth [1]–[4], it is widely used in aerial photography,
survey, rescue, mapping, and other civil fields. At the same
time, due to the simple structure, good maneuverability, and
low cost, it also applies in military surveillance and recon-
naissance. Compared with other tools, UAV has many unique
superiorities, for example, because of its flexibility in three-
dimensional space, it can work in harsh terrain environments,
such as massif, forest, buildings, and carry some hardware
modules. However, the illegal flights without permission
often happen. UAV is small, strong concealment, easy to
be acquired and manipulated, so government, military areas,
important enterprises, and some major events are likely to
be invaded. In order to guard against these intruders, on one
hand, they should be managed and controlled strictly, on the
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FIGURE 1. Locate the operator of the UAV.

other hand, it is seen in Fig.1, we can locate these operators
directly through finding corresponding radio signals.

The common information available of range-based local-
ization algorithms includes direction of arrival (DOA) [5]–[8],
time of arrival (TOA) [9]–[11], time difference of arrival
(TDOA) [12]–[14], angle of arrival (AOA) [15]–[17], and
received signal strength indication (RSSI) [18]–[22]. For the
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sake of improving the location precision, Shalaby et al. [23]
proposed a TOA algorithm with virtual anchor node and
linear least square method, and it is not easily affected by
noise. Tomic et al. [24] transformed positioning question into
generalized trust region sub-problem, whose computation
complexity is linear relation with the number of reference
nodes. Pak et al. [25] employed multiple distributed and
mixed particle finite impulse response filters to recognize the
abnormal measure caused by non-line of sight. Liu et al. [26]
used two-stage weighted least squares to estimate TDOA,
and a better robustness was acquired. Shao et al. [27] uti-
lized auxiliary variables to construct a linear least squares
self-positioning problem, then decreased the error by bias
compensates for pseudo-linear estimation, the local minima
and divergence in iterative estimation was averted. As RSSI
is vulnerable to multipath fading, noise, and other envi-
ronmental parameters, Gui et al. [28] exploited a multipli-
cation distance correction factor to counteract estimation
error, improved the accuracy significantly. Based on spear
framework, Angjelichinoski et al. [29] proposed a reliable
solution for locating non-Bayesian sources, obtained the
source, and uncertain anchor node positions simultaneously.
Gustafsson and Gunna [30] used the difference between the
estimated and the actual distance of the unknown and its
surrounding anchor nodes to proposed a weighted centroid
localization algorithm, it was also verified by ZigBee exper-
iment. Singh and Khilar [31] designed a range-free location
algorithm based on moving anchor node, but the progressive
updating location of anchor node itself was ignored.

In various methods of locating targets by using their own
radiation signals, DOA estimation is one of the most direct
and convenient method, it is the foundation of all position-
ing technology, meanwhile, less equipments and amount of
calculation are required, it has a high application prospect
and research value. Moreover, in nowadays complex wireless
environment, the direction information has become one of
the most credible parameter. The classic DOA algorithms
include multiple signal classification (MUSIC) [32], esti-
mation of signal parameters via rotational invariance tech-
niques [33] and maximum likelihood [34] algorithm, they
all have a large amount of computation, bad realtime perfor-
mance and cannot adapt to the real practical environment.
So recently, some intelligent DOA estimation algorithms,
such as machine learning and soft modeling have been
concerned by the scholars at home and abroad, their main
advantage is that nonlinear modeling is implemented through
training samples instead of exact equation, thus, the actual
noise, signal model, sensor characteristic can also be con-
sidered, meanwhile, eigen-decomposition and peak searching
are avoided. Gonnouni et al. [35] combined support vector
machine (SVM) and MUSIC to find the direction of coher-
ent signals. Dehghanpour et al. [36] used multiple kernel
learning (MKL) and SVM to cope with mutual coupling
among sensors in DOA estimation. Gao et al. [37] employed
sparse recovery and SVM to deal with DOA estimation in
massive MIMO systems. Wang et al. [38] designed SVM

based on deep neural network, acquiring good generalization
and classification performance.

This paper proposes an algorithm for determining the
position of UAV operator, based on support vector regres-
sion (SVR), reconnaissance aircraft (RA) is employed to
estimate the DOA, then the result is transmitted to the ground
station (GS) for the location of the operator according to their
geometrical relationship, moreover, due to the use of super-
resolution algorithm, we canmonitor multiple UAV operators
simultaneously, and the algorithm also applies to the circum-
stance of gain-phase errors exist among the sensors.

II. SIGNAL MODEL
The two-point positioning model is shown in Fig.2, there are
B UAVs flying in the sky and respectively controlled by B
operators on the ground. The positioning system is composed
of one GS and two RAs, for the sake of mathematical deriva-
tion, we define the former locates at the origin, and RA1 with
coordinate (0, 0, z1) flies on top of GS, RA2 (x2, 0, z2) is in
XOZ flat, the radio signal sending by the operator is used for
the positioning.

FIGURE 2. Two-point positioning model.

FIGURE 3. Array model of RA1.

As is shown in Fig.3, the two RAs are separately composed
of airscrews, motor, and uniform circle array (UCA) with
M sensors, there are B operator signals arriving at the array
sensors on RAs, the center of every RA is defined as its origin,
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radius is r , ϕ and θ are respectively the azimuth and elevation.
In fact, the proposed algorithm is also suitable for the planar
arrays in any forms, but the circular array is very suitable for
the structural installation of reconnaissance aircraft.

A. SIGNAL MODEL UNDER IDEAL ARRAY
Take RA1 for example, under ideal array, we can acquire the
array data from the targets

P(t) =



p1(t)
...

pm(t)
...

pM (t)



=



B∑
b=1

sb(t − τ1b)

...
B∑
b=1

sb(t − τmb)

...
B∑
b=1

sb(t − τMb)


+



n1(t)
...

nm(t)
...

nM (t)



= A(ϕ, θ)S(t)+ N(t). (1)

where sb(t) is the bth signal, τmb = r
ccos(

2π (m−1)
M −ϕb)cosθb

is the delay for the bth source arriving at themth sensor versus
origin, pm(t) is the received data of the mth sensor, nm(t) is
the corresponding noise obeying Gaussian distribution, c is
the signal velocity, and array manifold is

A(ϕ, θ) = [a(ϕ1, θ1) · · · a(ϕB, θB)]

=



e−j2π f τ11 · · · e−j2π f τ1B
...

e−j2π f τm1 · · · e−j2π f τmB
...

e−j2π f τM1 · · · e−j2π f τMB

 . (2)

suppose that sampling times is T , the covariance of received
data is

R =
1
T
PPH

= A(ϕ, θ)RSAH(ϕ, θ)+ RN. (3)

here, ()H means solving conjugate transpose, then eigen-
decomposition is performed, we have

R = U6UH
= US6SUS

H
+ UN6NUN

H. (4)

where

6 =


λ1

λ2
. . .

λM

 . (5)

is the eigenvalue matrix, US and UN are separately the
signal and noise subspace. Based on 6, we can use some
criterion [39], [40] to detect signal number first, then deter-
mine the relevance between DOA and eigenvector U . In fact,
US includes the signal information, and it is simpler than U ,
and UN does not includes any useful information, so we
can find the relationship between US and DOA instead:
(ϕ, θ)→F(US), then DOA estimation can be deemed to be
the approximation of nonlinear function F(US) which can be
acquired by learning.

B. SIGNAL MODEL UNDER ARRAY WITH
GAIN-PHASE INCONSISTENCY
Most classic direction finding algorithms are based on the
ideal array sensors, but the practical circumstance is more
complicated: the inconsistent amplifiers and length among
the sensors will separately cause gain and phase errors, define
the first sensor as the reference, then the received data at the
moment can be written in another form

P ′(t) =



p′1(t)
...

p′m(t)
...

p′M (t)


= A′(ϕ, θ)S(t)+ N(t)

= WA(ϕ, θ)S(t)+ N(t). (6)

where

A′(ϕ, θ) = [a′(ϕ1, θ1) · · · a′(ϕB, θB)]. (7)

is the array manifold with gain-phase inconsistency, and

W = diag([1,W2, · · · ,Wm, · · · ,WM ]T). (8)

where diag(A) denotes diagonal matrix composed by vec-
tor A, [B]T represents solving transposition of B, and

Wm = ρmexp(jφm), (m = 1, 2, · · · ,M ). (9)

here, ρm, φm are respectively the gain and phase of the
mth sensor versus the reference, then the steering vector at
present is

a′(ϕb, θb) = diag([1, · · · ,Wm, · · · ,WM ]T)a(ϕb, θb)

= Wa(ϕb, θb). (10)

thenwe can also acquire the relation between the eigen-vector
and DOA at the moment (ϕ, θ)→F(U′

S).

III. SUPPORT VECTOR REGRESSION
A. TRADITIONAL SUPPORT VECTOR REGRESSION
The purpose of SVR is to find a following line which approx-
imates all the points, so that the future data can be forecasted.

F(x) = wTx+ b. (11)

It has been applied in recognition of face, character, behav-
ior, and gesture. Given a set of samples D = [(x1, y1),
(x2, y2), · · · (xm, ym)], we want to learn a regression model
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which makes F(x) to be as close as possible to y, while we
can tolerate at most ε deviations between F(x) and y, then the
problem is written

min
w,b

1
2
‖w‖2 + C

m∑
i=1

lε(F(xi)− yi). (12)

where C is the regularization constant, lε is the ε-insensitive
loss function

lε(z) =

{
0, if |z|≤ε;
|z| − ε, otherwise.

(13)

introduce the slack variable ξi and ξ̂i, equation (12) is rewrit-
ten as

min
w,b,ξi,ξ̂i

1
2
‖w‖2 + C

m∑
i=1

lε(ξi + ξ̂i)

s.t. F(xi)− yi≤ε + ξi
yi − F(xi)≤ε + ξ̂i
ξi≥0, ξ̂i≥0, i = 1, 2, · · · m. (14)

then introduce lagrangian multiplierµi≥0, µ̂i≥0, α≥0, α̂≥0,
lagrangian function of (14) can be obtained

L =
1
2
‖w‖2 + C

m∑
i=1

(ξi + ξ̂i)−
m∑
i=1

µiξi −

m∑
i=1

µ̂iξ̂i

+

m∑
i=1

αi(F(xi)− yi − ε − ξi)

+

m∑
i=1

α̂i(yi − F(xi)− ε − ξ̂i). (15)

take (11) into (15), then set the partial derivative of L to w,
b, ξi, and ξ̂i equal zero respectively, then

w =
m∑
i=1

(α̂i − αi)xi. (16)

0 =
m∑
i=1

(α̂i − αi). (17)

C = αi + µi. (18)

C = α̂i + µ̂i. (19)

bring (16)-(19) into (15), we can get the dual problem of SVR

max
α,α̂

m∑
i=1

yi(α̂i − αi)− ε(α̂i + αi)

−
1
2

m∑
i=1

m∑
j=1

(α̂i − αi)(α̂j − αj)xiTxj

s.t.
m∑
i=1

(α̂i − αi) = 0,

0≤αi, α̂i≤C . (20)

then regression function can be written

F(x) =
l∑
i=1

(−ai + ai∗)κ(x, xi)+ b. (21)

Theoretically, the traditional Gaussian kernel can approx-
imate any nonlinear one, so we choose it to construct SVR,
that is

κ(x, xi) = exp
(
−
‖x− xi‖2

2σ 2

)
. (22)

B. MULTIPLE KERNEL LEARNING
MKL is a kind of more flexible learning method and another
important research direction at present. It has been verified
by lots of theories and applications that traditional learn-
ing method based on single kernel model cannot handle all
the samples well when the sample size is large, the sample
includes heterogeneous information, sample data are irregu-
lar, or they are unevenly distributed in feature space, so fus-
ing multiple uncertain kernels reasonably is the inevitable
choice to get better learning performance at these complex
circumstances.

Generally speaking, MKL integrates multiple kernel func-
tions to acquire better performance, the kernel function can be
different forms or parameters, the rich combinations enhance
the expression probability greatly. Actually, the presentation
of samples in high feature space is the selection of the basis
kernel function and combination coefficients, different kernel
functions have their unique mapping characteristics, com-
bining these kernel functions is equivalent to join multiple
high dimensional feature mapping space, thus heterogeneous
samples can make full use of advantages of multiple feature
spaces to represent the data better in new high dimensional
feature space. Finally, the classification performance of the
learning is greatly improved, hence, how to obtain a proper
combination in high dimensional feature space, namely learn-
ing a suitable groups of kernel combination coefficients is the
essence of MKL.

For these multiple kernel functions, the basic method is to
put them together in convex combinations below

κ(x, xi) =
G∑
g=1

qgκg(x, xi) s.t. qg≥0,
G∑
g=1

qg = 1. (23)

where G is the total number of kernels, qg is the corre-
sponding combination coefficient, κg(x, xi) is the gth classic
kernel function, they can be different forms, or have disparate
parameters. In our proposed algorithm, the main task ofMKL
is to determine the relevant coefficients ai and qg.

IV. DOA ESTIMATION BASED ON SVR
The idea of SVR is based on Mercer core expansion, we can
map the sample data into a higher dimensional space, then
define optimal linear regression super plane, thus searching
for the plane comes down to convex optimization in condition
of some constraints [41], [42], we construct the regression
function of DOA estimation in high-dimensional space

F(US) =
l∑
i=1

(−ai + ai∗)κ(USi,US)+ b. (24)
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where l is the number of support vectors, USi is the sample
factor vector, US is the input eigenvector, ai and b are the
coefficients to be determined in SVR, where σ is the kernel
parameter, so we can get the mapping relation based on
traditional single kernel with Gaussian kernel function

(ϕ, θ)→
l∑
i=1

(−ai + ai∗)exp
(
−
‖x− xi‖2

2σ 2

)
+ b. (25)

meanwhile, we can also evaluate DOA by MKL below

(ϕ, θ)→
l∑
i=1

G∑
g=1

(−ai + ai∗)qgκg(x, xi)+ b. (26)

we know from (8), DOA can be approximated by determining
these unknown parameters through training, and the com-
putation complexity of SVR mainly depends on number of
support vectors, not training sample number or dimension
of eigen-space, as a result of support vector selection and
non-linear mapping of kernel function, the accuracy of the
prediction has not decreased.

FIGURE 4. SVR Model.

In the course of modeling the DOA, its discontinuity will
cause approximation error. In order to insure the continuity
of output function, we use trigonometric to transform the net
output into continuous value, then approximate the function.
It is seen from Fig.4, the signal is received by the array
sensors, then down-conversion and eigen-decomposition are
successively performed to give SVR the characteristic, after
that we employ SVR to approximate theDOA. In SVRmodel,
there are four output nodes: cosϕ, sinϕ, cosθ , sinθ , then the
DOA is

ϕ = arctan
( sinϕ
cosϕ

)
, θ = arctan

( sinθ
cosθ

)
,

if ϕ∈(0, π/2)

ϕ = π + arctan
( sinϕ
cosϕ

)
, θ = arctan

( sinθ
cosθ

)
,

if ϕ∈(π/2, π)

ϕ = π + arctan
( sinϕ
cosϕ

)
, θ = arctan

( sinθ
cosθ

)
,

if ϕ∈(π,
3
2
π )

ϕ = 2π + arctan
( sinϕ
cosϕ

)
, θ = arctan

( sinθ
cosθ

)
,

if ϕ∈(
3
2
π, 2π )

(27)

Define the position coordinates of the operator as (x, y, 0),
the following equation can be established according to the
geometrical relationship in Fig.2tanϕ1 =

y
x

tanϕ2 =
y

x2 − x

(28)

then the operator can be positioned easily
x =

x2tanϕ2
tanϕ1 + tanϕ2

y =
tanϕ1tanϕ2

tanϕ1 + tanϕ2

(29)

besides, we know from the (29), the elevation θ1 and θ2 are
not necessary, then (27) can be simplified as

ϕ = arctan
( sinϕ
cosϕ

)
, if ϕ∈(0, π/2)

ϕ = π + arctan
( sinϕ
cosϕ

)
, if ϕ∈(π/2, π)

ϕ = π + arctan
( sinϕ
cosϕ

)
, if ϕ∈(π,

3
2
π )

ϕ = 2π + arctan
( sinϕ
cosϕ

)
, if ϕ∈(

3
2
π, 2π )

(30)

The proposed algorithm is based on the SVR and two-point
positioning model, so it can be called SVR-T, then according
to the derivation above, we can summarize the steps of the
algorithm above:

(1) Generate training samples. Solve and decompose the
covariance of received data, then extract the signal subspace
x = US as the input feature, define y = (cosϕ, sinϕ) as
output feature, then the training samples 2 = {(xi, yi)|i =
1, 2, · · · N1} is acquired, where N1 is the number of training
samples.

(2) Training the SVR model. Define x = US, y =
(cosϕ, sinϕ) as input and output parameters respectively to
training the SVR model, where ai, qg, σ , and b can be
determined by some optimization algorithm.

(3) Generate test sample. Change the DOA, then extract the
signal subspace US, thus, input feature x = US is obtained.

(4) Estimate DOA. Take the test sample x = US into the
trained SVR, we will get the sine and cosine of DOA, then
the estimation can be evaluated with (29).

(5) Modified the SVR parameters according to the estima-
tion result properly.

In fact, we can also locate the operator through single-
point positioning model, as it is shown in Fig.5, only one
RA1 with several array sensors and an infrared range finding
sensor is used, then the operator position can be detected by
the height z1 and the measured DOA ϕ1, θ1, that is{

x = z1tanθ1cotϕ1
y = z1tanθ1tanϕ1

(31)

thus, RA2 is omitted, but an additional infrared range finder is
needed, as it utilizes single-point positioning model, we can
called it SVR-S. In practical applications, we need to draw up
the specific plan in accordance with the actual situation.
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FIGURE 5. Single-point positioning model.

FIGURE 6. Location errors versus SNR.

V. SIMULATION
Next, we will test the performance of the proposed algo-
rithms, the arrays on the two RAs are both composed of
ten sensors, assume that the distance between two RAs
is z1 = z2 = x2 = 100m, azimuth and eleva-
tion separately range in (0, 360◦) and (0, 90◦), and the
interval of training samples are both 0.1◦, the frequencies
of the operator signals are all 2.4GHz, the array radius
r = 0.06m. For test samples, N2 = 200 random locations
in X∈[−1000m, 1000m] and Y∈[−1000m, 1000m] plane are
successively chosen, location estimation error is specified as

ε = 1
N2

N2∑
n2=1

√
(xn2 − x̂n2 )2 + (yn2 − ŷn2 )2, where (xn2 , yn2 ) is

the real location of the operator, (x̂n2 , ŷn2 ) is its estimation.
In the first four examples, there is no error in the array,
we respectively employ MUSIC, radial basis function net-
work (RBFN) [43], the proposed SVR-T and SVR-S to calcu-
late DOA of only one operator, the corresponding searching
step sizes of azimuth and elevation of MUSIC are both 0.1◦.
In SVR-T and SVR-S, Gaussian and polynomial kernel func-
tions are employed concurrently, Fig.6 presents their location
errors versus SNR when sampling number T is 90.

We can see from Fig.6, all the four algorithms can locate
the signals exactly at high SNR, and SVR-T, SVR-S are better
at low SNR, but with the increasing of SNR, the other two
algorithms improve faster.

In the second experiment, there is no error in the array,
Fig.7 presents the location errors versus test sampling times
when SNR is 14dB, we can see that the precisions of SVR-S
and SVR-T are higher than that ofMUSIC andRBFN at small
samples, with the increasing of sampling number, the latter
two algorithms perform better than the first two.

FIGURE 7. Location errors versus sampling times.

FIGURE 8. Location results of the three algorithms.

In the third experiment, let us consider the location for
four signals, suppose that they comes from (230m, 450m),
(−700m, 360m), (−610m, −200m), and (860m, −590m)
with the same powers simultaneously, SNR is 16dB, there is
no error in the array, the average of 500 trials is specified
as the final result, Fig.8 gives the location result of the four
algorithms, and Table 1 displays their location time.

We can observe from Fig.8, all the four algorithms can
locate these signals in the four quadrants accurately, and
the estimated positions of SVR-T and SVR-S are nearer
than that of MUSIC and RFBN at this circumstance.
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Meanwhile, we can see from Table 1, though SVR-T and
SVR-S take a long time for training, their test time are shorter
than the other two algorithms.

TABLE 1. Average running time.

FIGURE 9. Resolution probabilities of the three algorithms.

In the fourth experiment, suppose that two operators each
control a UAV, their signals impinge on the array with differ-
ent SNR, and closer to each other, their DOA are separately
(ϕ̄1, θ̄1) and (ϕ̄2, θ̄2), while (ϕ̄′1, θ̄

′

1) and (ϕ̄′2, θ̄
′

2) are the cor-
responding estimations, if |ϕ̄k − ϕ̄′k | <

|ϕ̄1−ϕ̄2|
2 , k = 1, 2

and |θ̄k − θ̄ ′k | <
|θ̄1−θ̄2|

2 , k = 1, 2, we will think that they
can been distinguished. Here, we define ϕ̄1 = 60◦, θ̄1 = 15◦,
ϕ̄2 = 65◦, θ̄2 = 20◦, there is no error in the array, SNR of
the first signal is 10dB, that of the second signal is gradually
increasing from 10dB, Fig.9 shows the resolution probability
versus their SNR disparity.

We know from Fig.9, when the SNR disparity is lower,
all the four algorithms can resolve the two signals. As SNR
of the second signal increases, all of them gradually lose
their effectiveness, where the proposed SVR-S has the best
adaptability to SNR disparity, and SVR-T has little difference
with it. So we know even though SNR of the two sources
are not the same, provided the disparity is not too large,
the proposed algorithms remain effective.

In the experiments below, we will consider the positioning
performance with gain-phase inconsistency array, for SVR-T
algorithm, the inconsistency between two RAs are the same,
and they are generated according to the following equation

ρm = 1+ ζm, φm = 60◦×ςm (m = 1, · · · M ) (32)

where ζm, ςm are independent and both randomly distribute
in [−0.4,0.4].

Suppose there is one signal coming from (100m,100m),
Fig.10 demonstrates the location errors of the four algorithms

FIGURE 10. Location errors based on the array with gain inconsistency.

FIGURE 11. Location errors based on the array with phase inconsistency.

versus SNR when only gain inconsistency exists in the array
sensors, Fig.11 gives the result based on the array sensor
with phase inconsistency, we observe that the estimation
precisions of all the algorithms decline comparing with that
under ideal array. Comparatively speaking, the effect of
phase inconsistency is much more serious than that of gain
inconsistency.

Then let us talk about the situationwhen both inconsistency
exist simultaneously, we still suppose that the signal impinges
from (100m,100m), Fig.12 displays the location errors of
the four algorithms versus SNR, we find that their location
performances are all worse than that when the two incon-
sistencies independently exist, but the proposed SVR-S and
SVR-T are still more effective than the other two algorithms.

Finally, we test the performance of single kernel and mul-
tiple kernel learning. In this section, we take SVR-S for the
trial, Gaussian, polynomial, and the combination of them are
separately exploited, Fig.13 illustrates the selection results of
them. We know from Fig.13, the MKL has a better capability
of approximation than the single learning, and it is properer
to deal with the gain-phase error calibration in the array
sensors.
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FIGURE 12. Location errors based on the array with gain-phase
inconsistency.

FIGURE 13. Location errors based on the different kernels.

VI. CONCLUSION
In this paper, an algorithm for detecting the location of UAV
operator is proposed, based on SVR, we employ RA to
estimate the DOA of the UAV operators, then locate them
according to the geometrical relationship. Comparing with
some traditional algorithms, it is especially applicable to the
conditions of low SNR and small samples. Moreover, due
to the use of super-resolution algorithm and MKL, we can
still deal with multiple operator signals under gain-phase
inconsistency sensor array. However, it is just in the theo-
retical research stage, in the future, we will use hardware
to implement the algorithm, so as to explore its practical
applications.
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