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ABSTRACT We investigate the problem of stroke-level sketch segmentation, which is to automatically
assign strokes of a given sketch with semantic labels. Solving the problem of sketch segmentation opens
the door for fine-grained sketch interpretation, which can benefit many novel sketch-based applications,
including sketch recognition and sketch-based image retrieval. In this paper, we propose an approach for
multi-class sketch semantic segmentation by considering it as a sequence-to-sequence generation problem.
Specifically, an end-to-end learned network SketchSegNet+, built on recurrent neural networks (RNN),
is presented to translate a sequence of strokes into a sequence of semantic labels. In addition, a large-
scale stroke-level sketch segmentation dataset is constructed for the first time, which is composed of 150K
annotated free-hand human sketch selected from QuickDraw. The dataset will be released publicly. The
experimental results of stroke-level sketch semantic segmentation on this novel dataset and the SPG dataset
demonstrate the effectiveness of our approach.

INDEX TERMS Stroke-level sketch segmentation, recurrent neural network.

I. INTRODUCTION
Free-hand human sketching is commonly used for record-
ing and communication since ancient times. Closely with
the ubiquitous touch-screen devices such as tablets and
smart-phones recently, drawing sketches has become one of
the most convenient ways for human-computer interaction.
The booming of sketching in fact underlines the uniqueness of
drawing sketches as it is more concise, informative and con-
venient comparing against typing words in many cases [1].

Study of sketch has lately attracted increased interest
concerning both traditional tasks like sketch recognition [2],
sketch-based image retrieval (SBIR) [2], as well as many
new higher-level applications, such as sketch synthesis [3]
and scene sketch understanding [4]. The fundamental
issue in all these tasks is sketch interpretation or sketch
understanding [5].

Interpreting a sketch is quite challenging since the ambigu-
ity inherently exist in sketches [6]. First, sketches are abstract
depictions, which are only composed of sparse black lines
on a white background. Conventional pipelines for natural
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images are invalid for sketches since sketches lack dense
visual cues such as color and texture, which the study of pho-
tograph heavily relies on. Secondly, there are large variations
commonly existed in drawing appearance, which are caused
by different drawing skills and style preferences of amateur
painters.

Most previous works for sketch understanding are treated
as the problem of object-level recognition, which lacks of
finer-level interpretation. In this work, we aim to take one
step further to investigate stroke-level sketch segmentation,
which is to train machines to label sketch strokes with seman-
tic annotations referring to part concepts. The problem of
sketch segmentation [7] has begun to attract more attentions
recently, since it is very fundamental and is a potential
driving force for higher-level applications, such as sketch
captioning [8], [9] and sketch generation [3], [10].

Despite some progress [5], [7], [9], [11] has been made
toward the goal of sketch semantic segmentation, the drawing
orders of strokes as well as the context amongst them have
rarely been used, and we believe they are useful for this task.
There are two main reasons behind the belief. First, the work
in [12] has demonstrated that most people follow the same
drawing pattern of orders for a specific sketch object. To draw
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a face, for example, people tend to finish the outline of head,
then the left eye followed by the right eye and themouth at the
last. Secondly, to determine the semantic meaning of strokes,
contextual evidence should be meaningful. For example, one
can easily interpret the meaning of the circles on a face sketch
as eyes.

To model the drawing patterns and make better use of
contextual cues among them, we treat stroke-level sketch seg-
mentation as a sequence prediction problem, and a sequence-
to-sequence model based on Variational Autoencoder (VAE)
[13] is developed, which is similar to the proposed architec-
ture in [14]. Specifically, similar to [14], a bidirectional RNN
(BiRNN) [15] serves as an encoder, which takes a sketch as
an input in a format of points list (a set of coordinate and pen
actions), and outputs a latent vector. Afterwards, the latent
vector is used to construct the initial hidden state of the
decoder, together with each point in the drawing order, and
the autoregressive RNN-based [16] decoder is used to predict
themost possible label. The training loss in ourmodel is mean
squared error (MSE), which is quite effective for training an
end-to-end RNN-based sketch segmentator.

To facilitate the learning of our deep network, we construct
a large scale dataset of over 150K sketches with dense seman-
tic labeling strokes based on QuickDraw [14]. Paper [17]
presents a similar dataset which is based on TU-Berlin sketch
dataset [12], but there are only 120 labeled sketches over just
six classes. Lately, paper [18] contributes a much larger one
(the SPG dataset), which is also built on QuickDraw [14],
and contains 20K sketches across 25 categories. However, our
dataset is different from Li’s dataset in that ours has signifi-
cantly larger variety in each class, and some complimentary
object classes are provided as well.

Our primitive work was published in [19] which
contributes (i) an initial version of the recurrent neural net-
work for stroke-level sketch segmentation, i.e. SketchSegNet,
and (ii) a sketch segmentation dataset over seven categories
with 57K samples. In the present work, there are three major
extensions regarding to algorithm, dataset and experiments.
The contributions of this work are: Firstly, to the best of
our knowledge, an end-to-end recurrent neural network is
trained to solve the problem of stroke-level sketch segmen-
tation across multiple categories. In particular, it is the first
time that once the model is learned, it enables segmenta-
tion on various sketch objects simultaneously. On contrary,
the previous work [19] is only capable of segmenting strokes
within a specific class, that requires to learn one dedicated
model for each target sketch object category. This is why
we name the network as SketchSegNet+. Secondly, there
is a large extension on the proposed sketch segmentation
dataset, which is extended from seven categories to twenty
nearly three-fold as big as the previous one. In total, there
are about 150K sketches with every stroke annotated, named
as SketchSeg-150K. In the last, extensive experiments on
both our proposed SketchSeg-150K dataset and the SPG
dataset [18] to evaluate our approach for stroke-level sketch
segmentation.

II. RELATED WORK
A. SKETCH GROUPING
Sketch understanding is usually defined as a problem of
sketch grouping. Given a sketch, the goal is to divide its
strokes into clusters, each of which hopefully can correspond
to a meaningful object part, e.g., in [11] and [18]. Paper [11]
formulates the problem as a graph partition problem, and
presents a ranking strategy with multiple Gestalt cues under
a global optimization framework to group strokes. Paper [18]
develops a sequence-to-sequence VAE model to output a
stroke affinity matrix, followed by a post-processing of clus-
tering to obtain the final grouping result.

However, the grouping results do not explicitly provide
part labels, which prevents it from being interpreted thor-
oughly, hence prohibits from better implementing high-level
applications. For instance, we believe that providing semantic
meanings of strokes can facilitate fine-grained sketch-based
image retrieval (FG-SBIR). Furthermore, sketch captioning is
made possible in analogy with image captioning, if language-
level interpretation is available. This can also facilitate sketch
synthesis following a description-based approach.

B. SEMANTIC SKETCH SEGMENTATION
There is a growing body of literature regarding seman-
tic sketch segmentation and labeling. Paper [7] proposed a
data-driven approach for semantic segmentation and assigned
labels on input sketches synchronously. But it requires a
repository of 3D models, which come from the same object
categories as the input sketch and already have been seg-
mented and labeled, to pre-segment input sketch into parts
by simply matching them. This is obviously sub-optimal
since an extra construction of a 3D model repository is
demanded. Later on, the work in [17] treats sketch segmen-
tation as a graph partition problem, where each stroke is
firstly scored the possibility of its belonging to a label, thus
a Conditional Random Field (CRF) is applied to find the
optimal configuration globally. In addition, instead of treat-
ing sketch segmentation as a stroke-level labeling problem,
Sarvadevabhatla et al. [9] proposed the model of SketchParse
to parse sketch regions into semantic parts, which is somehow
treating sketch segmentation as the same as natural image
segmentation.

However, all of them neglect to utilize the property of
stroke orders. To make used of stroke drawing orders for
stroke-level segmentation, we present a RNN-based model,
inspired by [14] where a generative model Sketch-RNN is
introduced for sketch generation. In the present work, instead
of generating new sketch strokes, semantic part label of each
sketch stroke is estimated by re-designing the decoder of
Sketch-RNN. In particular, Gaussian Mixture Model (GMM)
sampling in the model of Sketch-RNN is removed and
replaced by a set of fully connected layers together with
a softmax layer to output part labels. The early version is
described in [19], and here we present the enhanced version
named SketchSegNet+ because of its extension on having
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ability of segmentation over multiple classes, which can
largely benefit its practical usage.

C. SEQUENTIAL REPRESENTATION OF STROKES FOR
SKETCH ANALYSIS
It is an effective representation of drawings to express a
sketch as a sequence of strokes in the form of a sequential
vector, which is composed of a set of pen stroke actions
involving the point coordinate on canvas and the pen state
accordingly [14]. Upon this RNN-compatible data format,
a number of works are introduced and achieve impressive
results including sketch generation [14], sketch synthesis [3],
sketch grouping [18] and sketch abstraction [20]. By repre-
senting a sketch as a list of points in a set of five elements
vector, Ha and Eck [14] successfully proposed to learn a
Sketch-RNN which is able to mimic the creative ability of
human to generate sketches stroke by stroke. Song et al. [3]
further showed how to abstract a photograph into sketch
by using the sequential representation of strokes to learn a
LSTM-driven synthesizer. Similarly, Muhammad et al. [20]
present a method for sketch abstraction, which relies on
the same stroke-sequence-based representation to work in a
reinforcement learning framework as well.

Li et al. [18] proposed a sequence-to-sequence variational
autoencoder (VAE) model for sketch grouping by model-
ing strokes sequentially, which is the most similar work to
ours. However, unlike our network, their model is designed
for stroke clustering that is unable to assign strokes with
semantic part labels. Moreover, ours is trained in an end-
to-end manner which might be more convenient for seg-
mentation and grouping, or later usage in other applications.
While the direct output of their model is an affinity matrix,
which requires an additional post-processing of clustering for
obtaining grouping results.

III. DATASET
This section presents our proposed stroke-level sketch
segmentation (SketchSeg-150K) dataset. After manually
labeling a limited number of sketches into semantic parts for
each selected category, a strategy of learning-based sketch
generation is used for largely enriching the dataset which can
save huge and expensive efforts on annotation. This results
in a large scale sketch semantic segmentation dataset which
contains over 150K sketches over 20 classes is presented.

A. CATEGORY SELECTION
Our dataset is built upon QuickDraw [14], which contains
345 sketch object classes and is the largest doodling dataset
up to date. 20 categories are selected according to the level of
overall structural complexity of each class. In our case, more
parts basically mean more complex structure of sketch draw-
ing. According to this principle, 20 categories are selected,
from simpler cases (like ‘’spoon’’ and ‘’ice-cream’’ with
only two components) to some complicated ones (such as
‘’angel’’ with more parts). Afterwards, we manually pick
out a relatively small number of representative sketches for

each of the selected 20 categories, and then manually assign
each stroke with a semantic part label. These representative
sketches are essentially the cluster centers in the feature space
of a sketch object class. Some examples of labeled sketches
can be found in Fig.1.

B. DATA AUGMENTATION
To further enrich the part labeled sketch drawings, a gen-
erative model is trained for data augmentation so that an
exponentially increased number of annotated sketches with
larger variety of appearances can be obtained with only very
little manual efforts.

In particular, a Sketch-RNN [14] model is firstly trained
for a specific category. Next, labeled sketch is used as input
to the Sketch-RNN to generate several new sketches, which
have different drawing appearances with the same label as
shown in Fig.2. This is because the generated strokes are
precisely in the same order as the sequence of input strokes.
More specifically, given the learned Sketch-RNN model,
the parameter temperature1 is used to control the variety of
generated sketches, thus more sketches with different level of
complexity can be obtained. In our case, we set temperature
with a range from 0.10 to 0.48 with a step of 0.02 and at each
temperature, we generate 50 new sketches from each of the
manually labeled sketch. The quality of the generated sketch
is quite satisfied and we importantly verify the correctness
of annotations manually by visualizing them just as shown
in Fig.2. Finally, we obtain the stroke-level sketch segmen-
tation dataset containing about 150K sketches with semantic
part labels in total.

C. DATA FORMAT
We now describe the data format of the sketch collections and
their labels in our dataset.

1) SKETCH COLLECTIONS
Similar to [14], we represent each of the sketch S in the
dataset as a set of pen stroke status. More specifically,
a sketch contains a sequence of points, and each point
Si is a 5-dimensional vector [1xi,1yi, p1, p2, p3]. di =
[1xi,1yi] ∈ R2 denotes the offset distance of the pen from
the previous point in axles x and y. pi = [p1, p2, p3] ∈ R3 is a
binary one-hot vector that denotes three states of the drawing
pen: p1 = 1 indicates the pen is touching the paper, otherwise
p1 = 0. Similarly, p2 = 1 denotes the pen to be lifted from
the paper at the next point, and p3 = 1 indicates the end of a
drawing.

2) LABELS
Given the predefined sketch object parts, each of the point of
a sketch drawing is assigned with a semantic part label. In our
case, the label of any point is denoted as a one-hot vector to be
used during the training and testing stage. More specifically,
in our case there are 57 part labels defined over the collected

1We refer reader to [14] for more details.
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FIGURE 1. Examples of labeled sketches. We predefined the possible labels according to their parts for each of the sketch category, such as
ice-cream can be constructed by cream and a cone, and an angel consists of four possible parts: Head, body, wings and aureole.

20 sketch classes, therefore a 57-dimensional one-hot vec-
tor is used to represent each label. For instance, assuming
‘‘head’’, ‘‘body’’, ‘‘wing’’ and ‘‘aureole’’ are components of
‘‘angel’’, where one of their corresponding indexes in the 57d
one-hot vector will be set to 1 according to the annotation of
the stroke.

IV. METHODOLOGY
The overview of our approach is illustrated in Fig. 3.
As shown in the figure, the problem of multi-class sketch
semantic segmentation is treated as a sequence-to-sequence
generative learning problem. In particular, this is achieved by
(i) training a bidirectional RNN to encode an input sketch S
(a set of points) into a latent vector z, (ii) learning an autore-
gressive RNN to predict semantic labelLi for the next point by

summarizing the information from previous observations in
a sufficient statistic hi−1. Our network is trained end-to-end
in a supervised manner via back propagation. The network
details are described in the following.

A. NETWORK ARCHITECTURE
As is shown in Fig. 3, the proposed network is a VAE-based
sequence-to-sequence model, where a bidirectional LSTM
module and an autoregressive LSTM module serve as the
encoder and the decoder, respectively.

1) ENCODER
The encoder is a BLSTM [21] that takes a sketch sequence
S and its reversely ordered sequence Sreverse as input, and

102720 VOLUME 7, 2019



Y. Qi, Z.-H. Tan: SketchSegNet+: An End-to-End Learning of RNN for Multi-Class Sketch Semantic Segmentation

FIGURE 2. Illustration of data augmentation from manually labeled sketches. The same color indicates the same semantic concept. The blue arrow
denotes an increase of the parameter ‘‘temperature’’ of Sketch-RNN. We can see that the augmented sketches (Colored) exhibit different varieties of
strokes comparing with the input annotated sketches, and also preserve perfect labeling. We abandon the generated sketches (Gray) which are too
different.

FIGURE 3. Network Architecture. The encoder is a BLSTM which takes a
stroke sequence S = [S1, S2 . . . , SN ] as input, and outputs a latent
vector z . The decoder is an unidirectional LSTM with three fully connected
layers and a softmax layer to estimate label of each stroke.

outputs a latent vector z as a representation for the input
sketch. The use of BLSTM enables the encoder to capture
long-term dependencies of strokes.

In particular, for an input sketch in the format of a stroke
sequence S = [S1, S2 . . . , SN ], a forward hidden state
sequence is generated, during the forward propagation pro-
cess of BLSTM, as follows:

hforward = [
−→
h1 ,
−→
h2 , . . . ,

−→
h N ] (1)

Simultaneously, the reverse sequence Sreverse = [SN ,
SN−1 . . . , S1] is also fed into the encoder, generating a back-
ward hidden state sequence

hbackward = [
←−
h1 ,
←−
h2 , . . . ,

←−
h N ] (2)

Afterwards, the two very last hidden states
−→
hN ,

←−
hN are

concatenated together as a joint hidden state:

h = [
−→
hN ;

←−
hN ] (3)

Then the joint hidden state h is fed into two separate fully
connected layers to form vectors µ and σ of the same size
Nz = 128 in our case. Essentially, µ is the mean of the
posterior distribution pz(z|X ) learned by the encoder and σ
is standard deviation.

To this end, the latent vector z can be formed by z = µ+σ ·ε
which is a vector of independent and identically distributed
Gaussian variables of size Nz, where ε∼N (0, I ) is a standard
Gaussian noise.

2) DECODER
Tomodel the distribution of the label of each stroke sequence,
we adopt a unidirectional LSTM [22] to generate labels under
the condition of latent variable z given by the encoder. The
initial hidden state h0 and cell state c0 are computed through
a hyperbolic tangent function:

h0 = tanh(Whz+ bh)

c0 = tanh(Wcz+ bc) (4)
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Note that the first input of the decoder is the first point S1 of
the input sketch S, which is different from Sketch-RNN [14]
which takes S0 = [0, 0, 1, 0, 0] as initial point. At each
time-step t, the point vector Si is concatenated with the latent
vector z and serves as the input vector for LSTM:

xt = [St ; z] (5)

Accordingly, the input gate it , forget gate ft , output gate ot ,
cell state ct and hidden state ht are defined as follows:

it = sigmoid(Wixt + Uiht−1 + bi)

ft = sigmoid(Wf xt + Uf ht−1 + bf )

ot = sigmoid(Woxt + Uoht−1 + bo)

c̃t = tanh(Wcxt + Ucht−1 + bc)

ct = it � c̃t + ft � ct−1

ht = ot � tanh(ct ) (6)

After all hidden states hd = [h0, h1, . . . , hN ] are obtained
by equations above, they are used for part label prediction
for each input point. More specifically, hd is fed into three
fully connected layers followed by a softmax layer for clas-
sification. The output of softmax layer is denoted as Y =
[Y1,Y2 . . . ,YN ], where Yi = [y1, . . . , yn],

∑n
j=1 yj = 1,

n = 57 is the number of possible annotations for sketch
parts in our case. Hence, yj is the probability of the input
point belonging to the corresponding j− th entry in the label
searching space. Afterwards, one-hot encoding is performed
to encode Yi into a one-hot vector Lprei , that all the elements
are 0 but one and only one being 1 that indicates the label
predicted.

Lprei = δ(Yi) (7)

B. LOSS
A mean squared error (MSE) for VAE is applied for training
our network, which directly optimizes for label prediction
by minimizing the distance between the predicted labels and
ground truth. It is formally defined as:

LossMSE =
1
n

N∑
i=1

| Lgti − L
pre
i |

2
(8)

where Lprei is the estimated semantic part label and Lgti is the
ground truth. Lgti = [l1, l2, . . . , ln] ∈ Rn(n = 57) is a one-hot
vector indicating which part the input data point belongs to.
In this way, our proposed sequence-to-sequence model can be
trained to generate a label for each input data point of sketch
strokes at the test stage.

V. EXPERIMENTS
In this section, we first compare our method against with
two state-of-the-art sketch grouping algorithms for sketch
grouping (a related task), universal perceptual grouping [18]

and perceptual grouping [11] are served as alternative com-
petitors on the sketch grouping task. Then we report the
results of sketch semantic segmentation obtained by our
approach.

A. DATASET
Two datasets are used for evaluation on both sketch grouping
and sketch semantic segmentation, including our SketchSeg-
150K dataset and the SPG dataset proposed in [18]. There
are 20 categories in the SketchSeg-150K dataset, and data
for each category is split into two equal sets for training and
testing. As for the SPG dataset, we follow the same setting
of data split, namely 700 sketches for training and the rest
100 for testing for each category.

B. IMPLEMENTATION DETAILS
In our case, an input sketch is converted by the encoder into
a 128-dimensional latent vector z, hence can be further used
to predict the stroke labels by the decoder. The dropout prob-
ability for both the encoder and decoder are set to 0.9. We set
the learning rate to 10−3 with a batch size of 30 to train the
model and Adam optimizer [23] is applied for optimization.
The learning rate decay is set to 0.9999 and the minimum
learning rate is 10−5. The implementation of our model is
based on Pytorch and we train the model on a single GeForce
GTX 1080Ti. The average time for training a model is about
2 hours.

C. EVALUATION METRIC
Two strategies are used for evaluation, one is sketch grouping,
which measures if two data points are correctly grouped
together. Note that it does not necessarily require to assign
semantic part label in this case. The other is sketch semantic
segmentation that evaluates if the part label of each data point
is correctly predicted.

1) SKETCH GROUPING
Following [18], we use three metrics for measuring the
performance of sketch grouping, including variation of
information (VOI), probabilistic rand index (PRI), and seg-
mentation covering (SC) as original defined in [24]. They are
used in the context of sketch grouping, and the detailed defi-
nitions are:VOImeasures the distance of average conditional
entropy calculated between two groups, i.e., the predicted
and ground truth groups. A smaller number indicates a bet-
ter grouping result. PRI is the compatibility of assignments
between pairs of stroke segments in each group. SC examine
the overlapping between the predicted result of grouping and
the ground truth.

2) SKETCH SEMANTIC SEGMENTATION
Two metrics proposed by Huang et al. [7] are used for
evaluation, which can complement each other to measure
the accuracy of sketch segmentation. The first is P-metric,
i.e., stroke-based Accuracy (SA), which is a pixel-level
measurement that measures the percentage of the offsets
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FIGURE 4. Example visualization of before and after grouping by our model. Top: Input sketch with black lines. Middle: Color coded
strokes before grouping. Bottom: Strokes after grouping. (Best viewed in color, as strokes and grouping results are color coded.)

or pixels that are assigned with the correct labels for a
sketch. A threshold of 0.8 is set, which means a stroke is
corrected labeled only if over 80% of it’s pixels are cor-
rectly labeled. The second is C-metric, i.e., component-based
Accuracy (CA), which evaluates how well the sketch compo-
nents or parts can be found. Specifically, one part is correctly
discovered if 80% of its strokes are marked with the correct
part label in our case.

D. COMPETITORS
As there are no existing multi-class sketch object
segmentation approaches, two state-of-the-art models on
sketch grouping are used as competitors, including percep-
tual edge grouping (Edge-PG) [11] and universal sketch
perceptual grouping (USPG) [18]. Edge-PG is a non-deep
learning method, which formulates the problem of grouping
as a graph-cut optimization problem. Specifically, two gestalt
principles, namely proximity and continuity, are combined
by a learning-to-rank algorithm (RankSVM) to form the
affinity matrix. Then the optimal grouping can be obtained
by optimizing a graph partition problem given by the affinity
matrix.USPG is the first deep neural network based approach
for sketch grouping. They proposed a variant of the sequence-
to-sequence variational autoencoder (VAE), which is able to
obtain a representation of each sketch stroke effective for
grouping. The representation thus can be used to compute a
stroke affinity matrix suggesting the possibilities of grouping
every pair of strokes. Different from our end-to-end approach,
USPG requires an additional clustering step applied to the

obtained stroke affinity matrix to output the final grouping
result.

E. RESULTS AND ANALYSIS
1) QUALITATIVE RESULTS
Fig. 4 illustrates some examples of grouping results by
our model. We can observe that the overall results of
segmentation are quite close to the ground truth, despite some
inaccurate labeled strokes exist.We further demonstrate some
example grouping results of competitors for comparison,
which are shown in Fig. 5 and Fig. 6. It is clearly observed that
ours outperforms others with finer grouping strokes. USPG
and Edge-PGmight break an object part into segments, such
as ‘‘Angel’’, ‘‘Dumbbell’’ and ‘‘Ice cream’’ in the dataset
SketchSeg-150K or unify strokes together which belong to
different groups, such as ‘‘Airplane’’ in the dataset SPG.
In addition, ours can perfectly group strokes belong to the
same group but geometrical far apart as humans do, such as
eyes of ‘‘Pig’’ and bottons of ‘‘Caculator’’ as shown in Fig. 6.

2) QUANTITATIVE RESULTS
Quantitative results are shown in Table 1 and Table 2. We can
observe from Table 1 that, the performance of our model
clearly outperforms the other two competitors over all the
20 sketch categories of the proposed SketchSeg-150K dataset
regards to the sketch grouping metric. In addition, we can
achieve a 89% accuracy of pixel-level grouping (SA) and a
87% accuracy of part-level grouping (CA) evaluating on the
metric of semantic sketch segmentation. Furthermore, we can
obtain a similar results on the SPG dataset [18]. Specifically,
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FIGURE 5. Comparison of example grouping results on SketchSeg-150K dataset. Strokes are color coded, where the same color denotes the same group.

FIGURE 6. Comparison of example grouping results on SPG dataset.

TABLE 1. Comparative results on dataset sketchseg-150K. ‘-’: Not Available. ‘↑’: Larger is Better. ‘↓’: Lower is Better.

ourmethod achieve the best over all classes except for ‘‘Alarm
clock’’, ‘‘Apple’’, ‘‘Backpack’’, ‘‘Campfire’’ and ‘‘Coffee
cup’’, but ours are quite close to the best score on these

categories, e.g., 0.46 vs 0.57 (VOI), 0.93 vs 0.91 (PRI) and
0.83 vs 0.81 (SC) for ‘‘Alarm clock’’, or a better score is
obtained when it comes to a single metric, e.g., PRI score
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TABLE 2. Comparative results on dataset SPG. ‘−’: Not Available. ‘↑’: Larger is Better. ‘↓’: Lower is Better.

on ‘‘Apple’’. For the sketch semantic segmentation results,
lower scores are obtained on the SPG dataset compared with
the results on the SketchSeg-150K dataset. This is because
the complexity of sketch objects between these two datasets
is different.

VI. CONCLUSION
In this paper, we presented a novel sequence-to-sequence
model of a encoder-decoder structure based on recurrent
neural networks for sketch segmentation and labeling. Essen-
tially, it learns from the human habit of stroke drawing
orders as well as the contextual information among strokes
in the encoder, and thus the decoder is able to determine
the semantic labels of input strokes in sequence. Further-
more, our proposed method is an end-to-end framework for
sketch semantic segmentation, and our method is able to
work across multiple categories, which is of great importance
for practical usage. In addition, a novel sketch segmentation
dataset contains over 150K sketches was proposed based on
QuickDraw for the first time. Experimental results validated
the effectiveness of our proposed method.
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