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ABSTRACT Feature extraction-based subspace learning methods normally learn a projection that can
convert the high-dimensional data to the low-dimensional representation. However, they may not be suitable
for better classification since features obtained by these methods ignore discriminability of the data-pixel
itself. Given this, we propose a novel approach that automatically queries active features combing sparse
representation classification for the facial expression recognition. The proposed approach aims to automati-
cally query discriminative features from raw pixels, thereby fully considering the underlying characteristics
existed in the source data. Especially, the proposed approach based on pixel-level adaptively selects the most
active and discriminative feature for representation and classification. The intraclass low-rank decomposition
and principal feature analysis are simultaneously used to guarantee that the extracted features can capture
the most active energy of the raw data, and thus, the proposed approach can be also applied for other feature
extraction and selection tasks.We conduct comprehensive experiments on four public datasets, and the results
show superior performance than some state-of-the-art methods.

INDEX TERMS Facial expression recognition, automatically query active features, pixel-level, intraclass
low-rank matrix, principal feature analysis.

I. INTRODUCTION
Feature extraction and selection play important roles in pat-
tern recognition and machine learning and have attracted
lots of attention in recent years [1], [2]. Especially for facial
expression recognition (FER), the raw data usually contain
redundant information and have high dimensions. Therefore,
how to extract and select the most active features for FER is
a challenging task [3].

Various feature extraction methods have been devised to
improve efficiency and the ability of classification [4]–[8].
Some work aims to select the most important or active fea-
tures from raw pixels to efficiently represent the original
data [7], and some try to learn a mapping matrix that can
transform the high dimensional data to low dimensional sub-
space [8]. Due to the difficulty of illumination to feature
extraction, Ahmad et al. [9] proposed an ICA-based method
for separating the illumination and reflectance components of
a single illuminated image and their method also can be used
as pre-processing methods for other recognition problems.

The associate editor coordinating the review of this manuscript and
approving it for publication was Habib Ullah.

Besides, according to the physiological research methods for
the study of the human brain, Ullah et al. [10] proposed
ensemble learning algorithm using an electroencephalogra-
phy (EEG) channel for internal emotion recognition, which
is effective in improving computational efficiency and classi-
fication accuracy. Additionally, a lot of deep learning based
supervised feature extraction methods have been presented
and attracted wide attention [11]–[15]. For instance, Shao and
Qian [12] proposed three novel convolutional neural network
models with different architectures to address the problem
caused by the complex architecture and over-fitting. From the
view of 3D geometry, Liu et al. [14] designed an action unit
synthesis framework for deep learning-based AU intensity
estimation and extensive experiments demonstrated the effec-
tiveness of their method. Besides, Fernandez et al. [15] pro-
posed a FER with attention network architecture to generate
synthetic data that improved the system classification perfor-
mance. The deep learning-based algorithms above achieved
good performance, while they need large-scale dataset and
had a high requirement to train the feature extraction model.

Compared to the deep feature extraction methods, conven-
tional methods showed more advantages in the tasks with
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small size data and thus we mainly research on the conven-
tional feature extraction methods in this paper. Some con-
ventional methods performed superiority in FER application,
while some of them extracted redundant features for classifi-
cation. To solve this issue, Sun et al. [16] selected a certain
percentage of features to reduce useless information for bet-
ter classification, while it still needed manually selection of
parameters. Given the factors above, in this paper, we propose
an automatically query active features combining sparse rep-
resentation classification approach to obtain the discrimina-
tive feature subspace. The proposed approach simultaneously
preserves the global and local features and adaptively gives
up some redundant information. In addition, the proposed
approach fully explores the basic and representative features
hidden in pixel intensity, and automatically selects the active
features for classification. In brief, the proposed approach has
the following contributions:

(1) Our approach is a simple yet effective approach to
extract and select the active features for FER classification.

(2) The features achieved by our approach capture the main
energy and thus hold the active information. Besides, the pro-
posed approach can be regarded as the process of raising
dimension and then lowering dimension, which guarantees
the minimum loss of features and considers the feasibility
of computing time. Experimental results also verify that our
approach is superiority to some state-of-the-art methods.

(3) Compared to some conventional feature extraction
methods, our approach is more easy to implement and can
be applied for other classification tasks.

The remainder of the paper is organized as follows.
Section II introduces the related works. In Section III,
we present the proposed approach in detail. In Section IV,
the experimental performance of the proposed approach is
evaluated by using several public datasets: the Japanese
Female Facial Expression (JAFFE) dataset [17], Karolin-
ska Directed Emotional Faces (KDEF) [18], the Extended
Cohn-Kanade (CK+) dataset [19], and the CMU Multi-PIE
face database [20]. Section IV also provides an analysis of the
proposed approach. Section V concludes the paper.

II. RELATED WORKS
In this section, we briefly introduce some related algorithms.
For convenience, we first roughly divide the existed fea-
ture extraction methods into two categories: unsupervised
learning methods [21]–[24] and supervised learning meth-
ods [25]–[27].

A. UNSUPERVISED LEARNING ALGORITHMS
Representatives based on unsupervised learning is the prin-
cipal component analysis (PCA) [22] algorithm that tries to
find the principal energy of raw data. From this point, PCA
based on method has been widely used in feature extrac-
tion [28]. Considering the deep network structure can capture
the abstract features of data, Chen et al. [29] proposed the
principal component analysis network (PCANet) model that
extended PCA to deep subspace learning and further pre-

served the high-level features during the unsupervised feature
learning process. Though PCANet showed the excellent fea-
ture extraction ability, it ignores the non-linear relationship
and the high dimensionality existed in features. Given this,
Sun et al. [30] attempted to project the abstract features
into kernel space to fully consider the use of features with
non-linear matrics, and their experiments showed promising
results. Besides, Sun’s group [31] also presented an extended
dictionary representation dictionary with deep subspace fea-
tures based on PCANet method (EDR-PCANet) to remit
the problem limited by high-dimension data. Although the
methods above succeed in feature extraction, they do not take
the discriminative features into consideration since they do
not use the label information of data.

B. SUPERVISED LEARNING ALGORITHMS
Linear discriminant analysis (LDA) can be regarded as one
of the classical supervised subspace learning, since it con-
sidered the label information when trying to project the raw
data into new subspace for better classification [25]. Tradi-
tional LDA attempted to find an optimal projection matrix
making the ratio of between-class distance larger to the
within-class distance largest, so as to improve the classifi-
cation performance [32]. However, LDA had the limitation
in small size sample and feature extraction of the matrix
data. To address this issue, two-dimension linear discriminant
analysis (2DLDA) [27] making full use of structure informa-
tion had been proposed to address the problem caused by
above. Besides, Sun et al. [33] presented a discriminative
feature learning method based on vertical 2DLDA that fully
considered the matrix format of data and time complexity.
Besides, some subspace learning methods are also proposed
to perform FER classification tasks [34]–[37]. For exam-
ple, paper [35] adopted a dictionary learning feature space
via sparse representation classification (DLFS) for FER and
achieved satisfying performance.

III. THE PROPOSED APPROACH
In this section, we present the details of the proposed
approach. Fig. 1 gives an illustration of the proposed
approach. As is seen in this figure, the frame consists of
three sequential steps: (1) generation of intraclass low-rank
dictionary (2) extraction of active features based pixel-level,
and (3) classification of sparse representation (SRC). Each
step will be explained in detail in the following subsections.

A. GENERATION OF ICLR DICTIONARY
Let D = [D1, · · · ,Di, · · · ,DC ] ∈ RmxN be the training
dictionary with C expression classes, where Di is subset of
the ith class. N and m mean the number and the dimension
of training subset, respectively. Despired by the precious
work [38] that used low-rank (LR) decomposition method,
the training dictionary D can be decomposed into N + E ,
where N is the LR common dictionary and E is the sparse
error dictionary. Towards this end, LR minimizes the rank
of dictionary N while decreasing the `0-norm of E . As a
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FIGURE 1. The illustration of the proposed approach. It roughly includes
the following steps: Generating intraclass low-rank (ICLR) dictionary,
extracting active features to form the feature fusion (FF) dictionary, and
the final classification based sparse representation (SRC).

consequence, we need to solve the following minimization
problem:

min
N ,E

rank (N )+ λ‖E‖0 s.t. D = N + E . (1)

However, Eq. (1) is a NP-hard problem. Thus, `0-norm
problem in Eq. (1) is converted to the `1-norm problem
according to the compressed sensing:

min
N ,E

rank (N )+ λ‖E‖1 s.t. D = N + E . (2)

To further solve the optimization problem in Eq. (2), Aug-
mented LagrangeMultipliers (ALM) [39] was exploited own-
ing to its computational efficiency.

It is worth noting that we do not apply the LR decom-
position method to training dictionary directly, but apply
to training subset of each intraclass since the training
subset of each intraclass share the similar class infor-
mation. Thus, the proposed intraclass low-rank (ICLR)
decomposition approach can capture the similar intraclass
structure.

Based on the Eq. (2), our ICLR decomposition approach
can be represented as Eq. (3) and the solution can be itera-
tively addressed by the following minimization problem:

min
Ni,Ei
‖Bi‖∗ + λ‖Ei‖1 s.t. Di = Bi + Ei. (3)

whereDi is the ith intraclass training subset,Bi is the ith ICLR
dictionary, and Ei is the sparse error dictionary. The mini-
mization problem in Eq. (3) can be solved by the structurally

FIGURE 2. Six ‘‘Happy’’ expression images from CK+ dataset based on
the proposed ICLR decomposing approach. (a) Six original facial images
from training subset, (b) six ICLR images corresponding to (a), and (c) six
sparse error images corresponding to (a).

FIGURE 3. Six ‘‘Surprise’’ expression images from CK+ dataset based on
the proposed ICLR decomposing approach. (a) Six original facial images
from training subset, (b) six ICLR images corresponding to (a), and (c) six
sparse error images corresponding to (a).

incoherent LR matrix decomposition algorithm [40] since it
enforces the sparse error bases of different classes to be as
independent as possible.

To make ICLR decomposing process more clear, we use
two expressions (‘‘Happy’’ and ‘‘Surprise’’ expression,
respectively) from CK+ dataset as examples that are shown
in Fig. 2 and Fig. 3. From these two figures, we can see that
the ICLR approach does well in decomposing the training
subset Di (the 1st row of Fig. 2 and Fig. 3) into an ICLR
subset Bi (the 2nd row of Fig. 2 and Fig. 3) and sparse
error subset Ei (the 3rd row of Fig. 2 and Fig. 3). Obvi-
ously, the ICLR dictionary indeed has a better discriminative
ability than the original training dictionary in expression
features. Finally all ICLR subsets Bi form the ICLR dictio-
nary B = [B1 · · · ,Bi, · · · ,BC ] =

[
b1, · · · , bj, · · · , bN

]
∈

RmxN (j = 1, · · · ,N ), where bj is the jth ICLR sample
of B.

Although the ICLR decomposion approach succeeded in
projecting the original space to the expression subspace,
it inevitably ignores the local information hidden in the ICLR
subspace that attributes the importance differently for rep-
resentation and classification. Thus, we propose to dig the
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locally discriminative features on the basis of ICLR subspace
and the details will be given in the following subsections.

B. ACTIVE FEATURES EXTRACTION BASED ON
PIXEL-LEVEL
Suppose that each ICLR sample bj is divided into k × k
patches and we set the scale as s (s =1, 2 · · · k−1). It’s worth
mention that we define s |• be the variable under the condition
of scale s. We traverse all patches under different condition
of scale s and obtain the scale dictionary s|ϕp that can be
expressed as:

s|ϕp =
[
s| f11, · · · s| fj,p, · · · , s| fN ,n

]
(p = 1, · · · , n) .

(4)

where s| fj,p is the vector that is obtained by cascading of
pixels corresponding to the pth patch in bj under the condition
of scale s, and n is the total number of patches that can be
computed by

n = (k − s+ 1)2. (5)

Thus, all s|ϕp under different scales can from the scale
dictionary set F :

F =

 1|ϕp
· · ·

s|ϕp

 =
 1| f1,1, · · · , 1| fN ,n
· · · · · · · · ·

s| f1,1, · · · , s| fN ,n

 . (6)

Considering the fact that not all patches contribute equally
for the representation, we propose to use sparse representa-
tion based classification (SRC) to select the active patches
since SRC shows superior performing recognition tasks [41].
Suppose that Function (•) be the function of SRC. For a
random vector of sub-patch s| fj,p, we can obtain n accuracies
corresponding to different scale dictionary based on leave-
one-subject-out (LOSO) cross validation:

accp
(
s| fj,p

)
= Function

(
s|ϕp

)
. (7)

where accp
(
s| fj,p

)
is the pth accuracy corresponding to the

specific scale s. Subsequently, we use the threshold θs to
effectively select the active patches and θs can be obtained
by computing the average value of all accuracies:

θs =
1
n

n∑
p=1

accp
(
s| fj,p

)
. (8)

When accp
(
s| fj,p

)
is greater than the threshold θs,

we regard the corresponding s| fj,p as active feature (AF);
otherwise, we regard s| fj,p as useless feature. Based on the
criterion above, we can select all AFs under each scale s and
then use these AFs to form the AF set s| _ϕ_p of each ICLR
sample that can be expressed as follows:

s| _ϕ_p =
[
s|
_

f j,a, · · · , s|
_

f j,b
]
. (9)

Here s| _ϕ_p is a subset of the scale dictionary s|ϕp,

that is,
[
s|
_

f j,a, · · · , s|
_

f j,b
]

should be contained in

FIGURE 4. The schematic diagram and overlapping rate (OR) using a
‘‘happy’’ expression sample under different scale conditions. (a) s = 1,
(b) s = 2, (c) s = 3, and (d) s = 4.

FIGURE 5. The schematic diagram and overlapping rate (OR) using a
‘‘surprise’’ sample under different scale values. (a) s = 1, (b) s = 2,
(c) s = 3, and (d) s = 4.

[
s| f11, · · · s| fj,p, · · · , s| fN ,n

]
and AFs’ patch-label set

[a, · · · , b] should be contained in the total patch-label set
[1, · · · , n] for each ICLR sample. Then we cascade the AF
set for each scale as:

s| vj =
[
s|
_

f 1,a; · · · ; s|
_

f N ,b, · · · , s|
_

f j,a; · · · ; s|
_

f j,b,

· · · , s|
_

f N ,a; · · · ; s|
_

f N ,b
]

(10)

where s| vj means the proposed descriptor for each ICLR
sample. Subsequently all s| vj (j = 1, 2, · · · ,N ) further form
the corresponding AF dictionary s|V that can be expressed
as:

s|V =
[
s| v1, · · · , s| vj, · · · , s| vN

]
. (11)

Fig. 4 and Fig. 5 give the schematic diagrams under dif-
ferent scales by using two expression samples. Among these
two figures, the red box indicates all the divided patches and
the yellow box indicates the selected scales. From Fig. 4,
we observe that the scale s represents different region infor-
mation variously and there also exists redundancy to some
extent. For instance, when s is set to 3, the overlapping rate
reaches up to 66.7% and when s is set to 4, the overlapping
rate even reaches up to 75%. The same conclusion can be
drawn from Fig. 5.

Although AF dictionary considers the contribution of local
features existed in different patches, it causes the dimension-
ality of data increasing since it contains redundant informa-
tion by stacking features under different scales. Given this,
this paper proposes to further extract principal component
features from the AF dictionary and Part C will describe the
details.

C. PRINCIPAL COMPONENT FEATURE EXTRACTION
In this subsection, we use PCA method [22] to extract
the principal component feature (PCF) of AF dictionary
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since PCA succeeds in capturing the principal data struc-
ture and reducing the data dimension simultaneously.
Suppose that AF dictionary also can be represented as
s|V = [ s|V1, · · · , s|Vi, · · · , s|VC ] ∈ Rma×N with C
classes, where s|Vi is the subset of the ith class and
ma is the dimension of AF. For a given subset s|Vi =[
s| vi,1, · · · , s| vi,j, · · · , s| vi,ni

]
∈ Rma×ni , where s| vi,j is the

jth sample of ith class in s|Vi and ni is the number of the ith
class. First all samples in s| vi,j are centralized as:

s|αi,j = s| vi,j −
1
ni

ni∑
j=1

s| vi,j. (12)

Here s|αi,j is the average value for s| vi,j. Let the average
matrix of each class be s|Ai that can be represented as:

s|Ai=
[
s|αi,1, · · · , s|αi,j, · · · , s|αi,ni

]
(i=1, 2, · · · ,C) .

(13)

Then the covariance matrix corresponding to s|Vi is repre-
sented as ( s|Ai) ( s|Ai)T and subsequently we do the eigen-
value decomposition:

s|3i = s|UiT
(
( s|Ai) ( s|Ai)T

)
s|Ui. (14)

where s|3i is the diagonal matrix composed of eigenvalues
and s|Ui is the orthogonal matrix composed of eigenvectors.
Define the eigenvalues be s| λe (e = 1, 2, · · · ,ma), where
s| λi,1 ≥ s| λi,2 ≥ · · · ≥ s| λi,ma and define the eigenvec-
tor be s| ue (e = 1, 2, · · · ,ma). The s|3i and s|Ui can be
represented as follows:

s|3i =

 s| λ1
. . .

s| λma

 . (15)

s|Ui =
[
s| u1 s| u2 · · · s| uma

]
. (16)

Then we select the matrix composed of the eigenvectors
corresponding to the first d largest eigenvalues as the projec-
tion matrix s|Ui∗ that can be represented as:

s|Ui∗ = [ s| u1 s| u2 · · · s| ud ] . (17)

After obtaining the projection matrix, we project the s|Vi
to the eigen subspace and achieve the d-dim principal com-
ponent subset for each class as:

s|V_Pi =
(
s|Ui∗

)T s|Vi. (18)

where s|V_Pi is the PCF subset of the ith class. All
s|V_Pi can form the PCF dictionary as s|V_P =

[ s|V_P1 · · · s|V_Pi · · · s|V_PC ] and PCF dictionaries from
all classes under different scales can be expanded as the
following matrix form:

1|V_P1 1|V_P2, · · · 1|V_PC
2|V_P1, 1|V_P2, · · · 2|V_PC
· · · · · · · · · · · ·

(k − 1)|V_P1 (k − 1)|V_P2 · · · (k − 1)|V_PC

.
(19)

TABLE 1. The accuracies under different values of k ∗ k on four datasets.

Finally, we respectively fuse PCF dictionaries of each class
to form the feature fusion (FF) dictionary V_P that can be
represented as:

V_P =

[
k−1∑
s=1

s|V_P1,
k−1∑
s=1

s|V_P2, · · · ,
k−1∑
s=1

s|V_PC

]
.

(20)

D. THE PROPOSED APPROACH COMBING WITH SRC
After obtaining the proposed FF dictionary, we use the sim-
ple and effective SRC to classify the testing samples. The
classification procedure is summarized as follows. For the

sake of convenience, let V_PCAi =
k−1∑
s=1

s|V_Pi, then the FF

dictionary can be represented as:

V_P = [V_PCA1,V_PCA2, · · · ,V_PCAC ] ∈ Rmp×N .

(21)

Heremp denotes the dimension of PCF. Given a test sample
y ∈ Rm, first we obtain its AF vector ya in a similar way as
mentioned in Part B of Section III, and subsequently the PCF
vector yp of the test sample can be also obtained in a similar
way as mentioned in Part C of Section III. Then we represent
yp over V_P as:

yp ≈ (V_P) x. (22)

where x = [x1, · · · , xi, · · · , xC ] and xi is the coefficient
vector associated with the ith class. Generally, yp ≈ V_Pixi
performs sparsely if yp really comes from the ith class. In one
word, most coefficients in x are close to zero while the
coefficients in xi has the significant entries. Then we solve
the Eq. (23) via `1 minimization:

x = argmin
x
‖x‖1 s.t.

∥∥yp − (V_P) x∥∥ < ε. (23)

Then the residuals of the ith class is computed by:

ri =
∥∥yp − (V_Pi) x̂i∥∥ . (24)

where x̂i is the representation coefficients corresponding
to the ith class. Finally, yp is classified the minimute
class i:

identity (y) = argmin
i
(ri) . (25)
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FIGURE 6. Some image samples from (a) JAFFE, (b) CK+, and (c) KDEF
datasets.

FIGURE 7. Some image samples from CMU Multi-PIE dataset.

TABLE 2. AFs’ patch-label under different scales on JAFFE dataset.

TABLE 3. AFs’ patch-label under different scales on CK+ dataset.

TABLE 4. AFs’ patch-label under different scales on KDEF dataset.

IV. EXPERIMENTS AND ANALYSIS
In this section, we report on the experiments carried out to
validate the performance of our approach using four pub-
licly available datasets and adopted the leave-one-subject-
out (LOSO) cross-validation method for all experiments.
With LOSO, we picked one subject at a time for test-
ing, and all images of other subjects are used for training.

TABLE 5. AFs’ patch-label under different scales on CMU Multi-PIE
dataset.

FIGURE 8. A ‘‘Su’’ sample example of active patches visualization from
JAFFE dataset under different scale conditions. (a) s = 1, (b) s = 2,
(c) s = 3, and (d) s = 4.

FIGURE 9. A ‘‘Ha’’ sample example of active patches visualization from
CK+ dataset under different scale conditions. (a) s = 1, (b) s = 2,
(c) s = 3, and (d) s = 4.

The input images were cropped to a size of 64*64 based
on their two-eye locations [42]. These cropped images were
then down-sampled to 48*48 pixels. We used abbreviations
‘‘An’’, ‘‘Di’’, ‘‘Fe’’, ‘‘Ha’’, ‘‘Sa’’, ‘‘Su’’, ‘‘Ne’’, ‘‘Sm’’,
‘‘Sq’’ and ‘‘Sc’’ to represent the expressions anger, dis-
gust, fear, happiness, sadness, surprise, neutral, smile, squint
and scream, respectively. All experiments were coded in
MATLAB R2016a on a PC of Win 10 environment.

A. DATASETS
As mentioned above, JAFFE [17], KDEF [18], CK+ [19],
and CMU Multi-PIE [20] datasets were used in all experi-
ments. Amongst, the first three datasets include basic seven
expression types and Fig. 6 shows some expression images
from them. CMUMulti-PIE has six expression categories that
is different from the other three datasets and some sample
examples are shown in Fig. 7.

B. AFS’ PATCH SELECTION
In this subsection, we reported and analyzed the experimental
results to verify the effectiveness of our approach. The results
under different patch values k∗k on four datasets are shown in
Table 1. From Table 1, we see that the results on JAFFE and
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TABLE 6. Performance comparison with some the state-of-the-art methods on JAFFE dataset.

TABLE 7. Performance comparison with some the state-of-the-art methods on CK+ dataset.

TABLE 8. Performance comparison with some state-of-the-art methods on KDEF dataset.

TABLE 9. Performance comparison with some state-of-the-art methods on CMU Multi-PIE dataset.

CK+ reach the best accuracies of 75.77% and 90.55% when
k is set to 5, and the results on KDEF and CMU Multi-PIE
respectively reach the best accuracies of 81.12% and 74.96%
when k is set to 8.

Also,Tables 2-5 respectively show AFs’ patch-label under
different scale s on four datasets. It’s worth mentioning that
all results are achieved in Table 2-5 are achieved under the
best accuracies in bold in Table 1. For the results in Table 2,
there should be 25 (p = (k − s+ 1)2) patches in total
for each sample in JAFFE dataset under the conditions of

k = 5, s = 1, while we just select 14 AFs’ patch-label that
contribute higher than average of all patches in this case and
cascade the pixels corresponding to these 14 active patches
as the proposed AFs. Similar results can be seen on other
datasets that is shown in Table 3-5. Thus, we conclude that
not all AF patches contribute equally and are beneficial for
representation and classification. To make the results more
intuitive, we also use Fig. 8-9 to show the visual results cor-
responding to the AF’s patch-label in Table 2-3, respectively.
For instance, the images under different scales in Fig. 9 show
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FIGURE 10. Confusion matrix for the proposed approach and comparison methods (PCANet and K-PCANet) on (a) JAFFE, (b) CK+, (c) KDEF, and
(d) CMU Multi-PIE datasets, respectively.

that not all patches are selected as the AF patches. Similar
results can be also found in Fig. 8. The visualization in these
two figures also verifies that not all the areas play a positive
role for representation.

C. CONFUSION MATRIX
Confusion matrix for the proposed approach and comparison
methods (PCANet [29] and K-PCANet [30]) on four datasets
are depicted in Fig. 13. We used the same parameters set
in [29] and [30]. In Fig. 10, abscissa asix represents the

true class and the vertical axis represents the predicted class,
and the values on the diagonal represent the accuracies of
expressions that are classified correctly. From these figures,
we see that our approach performs superior to comparison
methods in most cases though some expressions are wrongly
classified. For example, Fig. 10b shows that ‘‘Ha’’ and ‘‘Ne’’
for the CK+ dataset are all classified correctly using our
approach and the accuracies of other expressions are also
higher than comparison methods. Accuracies of the pro-
posed approach on other datasets are also higher than that of
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FIGURE 11. The accuracies of different dimensions under optimal patches on (a) JAFFE, (b) CK+, (c) KDEF, and (d) CMU Multi-PIE datasets,
respectively. The curves indicate accuracies corresponding different scales under optimal patches.

comparable methods in most expression classes. As can
be seen in Fig. 10d, some ‘‘Sm’’ images of the proposed
approach are wrongly classified as ‘‘Su’’ or vice versa.
This small portion of incorrect recognition results is mainly
because these two expressions are more confused for the
CMU Multi-PIE dataset. Also, the number of expression
images for different classes is different. Despite the small
number of incorrect classification, values that go diagonally
across each matrix in Fig. 10 indicate that most expres-
sion classes can be classified correctly, confirming that our
approach is more stable and indeed performs well in expres-
sion classification.

D. COMPARISONS TO STATE-OF-THE-ART METHODS
To further verify the effectiveness of our approach,
we compared the performance of the proposed approach to
the state-of-the-art deep subspace learningmethods including
EDR-PCANet [31], K-PCANet [30], PCANet [29], and the
traditional methods including DLFS [35], LBP [43] as well as
the baseline Gray (raw pixel) methods. Tables 6-9 show the

recognition rates achieved by the different methods for each
expression class and the overall based on the four datasets
tested. From these tables, we see that the recognition rates of
the proposed are much better in most cases compared to the
other methods. For the JAFFE dataset, the proposed approach
achieved an accuracy of 75.77% that performs superior to
the second best EDR-PCANet method by 6%. Similarly, for
the CK+ dataset, ours has the highest average accuracy rate
of 90.55%. For the CMU Multi-PIE dataset, the proposed
approach produces an average recognition rates above 80%,
while the Gray can only get around 60% of accuracy. For the
KDEF dataset, our proposed approach has overall accuracy
rate of 81.12%. Based on the results, we can conclude that
the performance of our proposed approach is superior to the
other methods in comparison.

E. ANALYSIZE OF OUR APPROACH
We gave the analysis of our approach in this subsection.
Our approach has the following superiorities: (1) ICLR dic-
tionary that is projected to expression subspace mitigates
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FIGURE 12. The sparseness of our approach and comparison method using four expression examples from (a) JAFFE, (b) CK+,
(c) KDEF, and (d) CMU Multi-PIE datasets, respectively. Blue lines indicate the sparseness of our approach and rose red ones
indicate the spareness of comparison method.
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the impact of individuals and AF dictionary simultaneously
takes the local importance into account; (2) PCF dictionary
remits the influence of redundancy existed in AF dictionary
and reduces the dimensionality, which makes the proposed
approach easily performed; (3) the proposed approach mines
the implicit abstract features of data based on pixel-level and
avoid the high requirement for hardware as well; and (4) our
approach automatically queries AF without manually setting
parameters that is easy to perform for feature extraction and
classification tasks.

We also provide Fig. 11 to intuitively show the accura-
cies corresponding to different dimension under the optimal
patch selection as demonstrated in Tables 2-5. As can be
seen in Fig. 11, different curves in different colors represent
different accuracies under different scales and each curve
means the accuracies with the dimensions increasing. The
dimension under the condition of best accuracy is selected
as the parameter d . From Fig. 11, we also observe that curves
under different scales are consistent, and thus fusing PCFs are
beneficial for final representation and classification.

Besides, Fig. 12 intuitively shows the sparseness of the
proposed approach compared to the comparison method (raw
pixel directly combining SRC) by respectively using four
expression examples from four datasets (‘‘Su’’ from JAFFE;
‘‘Di’’ from CK+; ‘‘An’’ from KDEF, and ‘‘Ne’’ from CMU
Multi-PIE, respectively). The abscissa axis means the No. of
training samples and the vertical axis means the representa-
tion coefficients achieved by the proposed approach and the
comparison method. From Fig. 12, we observe that the coef-
ficients achieved by our approach are more discriminative
than the comparison method. For instance, the coefficients
obtained by comparison method on JAFFE dataset (the blue
lines in Fig. 12a) are less clustered than that obtained by
our approach. In contrast, the results by our approach (the
rose red lines in Fig. 12a) are more focused on the samples
corresponding to the true class (the 6th class) and thus the
sample is classified to the correct expression. Obviously,
the representation coefficients (Fig. 12b toFig. 12d) obtained
using other three samples also keep consistency with the
results in Fig. 12a. Therefore, we conclude that our approach
enhances the discriminative power to a greater extent than the
comparison method.

V. CONCLUSION
In this paper, we proposed a novel supervised feature extrac-
tion approach that automatically queries active features based
on pixel-level for facial expression recognition. Generally
speaking, our approach first succeeds in projecting the orig-
inal space to ICLR subspace that removes the individual
information to some extent. Then, by automatically query-
ing active and principal component features, our approach
simultaneously extracts and selects the most active features
for classification. Third, our approach mines the abstract
information implicated in raw data and there is no need to
manually set the parameters that make our approach fast to
converge. Substantial experiments on four public datasets

also proved that our approach obtained promising perfor-
mance compared to some state-of-the-art methods.
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