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ABSTRACT AWi-Fi fingerprint consists of received signal strength values at a particular location alongwith
the location information. A Wi-Fi radio map is constructed by maintaining a database of Wi-Fi fingerprints
at various points in a building. A city radio map is a collection of radio maps for most buildings in a
city. A highly precise citywide indoor positioning service is possible, if an accurate city radio map is
available. However, tremendous time and effort are required to construct a city radio map through manual
calibration. This paper proposes amethod for constructing a city radiomap through the crowdsourcing ofWi-
Fi fingerprints from numerous smartphones. The proposed method classifies the buildings in a city into three
categories: buildings in residential areas, commercial areas, and public areas. Then, it develops location-
labeling techniques appropriate for the collected fingerprints from buildings in each category. Experiments
conducted in the cities of Daejeon and Seoul revealed that the proposed method can construct a precise city
radio map with minimal cost in a short period of time. Once city radio maps are constructed for most cities
around the world, the global indoor positioning system will be completed.

INDEX TERMS City radio map, crowdsourcing, indoor positioning, semi-supervised machine learning,
simultaneous calibration and address mapping (SCAM).

I. INTRODUCTION
The incorporation of indoor positioning services into mobile
devices makes daily life safer and more convenient. Naviga-
tion and route guidance can be utilized in spaces where this
service was not previously available. Outdoor car navigation
services are expanding their service areas to indoor environ-
ments to provide indoor-and-outdoor integrated navigation
services [1]–[3]. This is especially helpful for emergency ser-
vices to conduct rescue tasksmore effectively by immediately
locating a person who is in danger regardless of geographic
location. In addition, various unprecedented indoor location-
based serviceswill emerge from the utilization of the citywide
indoor positioning service.

There have been many attempts to provide a precise indoor
positioning service using various signals and sensors [4]–[7].
However, a building-based perspective is not a feasible
approach because overall coverage is required to provide a
valuable and complete system to users. Nevertheless, there
have been only a few attempts to provide a precise indoor
positioning service covering a large number of buildings in
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a city [8]. One fundamental question is what kind of sig-
nal input should be used for this kind of system? In fact,
many signal sources, such as cell towers, GPS, and Wi-Fi,
can be used for citywide indoor positioning. In this study,
we considerWi-Fi signals as the best candidate becauseWi-Fi
infrastructures have already been deployed in most buildings
in cities and they can achieve relatively precise positioning
accuracy [9]. This is a beneficial starting point for the devel-
opment of a citywide indoor positioning service.

The construction of a radio map is another crucial initial
step towards implementing an indoor positioning service.
A radio map models the location characteristics of each point
in an indoor environment from a collection of fingerprints of
received signal strengths (RSSs) from multiple Wi-Fi access
points (APs), which serve as reference locations [10]. How-
ever, these APs are limited to only one or a few specific
buildings. By contrast, a citywide radio map aims to model
Wi-Fi signal patterns at specific points within most buildings
in a city. Radio maps are usually constructed by manual
calibration or machine learning techniques for the location-
labeling of crowdsourced fingerprints. Crowdsourced finger-
print techniques have been considered as a practical approach
to constructing a city radio map because the alternative
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of manual calibration requires tremendous time and human
resources. When using crowdsourced data, location-labeling
techniques typically have two steps. In the first step, refer-
ence locations are acquired, and in the second step, location-
labeling of the crowdsourced fingerprints is conducted using
these references, which provides location information of the
fingerprints [11].

A city is composed of buildings with various heights that
are used for various purposes, such as residence, business,
shopping, exhibition, and entertainment. Consequently, radio
maps for buildings cannot be appropriately constructed with
only one particular location-labeling method. For example,
apartment hallways can be considered solely as transit spaces
that connect the entrance of the building with the entrances
of each apartment. By contrast, shopping mall hallways are
occupied by people who are resting, window shopping, meet-
ing, etc., which means they have a much higher impor-
tance regarding navigation and localization. Therefore, this
paper proposes a practical framework for citywide radio map
construction by considering different types of buildings and
assigning distinct crowdsource-based methods to each build-
ing category, which means that traditional manual calibration
is not required. Experiments performed for each building type
showed promising accuracy results, thus demonstrating the
suitability of the proposed framework.

II. RELATED WORK
Many crowdsourced-based location-labeling methods have
been invented in the last several years. The first approach
relied on user contributions for the collection of fingerprints
and addresses [12]. This method employs the app RedPin,
which allows users to enter location information, such as the
names and addresses of shops and restaurants and evaluate or
leave comments on them using the app during their stay. This
approach is called explicit crowdsourcing because it cannot
collect fingerprints and place information without explicit
user contributions.

Other techniques that are not reliant on the direct input of
users exist to derive address-based reference locations. For
instance, Internet of Things (IoT) devices and home appli-
ances, such as Internet protocol televisions (IPTV), set-top
boxes, internet-connected refrigerators, and smart machines,
can also be used for the collection of address-based refer-
ence locations. They collect fingerprints from which their
deployed address information should be available. It is known
that the deployed addresses of home appliances are left to
distributors or manufacturers for the delivery of goods or
after-sale services. By using this address information, the col-
lection time of references in the location-labeling of finger-
prints is very low because the references are collected directly
from smart devices without explicit contributions from users.
Owing to this lack of direct user participation, this method is
called implicit crowdsourcing and is considered effective in
constructing radio maps of areas inside buildings [13], [14].

In the above mentioned methods, the reference locations
are collected under the assumption that the addresses are
available. Thus, the main issue in collecting reference loca-
tions is how to map collected fingerprints to the available
addresses. Besides the possibility of querying third party
databases, in some situations, addresses and fingerprints can
be collected simultaneously through smartphone apps, such
as online shopping apps. Online shopping app users must
enter their home or office addresses for the delivery of their
items. In this situation, themapping of address and fingerprint
is much simpler than in the previous methods because the
fingerprints can be labeled with the simultaneously entered
addresses. However, mislabeled fingerprints should later be
filtered out through post processing.

The true essence of crowdsourcing is the collection
of datasets with unconscious user participation. Many
researchers have proposed implicit crowdsourcing systems
for indoor maps, which are especially useful for large areas.
Yang et al. proposed the method of locating in fingerprint
space (LiFS), which does not require any active participa-
tion from the users [15]. LiFS uses multidimensional scal-
ing (MDS) technology to record the fingerprints of users,
meanwhile mapping the Wi-Fi fingerprints to reference loca-
tions using the movement paths. Essentially, LiFS sets up
a geographical relationship between fingerprints using the
distance between two endpoints. It also does not require AP
information as this cannot be obtained in office or commercial
buildings. Similarly, Rai et al. scanned the Wi-Fi fingerprints
of users as they entered an indoor environment [16]. The
author used data from inertial sensors of smartphones to
track users and maintained a fingerprint database without
user interaction. The author named this system Zee, which
is capable of running in the background and requires no user
interaction to collect fingerprints. Unsupervised learning has
also been used for crowdsourced Wi-Fi fingerprint data by
some researchers in [17]. The authors collected Wi-Fi fin-
gerprints without reference locations following unsupervised
learning to cluster the fingerprints. This method proves that it
is possible to construct a precise radio map without collecting
reference locations. Furthermore, Graph-SLam develops a
system that can be installed on user devices to enable users
to share their walking path and Wi-Fi signals without any
explicit efforts [18].

Based on the above mentioned methods, the effective-
ness of the crowdsourcing can be inferred in the field of
indoor positioning system. However, all the existing sys-
tems focus on covering a specific type of building. The
buildings in a city have different types of architectures and
purpose. A method that performs well in a specific type of
architecture may not be effective for other types of build-
ings. The proposed method covers this limitation by clas-
sifying the buildings of a city in three types and proposes
a separate method for each type. Eventually, a citywide
indoor positioning system is achieved which is not available
before.
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FIGURE 1. Schematic overview of the proposed citywide radio map.

III. METHOD
A. BUILDING TYPE CLASSIFICATION
One of the main contributions of this paper towards a city-
wide indoor positioning system is the consideration of city
building types and the subsequent variety of requirements for
establishing an indoor radio map in these buildings. Current
systems lack this kind of information owing to limitations
such as tests done in a single environment e.g., one kind
of building, or the use of different methods e.g., manual
calibration, which we aim to avoid.

Buildings in a city are different from each other with
respect to their architectures, interiors, and purposes.
Depending on the purpose of a building and the way people
interact within it, it is recommended that different meth-
ods are applied for the location labeling of fingerprints for
different buildings. However, when considering this for the
establishment of an indoor positioning system, these unique
buildings must be classified in a way that the system can
provide a balance of accuracy andminimal calibration efforts.
Furthermore, a building can be used for several purposes; for
example, a car park in the basement used for parking, amarket
on the first floor used for shopping, and apartments on the
floors above used for living. Thus, the classification should
not be based on buildings themselves but rather on subareas of
buildings to remain flexible towards multipurpose buildings.
We propose differentiating the subareas of buildings in a city
into the following three most representative categories:
• Residential areas of buildings
• Commercial areas of buildings
• Public areas of buildings

The primary criterion for this classification is based on the
purpose of a particular area inside the building. Here, resi-
dential areas include all areas that solely serve as someone’s
home. People in residential areas are most likely interested in
reaching a specific home and use the hallways purely as tran-
sit space. Thus, highly accurate positioning is not necessary,
and room-level accuracy can be targeted. Commercial areas
are openly accessible areas that are mainly used for shop-
ping or general transactions. By contrast to residential areas,
hallways play a central role in commercial areas as people

occupy them for window shopping, resting, and interaction.
Hence, high positioning accuracy is essential for hallways in
commercial areas. Public areas are all other freely accessible
areas that are not classified as commercial or residential and
consist mainly of industrial areas and offices.

B. COLLECTION OF REFERENCE LOCATIONS
Based on the aforementioned building area classification,
an appropriate method for the collection of reference loca-
tions is assigned to each category. These methods are
explained in detail in the following sections. Fig.1 depicts an
overview of the building classes and their respective reference
location collection methods.

1) SOURCE OF REFERENCE LOCATIONS IN
RESIDENTIAL AREAS
Addresses stored in external databases can be a suitable can-
didate for the creation of reference locations by labeling col-
lected fingerprints with these addresses. To enable the usage
of addresses for this purpose, some kind of connecting feature
between the gathered fingerprint at an unknown location and
the external database must be utilized. In this case, mobile
apps can serve as such a connection.

For residential areas, the usage of an energy usage-
registering app, utilized by meter-readers to monitor the
energy usages of clients, can be considered to provide the
required collection of reference locations. We assume that
the meter-readers visit a home to monitor its energy usage,
such as electricity, water, or gas. The meter-readers enter the
measured values into an app running on their smartphones.
The reading and entering is usually conducted in front of
or near the usage-registering instruments, which again are
most likely located inside the house or apartment. Thus, when
fingerprints are collected from a meter-reader’s smartphone,
they can be considered as being collected from the home
address stored in an external database of the energy company
the app is connected with. By using these addresses for label-
ing, the collected fingerprints can be stored in the address-
labeled fingerprint database, which provides an initial
radio map.
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In some countries, advanced measurement instru-
ments (AMIs) are used instead to measure energy usage such
as automatic meter readers. Human meter-readers are thus
not required, which is why a fingerprint collecting routine
should be embedded into the AMI to ensure the collection of
address-based reference locations.

2) SOURCE OF REFERENCE LOCATIONS IN
COMMERCIAL AREAS
While an energy usage app can be used for the collection
of reference locations in residential building areas, a mobile
payment app is more suitable for collecting reference loca-
tions in commercial areas. When a person enters a shop, e.g.,
in a shopping mall, and buys a product there, the payment is
made at the cashier, which is most likely located within the
shop. Furthermore, nowadays, payments are often conducted
withmobile payment apps, which leads to the assumption that
fingerprints gathered through a smartphone during a payment
can be considered to be collected at the shop. Therefore,
it is possible to use the address associated with the given
shop, which will be located in an external database of the
payment app company, for address-labeling of the collected
fingerprints. These can then be stored in the address-labeled
fingerprint database for the initial radio map. This method is
not limited to shops as it can be utilized in any place where
payments are conducted and an address is available, e.g.,
restaurants and bars.

As stated above, reference locations from payment apps
are collected at the cashier desk in shops. However, the exact
location of the payment desk in a shop is not always known,
i.e., some shops have their payment desks in the front, some
are located at the center, etc. Hence, assigning the reference
locations in these environments to fixed locations is very
inaccurate as payment desk location can vary between shops.
Therefore, a location optimization algorithm is required to
overcome this significant issue for efficient location-labeling.

3) SOURCE OF REFERENCE LOCATIONS
IN PUBLIC AREAS
Both energy usage-registering apps and mobile payment apps
can also be used for the collection of reference locations
in public buildings such as airport terminals, subway sta-
tions, exhibition centers, universities, etc. However, in these
environments, only a limited number of reference locations
can be collected by such apps because the density of shops
or energy usage gauging instruments is rather low in pub-
lic buildings. Therefore, collecting GPS signals along with
Wi-Fi signals can provide a rough clue of the reference
locations. Additionally, by using the energy usage-registering
and payment apps, the address of each place can be stored
in the address-labeled fingerprint database. This should be
seen as a building-sharp identification to distinguish different
buildings from each other and to create an initial, limited
starting point for constructing a radio map. However, refer-
ence locations do not play a major role in radio map con-
struction in public areas due to the limited number of possible

reference points, which is why an unsupervised method is
used to construct the radio maps.

4) SIMULTANEOUS CALIBRATION AND ADDRESS
MAPPING (SCAM)
The previous sections showed that when a mobile application
is capable of collecting an address and fingerprints simultane-
ously, it can provide an opportunity for mapping the collected
fingerprints into an address to create reference locations.
We call the mapping of a fingerprint into an address collected
from a mobile application a simultaneous calibration and
address mapping (SCAM) in this paper. In addition, if a
mobile application allows SCAM, we call it a SCAM transac-
tion. Although no SCAM transactions are currently available,
many mobile applications can be transformed into SCAM
transactions by simply embedding a fingerprint collecting
routine. This applies not only to the previously mentioned
applications but to any application that can collect an address
and fingerprints simultaneously, such as online shopping apps
and delivery service apps.

C. RADIO MAP CONSTRUCTION
After deriving reference locations from the aforementioned
sources, the next step is to construct the radio maps for each
building subarea category.

1) RADIO MAP CONSTRUCTION FOR RESIDENTIAL AREAS
In an ideal scenario, energy usage-registering apps could
collect reference locations at most homes in residential areas
in collaboration with energy meter-readers. Note that in some
countries, meter-readers must visit each home periodically to
measure its energy usage or to check for leakage of gas, water,
or electricity, which can be seen as updates on the reference
locations. In a case where a remote sensor measures energy
usage, we assume that a module to collect reference locations
has already been embedded into the sensor.

Radio maps for residential areas can be constructed using
an interpolation technique for the reference locations because
homes are located separately and at regular distances from
each other, especially in high-rise apartments. Outdoor as
well as indoor radio maps can be constructed by interpolating
the collected reference locations. Outdoor radio map con-
struction is somewhat different from its indoor counterpart
because it must be constructed on 2D ground from reference
locations collected in 3D space. For indoor radio map con-
struction, however, the reference locations are expected to be
collected at each floor of the building. High-rise apartment
buildings are a classic example in such an approach. In South
Korea, this kind of housing accounts for the largest share
among housing styles, with a total share of 60.6% of all
housing units in 2017 [19]. Therefore, especially for this
kind of residential building (but also for relatively dense
detached house areas), interpolation techniques can be con-
sidered as a fast and sufficiently efficient radio map algorithm
strategy [20].
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FIGURE 2. Radio map construction process from HMM modeling.

A wide range of interpolation techniques are available,
such as linear, inverse distance weighting (IDW), and Krig-
ing interpolation [21], [22]. However, this study utilizes the
IDW interpolation method because it considers all reference
locations when creating interpolated values. Another major
benefit of using IDW is that it explicitly assigns more weight
to the reference points that are closer to the point being pre-
dicted. This means that IDWworks under the assumption that
the reference points close to each other are more dependent
on each other compared to the points that are far away. This
assumption is very beneficial for predicting geolocation coor-
dinates. The collected sample fingerprints serve as reference
point inputs for IDW, which then can predict an interpolated
value at any point in the environment.

Meanwhile, there are several approaches available to
assign a precise location to an address-labeled fingerprint.
One is to set the location to the center of a building because
the exact location at which wireless signals are scanned is
usually unknown. This would be the most inaccurate way and
should be avoided for large buildings. Another approach is
to set the collected location to the installed location of the
energy usage gauge, which is specified in the CAD files of
energy pipelines maintained by energy companies. Addition-
ally, the floor and room number are often given in the address,
which can be used in combination with floor plans to estimate
the location more accurately.

2) RADIO MAP CONSTRUCTION FOR
COMMERCIAL AREAS
In commercial areas, reference locations can be collected
from almost every shop through the aforementioned collab-
oration of mobile payment apps. If a fingerprint collection
module is embedded in a mobile payment app and it derives
fingerprints during a payment session in a shop, these col-
lected fingerprints can be labeled with the shop’s address and
stored in the databases of the payment companies. By con-
tinuing this procedure for all shops in the commercial area
of a building, the whole environment can be covered with
fingerprints.

However, commercial and residential areas of a building
differ in the use of navigation space, particularly in hallways.

People stay longer in hallways for shopping or resting in
commercial areas than they do in residential areas, which is
why the positioning service in hallways is critical in these
environments and so is the construction of radio maps in
hallways. Thus, owing to the higher number of available
reference locations and the demand for more accurate posi-
tioning, a semi-supervised location-labeling method is used
for the construction of radio maps in commercial areas. It is
proposed that the semi-supervised location-labeling method
uses address-unlabeled crowdsourced fingerprints collected
from various location-based service applications as its train-
ing data.

Nevertheless, the semi-supervised location-labeling
method should be adaptive to use the address-labeled fin-
gerprints for its reference locations. This is because the
exact locations from which fingerprints have been collected
in a shop are unknown, with only the address information
obtained through the payment. Cashier desks can be located
anywhere within a shop’s space. When a shop is large,
serious performance degradation of the learning may be seen.
To address this challenge, we use the method proposed in
our previous paper [23]. This method is an efficient semi-
supervised location-labelingmethod for fingerprints that uses
address-labeled fingerprints for its reference locations. In this
method, the reference locations can be associated with many
points in the shops they have been collected from. A summary
of the method is given below.

Fig. 2 shows the process of constructing radio maps with
the reference locations and crowdsourced fingerprints. Ini-
tially, only the locations of fingerprints collected by cashiers
inside shops are known, and they are represented with
red dots in the leftmost block. The inner structure of a
building is modeled by the topology of a hidden Markov
model (HMM) (step 1). More specifically, a floorplan image
is converted into the HMM topology, where a location
is represented as a state and the geographic accessibility
between locations is represented as transitions. The finger-
print sequences are considered as observation sequences from
the HMM. Voronoi-tessellation and Lloyd’s relaxation are
used to divide the area equally. The area is partitioned into
coarsely grained (10×10m2) and fine-grained (4×4m2) areas.
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However, as explained earlier, in commercial areas, local-
ization in hallways is important because of their frequent use.
An initial radio map that covers hallways is constructed in the
next step by applying interpolation on the reference locations
(step 2).

It is important to determine the optimal locations of cashier
desks inside the shops instead of assuming random posi-
tioning for better accuracy. The genetic algorithm is used to
find an optimal placement of labeled fingerprint sequences;
it starts its process from the creation of a chromosome and
a population. First, a random position is selected, which is
known as a chromosome, and each loss value is calculated.
In this way, many radio maps are constructed in a single
generation. For the next generation, the genetic algorithm
references the location with the smallest loss value by the
crossovermethod. The next time, the locationswith the small-
est loss values are generated, and the accuracy continues to
improve. Once the locations of address-labeled fingerprints,
which form the chromosome of the genetic algorithm, are set
at each shop, a radio map is constructed through interpolation
using the location-fixed fingerprints. IDW is used for the
generation of radio maps because of its simplicity [21]. The
initial radio map of hallways is represented by green dots
in Fig. 2(step 2).

After constructing the initial radio map, the method uti-
lizes the numerous available unlabeled crowdsourced finger-
prints to increase the overall accuracy (step 3). This step,
where the unlabeled fingerprints are placed at the appropriate
locations, is the most critical step in the whole procedure.
As the positioning services provide the unlabeled data, they
are usually in sequential form. These sequential fingerprints
are labeled using the HMM with the forward backward algo-
rithm. The forward backward algorithm calculates the pos-
terior marginals of the most likely state at a particular time.
The main reason for using the forward backward algorithm
is that we cannot model all states, such as the transitions
between floors, restrooms, and shops from inside. The large
(10× 10m2) modeling is used for the labeling of crowd-
sourced fingerprints because it is computationally less costly.
Consequently, the sequences of unlabeled fingerprints are
placed as shown by orange, yellow, and blue lines in Fig. 2
(step 3). However, it is not possible to provide good accu-
racy with such large modeling, so (4 × 4m2) is utilized for
positioning.

To avoid the limitation due to the volume of available
training data, an objective function is defined to determine
the quality of the configurations of reference locations. This
loss function analyzes the distance of consecutively scanned
fingerprints for the evaluation. The genetic algorithm repeats
from step 2 to step 4, changing its initial population until it
finds an optimal placement (step 5). A complete final radio
map is obtained by the end of this procedure.

3) RADIO MAP CONSTRUCTION FOR PUBLIC BUILDINGS
A large number of reference locations can be collected from
buildings in residential and commercial areas, whereas only a

limited number of reference locations can be collected in pub-
lic buildings via collaboration with payment apps or energy
usage measuring apps. Therefore, radio map construction for
public buildings with the crowdsourced fingerprints is much
more challenging.

An unsupervised location-labeling method should be used
for the construction of radiomaps for public buildings. There-
fore, an unsupervised learning method titled ‘‘Unsupervised
Calibration based on a Memetic Algorithm (UCMA),’’ is uti-
lized here. This algorithm estimates the collected locations of
crowdsourced fingerprints without reference locations [17].
In UCMA, a global-local hybrid optimization algorithm esti-
mates the placement of the fingerprint sequences that best fits
into the topology of a building. The local optimization in the
hybrid optimization algorithm adopts the strategy of unsu-
pervised HMM training, which estimates the model param-
eters of a HMM using an expectation-maximization (EM)
algorithm given unlabeled data [25]. A likelihood function∫
Pr(U ,P|λ) is used simultaneously to evaluate a set of

estimated model parameters and for placement of unlabeled
fingerprint sequences, where U is a fingerprint sequence set,
P is the placement, and λ is a set of estimated HMM model
parameters.

λ =< π,A,B >

where π is an initial probability distribution on the location-
states, A is a transition probability matrix that represents
how a person moves in a building with the stairs, eleva-
tors, and walls, and B is the set of emission probabilities,
which provide the likelihood of an observation at a specific
point.

EM-style algorithms for HMM training take a local search
approach [24]. Hence, these methods often get stuck in
local optima, especially when dealing with a complex prob-
lem like the location-labeling of fingerprints. To deal with
this problem, a good initial guess of HMM parameters is
required as a starting point of the training. We can gen-
erate an initial estimate using address-labeled fingerprints.
The location of each address-labeled fingerprint is con-
verted into a specific point in the corresponding shop. The
initial estimate may not be a good choice in some situa-
tions, especially when the sizes of shops are not sufficiently
small. A population-based evolutionary search algorithm is
responsible for finding a reasonable initial estimate. This so-
called global search algorithm iteratively improves the initial
guesses and makes improvements to the local optimization.
The global search and local optimization algorithms are inte-
grated into a memetic algorithm, which is an evolutionary
approach, providing an efficient way to solve optimization
problems through the interaction between global and local
optimization.

IV. EXPERIMENTS AND RESULTS
We constructed radio maps using the proposed techniques
to evaluate the effectiveness of the proposed radio map con-
struction method.
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TABLE 1. Statistics of learning and testing data in residential areas.

A. RESIDENTIAL AREAS
Radio maps for residential areas were constructed in the cities
of Seoul and Daejeon. Although mobile payments are effec-
tive in collecting reference locations in commercial areas,
they cannot be used in residential areas because only few
shops are located in residential areas. The reference locations
in residential areas can be collected from the smartphones of
meter-readers who are supposed to visit each home.

Over one hundred energy usage meter-readers who visit
each home to check its energy usage collected the training
samples for 3 months. We validated the effectiveness of
collecting address-labeled fingerprints using another SCAM
transaction, energy usage measurement, in one residential
area in Seoul and two in Daejeon, Korea. Insa-dong, Seoul
is mostly occupied by traditional single- or low-story houses.

The area features narrow meandering roads connecting
small houses. Jeonmin-dong, Daejeon is a residential area
with four-story small-scale group houses with well-planned
grid structure roads. The houses are located in a complex
region and there exist medium-scale parking areas between
the buildings.

Training data were collected by collectors who visited
each home in the study areas. Approximately 19,000 Wi-Fi
fingerprints were collected from approximately 1,000 points
in total. The testing data, including Google Wi-Fi positioning
system (WPS) logs and Wi-Fi logs, were also separately col-
lected for the evaluation. The training samples were mostly
collected indoors, whereas the testing data were collected
both indoors and outdoors. This explains why the average
number of access points of the test data was slightly larger
than that of the learning data.

The radio maps were constructed without variation of the
locations of address-labeled fingerprints at each home. This
is because the primary purpose of the experiment was to test
whether each home could be detected with the radio map
constructed by the address-labeled fingerprints and address-
unknown crowdsourced fingerprints. Thus, when the predic-
tion was correctly, the error distance was set to zero in the
evaluation.

The positioning accuracy was measured using K nearest
neighbour(KNN) with K = 3 and was approximately 5-10 m
on average in Daejeon and Seoul. The accuracy was approx-
imately 5 m when the collection rate was 100%, whereas

the accuracy was approximately 10 m when the collection
rate was 50%. A collection rate of 100% means that the
training samples were collected from every home, whereas
a collection rate of 50%means that the training samples were
collected from every other home.

The ground truths of the testing data were confirmed
by manually marking the testing points on physical maps.
Table 1 summarizes the collected learning and testing data.
The accuracy was greatly improved compared to that of
Google

WPS, whose accuracy was approximately 20-40 m both
indoors and outdoors. This improved accuracy allows us
to locate a particular house in an apartment building or a
detached house area with over 90% probability using a finger-
print obtained at the house. Fig.3 shows that the positioning
accuracy improved with incremental increases in the number
of collected fingerprints in each area.

B. COMMERCIAL AREAS
Radio maps for commercial areas were constructed for three
landmark buildings in Seoul: COEX, Lotte World, and Times
Square. COEX is Asia’s largest underground shopping mall
and contains three five-star hotels, one 55-story and one
41-story premier office tower, a large department store, a sub-
way station, and more. Lotte World contains underground
shopping malls and an indoor amusement park in the tallest
building in Asia with 123 stories. Approximately 2000 APs,
with most of their locations unknown, had already been
installed in each landmark building. Times Square is one
of the biggest indoor shopping malls in Korea and contains
a large-scale discount store, a large department store, and
a CGV Starium. The COEX Mall is located in basement
B1F and has an area of 630 × 300m. Lotte World Mall
and Times Square Mall are both located on the first floor
1F and they have areas of 400 × 180m and 320 × 1800m,
respectively.

A mobile wallet application was used for the collection of
address-labeled fingerprints for six months. The app, which
already has the address information of shops, was down-
loaded by more than one million users. Approximately five
thousand fingerprints were filtered from the crowdsourced
fingerprints for the training at each building. The testing
samples were collected manually at the buildings, confirming
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FIGURE 3. Average error distances vs. Google WPS.

TABLE 2. Summary of data collected from the COEX, Lotte world, and
times square buildings.

their ground truth locations. Also, the reference locations
were collected at the shops in the test areas simulating offline
mobile payment. Collectors visited shops in the test areas to
collect reference locations. The Samsung S6 was used for the
collection of the testing samples and reference locations.

Table 2 summarizes the training and testing samples
collected for evaluation at the COEX, Lotte World, and
Times Square buildings. KNN was used with K = 3
to measure the accuracy of radio maps in commercial
areas. The accuracies measured on radio maps for the
COEX, Lotte World, Times Square buildings were 6.8 m,
7.2 m, and 7.1 m, respectively. The accuracies improved
from approximately 10 m to 7 m with increasing training
samples as shown in Fig. 4. The radio maps were con-
structed with the reference locations and unlabeled finger-
prints collected from shops and hallways. The radio maps
were constructed by the proposed semi-supervised location-
labeling method. The effect of adjusting reference locations
at each shop for the method was apparent. The adjust-
ment of reference location positions improved the results by
approximately 30%.

FIGURE 4. Accuracy improvement with increasing training samples at the
COEX, Lotte world, and times square buildings.

C. PUBLIC AREAS
The efficiency of the proposed unlabeled location-labeling
method was evaluated under various scenarios. The exper-
iments were conducted in a large-scale office building
at the Korea Advanced Institute of Science and Technol-
ogy‘(KAIST), Daejeon, Korea, called the N1 testbed, and the
KI building, in Shenzhen, Guangdong, China. Both energy
usage measuring apps and payment apps were used to collect
the Wi-Fi dataset with reference locations, and a mobile
crowdsourcing app was used to collect the unlabeled data.

N1 testbed building has an area of 75 m ×22 m, and the
KI building has an area of 120 m × 35 m. The N1 building
and KI building each have two staircases and four elevators.
The length and width of corridors in N1 are 194 m and 3 m,
respectively, and those in the KI building are 291m and 6.5m,
respectively.

Unsupervised learning is possible only with a sufficient
number of training samples: approximately 5,000 training
samples in this case. In addition, the learning has a high
computational time complexity. The time complexity is lin-
early proportional to the number of samples. Other factors are
the number of generations and the segmental K-means (SK)
local optimization algorithm. An advantage of using SK local
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FIGURE 5. Effect of changing the amount of training data on supervised
and unsupervised learning in N1.

optimization is that it does require any data reduction pro-
cedure as it can effectively handle innumerable RSS values
through a pre-processed distance matrix. Another important
feature of UCMA is the learning convergence. Some param-
eters, such as number of generations and population size, can
affect the convergence process, and both of them were set to
100 via a conventional parameter setting approach. It took
approximately one hour for a PC to construct the radio map
on testbed N1. The PC used for the implementation had 8 GB
of memory and a 3.40 GHz processor, and all implementation
was done in Java.

Evaluation in public areas was done using KNN with
K = 1. The positioning accuracy measured on the N1 testbed
by UCMA was approximately 4-5 m as shown in Fig. 5.
Although the radio map was constructed by the unsuper-
vised location-labeling method, the positioning accuracy was
comparable to the accuracy of 3-4 m achieved by manual
calibration.

The positioning accuracy achieved in the KI building was
9-12 m. There are strong reasons why UCMA could not give
good accuracy in the KI building compared to the N1 testbed.
The KI building size is much larger than the N1 testbed
size, and the width of corridors in the KI building is much
higher, which results in poor accuracy. In addition, the Wi-Fi
dataset collected in the KI building for the training of UCMA
was not sufficient for the convergence of UCMA learning.
Therefore, the KI AP environment is not as good as that of
the KAIST N1 building. The AP environment was not strong
in the test area of UCMA, which is a valid reason for this
accuracy. Table 3 provides a comparison of UCMA results in
the N1 testbed and KI building.

The problems raised in the KI building can be solved
by extending the UCMA so that it can utilize stair
and elevator reference locations whenever they are avail-
able. The original UCMA is still necessary because we
cannot expect all buildings to provide their stair and ele-
vator information to fingerprints collected in the build-
ings. However, if we want to make radio maps using
only Wi-Fi signals with unsupervised learning, sufficient
data and the presence of a reasonable AP environment are
mandatory.

TABLE 3. Comparison of UCMA evaluations for the KAIST N1 testbed and
the KI building.

V. DISCUSSION
The experiments conducted on different building structures
proved that the proposed method can be used to construct
radio maps of most buildings in cities without the need for
manual calibration. This research also suggests the most suit-
able crowdsourcing methods for each area, and the datasets
for each of the three area types were collected through the
proposed crowdsourcing techniques. The achieved accuracy
in all three area types proves that a global indoor localization
service can be provided using only crowdsourced data.

The average error distance in residential areas was 5-10 m
and was compared with Google indoor and outdoor WPS.
The accuracy of Google WPS, especially indoors, was insuf-
ficient, as opposed to our proposed method, which gave suf-
ficient accuracy. The proposed method could identify homes
individually in multi-story apartment buildings. The selected
buildings for evaluation in commercial areas were chosen
with great care as all three of them provide distinct archi-
tectures and scenarios. In all three commercial buildings,
the width of hallways is 15 m and the average accuracy
achieved by the proposed method is 6-7 m, which is appro-
priate. UCMA was proposed for public areas because it is
not feasible to collect reference locations in public buildings
through crowdsourcing. This is why only a small number of
reference locations were collected in public areas by using
energy usage measuring and payment apps; hence, we still
call it unsupervised learning because the amount of labeled
data was ignorable and training of UCMA was done solely
with unlabeled data. However, one problem with the unsu-
pervised approach is that it is time consuming; however, this
approach uses only an unlabeled Wi-Fi dataset and still gives
adequate results in buildings like the N1 testbed.
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In Section 2.3, previous methods for reducing the calibra-
tion effort in the indoor positioning field were discussed, but
thesemethods focus only on one type of building architecture.
This work is distinguished from other works because it pro-
vides a precise indoor positioning service with crowdsourced
fingerprints in residential areas, commercial areas, and public
areas. This paper suggests the most suitable approaches to
constructing radio maps for three types of areas in a city using
only crowdsourced data. Nevertheless, unlike the GPS, which
has matured, the global indoor positioning system (GIPS) is
still in its infancy. SCAM and the proposed location-labeling
methods are opening a new horizon for the GIPS, giving new
vitality to discarded fingerprints. The proposed methodology
provides the potential of constructing radio maps at a city or
even at a country level.

In fact, the areas in a city can be categorized into three rep-
resentative areas: residential, commercial, and public. How-
ever, not all buildings in a city can be covered. The proposed
method does not cover the buildings that fall into a combina-
tion of areas. In addition, in this study, we did not focus on
constructing outdoor radio maps.

Although the proposed method’s effectiveness has been
proved through many experiments, the cooperation of energy
and payment companies is indispensable in accomplishing
this goal. It has also been confirmed that the precision
of radio maps can be further improved by the proposed
location-labeling method utilizing crowdsourced fingerprints
and address-labeled fingerprints collected by SCAM. The
method requires indoor space modeling based on indoor
maps, which are not available yet for many buildings. There-
fore, the method can only be used for buildings whose indoor
maps are available. Fortunately, the number of buildings
whose indoor maps are available on the Internet is currently
rapidly growing.

VI. CONCLUSION
City radio maps provide the basis for a citywide indoor
positioning service. Crowdsourcing of fingerprints and
location-labeling of crowdsourced fingerprints are required
to construct a city radio map without manual calibrations.
It transpired that a city radio map could be constructed more
effectively by applying appropriate radio map construction
techniques depending on the category of buildings.

In residential areas, an energy usage-registering app is a
good means of collecting reference locations. An interpola-
tion technique allows us to construct amore precise radiomap
with the reference locations. In commercial areas, a mobile
payment app is a good way to collect reference locations.
A semi-supervised location-labeling method can be used to
construct radio maps covering hallways. Despite only being
able to collect a limited number of reference locations in
public buildings, radio maps can still be constructed for pub-
lic buildings by extending the unsupervised location-labeling
method.

This work provides a precise indoor positioning service
with crowdsourced fingerprints for all areas. An accuracy

of 10 m was achieved in four residential areas, which is
acceptable because homes could be located on the con-
structed radio maps. The accuracy of 6-7 m achieved by
the proposed method at the three landmark buildings was
acceptable because the widths of the hallways of the buildings
were approximately 15 m on average. The accuracy of 4-5 m
achieved in a university building was also sufficient.

If SCAM transaction applications become popular and
have many users, a huge number of address and fingerprint
pairs can be collected in a short time span without any
additional costs. Eventually, the mass of collected address
and fingerprint pairs will be an invaluable source of build-
ing address-based radio maps for most buildings in a city,
a nation, or all over the world.

In this paper, energy usage-registering apps and payment
apps were proposed to collect data for residential and com-
mercial areas, respectively. In this era of smart systems
and technology, the usage of payment apps is rising and
will increase further in the future. However, the system-
level problems, such as power consumption and security are
outside the scope of this study. This paper emphasizes and
proposes revolutionary ideas for integrating new apps in the
field of crowdsourcing of mobile signals. Separate research is
required to investigate these details. After proving the practi-
cality of these apps in city radiomap construction, the system-
level issues will be explored in our next study. Our proposed
method constructs radio maps using only anonymous data.
Thus, privacy is not a matter.
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