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ABSTRACT Recently, many multi-dictionary-based sparse representation methods have been proposed for
single-image super-resolution (SISR) by learning a sub-dictionary for each specific type of visual content
(i.e., a cluster). Although promising reconstruction results have been achieved for certain scenarios, due
to the similarity shared among different types of visual content, each sub-dictionary is not learned as dis-
criminatively as expected, which could compromise the visual quality of reconstructed high-resolution (HR)
images. In this paper, we propose a novel shared and cluster-specific dictionaries learning method for SISR,
where cluster-specific dictionaries can be learned as separate as possible and a dictionary shared among
clusters is learned explicitly to explore similarity among clusters. First, low-resolution (LR) and HR image
patches extracted from training images are jointly grouped into visual clusters. Then, a shared sub-dictionary
and a set of cluster-specific sub-dictionaries are learned simultaneously under the sparse representation
framework. In addition, the group sparsity constraint, the locality constraint, and the incoherence penalty
term are incorporated into a unified framework to preserve the relationship and structure among the training
data in dictionary learning. Finally, an anchored neighborhood regression method is devised to pre-calculate
a projection matrix of each learned dictionary atom from LR to its HR space so that an HR image can bemore
efficiently recovered in the reconstruction stage. Comprehensive experimental results on two widely used
benchmark datasets demonstrate the effectiveness and robustness of our method against a number of state-
of-the-art methods. The reconstruction results of real-world maritime surveillance images further indicate
that the proposed method is well suitable for practical applications.

INDEX TERMS Dictionary learning, sparse representation, anchored neighborhood regression, single image
super-resolution.

I. INTRODUCTION
High-resolution (HR) images are helpful for a wide range of
applications such as security surveillance and image based
medical diagnosis. However, image resolution is often prac-
tically constrained by the limitation of image acquisition
and transmission systems. Therefore, single image super-
resolution (SISR) has been investigated to recover a high
resolution version of a low resolution (LR) input image [1],
[2]. Due to the ill-posed nature, this task has been very
challenging.

Inspired by intrinsic sparse property of natural images,
compressive sensing-based methods have attracted lots of
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attentions in recent years [3]–[5]. The sparsity-based regu-
larization terms have been introduced and HR image patches
could be recovered by sparse coding coefficients calculated
from the counterparts of an input LR image using the learned
dictionary. As the estimation of an HR image depends on
a learned dictionary, an appropriate dictionary is critical for
deriving high quality recovery results.

Conventional compressive sensing-based SISR methods
usually learn an over-complete dictionary from training data
with different constraints [6], [7]. As the contents of train-
ing images vary significantly, the learned dictionary atoms
are usually not directly relevant to image patches, which
may compromise the recovery results. In order to improve
the representation capacity of a learned dictionary, multi-
ple sub-dictionaries based learning frameworks have been
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FIGURE 1. Illustrative diagram of our proposed shared and cluster-specific dictionary learning based SISR
method.

proposed [8], [9]. The patches with similar structure are
clustered into different subspaces and a sub-dictionary for
each cluster is learned separately. Many efforts have been
devoted to learning more representative sub-dictionaries by
incorporating distinctive image characteristics, such as edge
sharpness and directional orientations [10], [11]. However,
different sub-dictionaries often share a large number of sim-
ilar atoms, which could lead to unstable dictionary learning
and deteriorate reconstruction results.

Recently, since super-resolution convolutional neural net-
works (SRCNN) have achieved superior performance over
traditional sparse coding methods, neural networks have been
widely utilized for super resolution. While deeper networks
usually learn higher-level features for high quality image
reconstruction, they are computationally expensive to train
with a large number of parameters. Furthermore, for practical
SISR applications in the real world, the reconstruction results
of deep networks would be compromised due to limited
training data.

To address the above-mentioned issue, in this paper, a novel
shared and cluster-specific dictionary learning based SISR
method is proposed. As shown in Fig.1, firstly, the LR and
HR image patches extracted from training images are jointly
clustered into groups. Secondly, a set of sub-dictionaries
for individual clusters are learned together with a sub-
dictionary shared across all the clusters. That is, instead
of independently learning a sub-dictionary for each clus-
ter, our proposed dictionary learning method exploits the
inter-relationship among different clusters for deriving a
more discriminant dictionary. As a result, the non-local self-
similarity of natural images could be more effectively charac-
terized and the unique representation of each sub-dictionary
will be enhanced simultaneously. Three constraints including

group sparsity constraint, locality constraint and incoherence
penalty term are further incorporated in a unified framework
to preserve the relationship and structure among training
data in our proposed dictionary learning method. Finally,
in order to reduce the complexity of HR image reconstruction,
the corresponding projection matrix of each dictionary atom
from LR to its HR space is pre-calculated with anchored
neighborhood regression approach. Hence, instead of directly
computing the sparse representation in reconstruction stage,
an HR image could be estimated with ridge regression effi-
ciently. Our proposed method could effectively improves
SISR performance under different noisy conditions with only
a few of training data, which is well suitable for practical
applications in maritime domain.

The rest of this paper is organized as follows. Section II
reviews the related works of learning-based SISR methods
and specifically compressive sensing-based SISR methods.
Section III explains the proposed dictionary learning frame-
work in detail. Section IV presents experimental results
and discussions in comparison with several state-of-the-art
methods to evaluate the effectiveness and robustness of our
proposed method. The reconstruction results of real-world
images automatically extracted from a maritime surveil-
lance system further indicate the application of our proposed
method. Section V concludes this work with discussions on
our future research.

II. RELATED WORK
Generally, the learning-based SISRmethods could be divided
into three major categories: compressive sensing based meth-
ods, example based methods, and neighbor embedding based
methods [12].
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Note that, due to the ground breaking success of deep
learning techniques on various vision tasks, a lot of deep
learning based SISR methods have also been proposed with
favorable results. For example, Dong et al. proposed a con-
volutional neural network to estimate HR images through
an end-to-end mapping [13]. Extensions such as introducing
prior information and increasing the depth of networks have
also been proposed to further improve SISR performances
[14]–[16]. Although impressive improvements have been
achieved, these methods are usually data and computation
intensive which make them not well suitable for practical
applications. In this section, we mainly review the non deep
learning-based methods, specifically compressive sensing-
based SISR which is related to our method.

A. COMPRESSIVE SENSING-BASED SISR
Motivated by the sparse property of natural images, many
compressive sensing-based methods have been proposed.
Some of them focus directly on obtaining a more accurate
sparse representation to produce better reconstruction results.
Li et al. proposed a hybrid parametric sparse model which
learned the sparse prior of HR images from both training set
and input LR images [1]. Zhao et al. proposed an adaptive
sparse coding method which considered both sparsity and
correlation in representation to produce more suitable sparse
coefficients for image recovery [5]. Gu et al. utilized convo-
lutional filters to decompose an input LR image into patches,
and then reconstructed the HR image with predicted fea-
ture mapping through filters, which enforced the consistency
between image patches [17]. As the sparse representation
of an HR image is calculated based on dictionary atoms,
the recovery results could be improved with more accurate
dictionaries.

There have been many efforts to learn a more effec-
tive dictionary from training data. Ding et al. proposed a
convex dictionary learning method with convex constraint,
so that the dictionary atoms could be better formed by a linear
combination of training data [4]. Yang et al. proposed a cou-
pled dictionary learning method which optimized the LR and
HR dictionaries jointly [7]. As a result, more accurate recon-
struction results were achieved with a better representation of
LR and HR dictionaries. Zhang et al. proposed an algorithm
that dual dictionaries were utilized to reconstruct the main
and residual high-frequency components of an HR image,
respectively [18]. Although more accurate dictionaries can
be learned, the adaptability of local structure has not been
taken into account in the abovementioned dictionary learning
frameworks.

In recent years, there have been increasing interests on
learning multiple sub-dictionaries to better incorporate the
non-local self-similarity of training data. Dong et al. adopted
K-means algorithm to partition training data into different
clusters and learned a sub-dictionary for each cluster. The
adaptive sparse domain selection and two adaptive regular-
ization terms were further introduced to improve quality of
recovered image [19]. Yang et al. clustered image patches

into several groups and learned a geometric dictionary for
each group. A clustering aggregation and patch aggregation
were further introduced to improve the results of HR image
recovery [20]. Multiple characterizations and measurements
were also employed to obtain more accurate clustering results
of training images. Yeganli et al. employed scale-invariant
gradient-based sharpness measure to classify the training
image patches into different clusters [21]. Sub-dictionary
for each cluster was learned and sparse coefficients over
selected sub-dictionary atoms were obtained for reconstruc-
tion. Yang et al. utilized non-local similarity to cluster image
patches, and orthogonal sub-dictionaries were learned for
better reconstruction results [9]. Ahmed et al. proposed a
method to classify training images in terms of edge sharpness,
and a mapping function of each sub-dictionary was formu-
lated to calculate the projection between LR and HR spaces
[10]. Although more complicated representations have been
calculated with sub-dictionaries, the similar patterns shared
among different clusters have been overlooked, which could
compromise representation capability of learned dictionary.

B. EXAMPLE BASED AND NEIGHBOR EMBEDDING
BASED SISR
The concept of example-basedmethodwas proposed by Free-
man et al which learned the prior relationship among HR
and LR image patches with Markov Random Field. Then,
the missing high frequency details in HR image patches were
recovered with the searched matching patches from training
set [22]. Since then, many methods have been proposed to
learn correlation between HR and LR image patches with
well chosen training images. Yue et al. extracted features
from external datasets to better characterize the neighboring
and non-local information with a hybrid neural network [23].
To further exploit the self-similarity of images, Huang et al.
employed 3D scene geometry and patch search space expan-
sion to improve the recovery results with internal datasets
[24]. Recently, the mapping models using both internal and
external datasets were also proposed. Wang et al. utilized
an adaptive weight to combine two loss functions of exter-
nal and internal example-based approaches, and more accu-
rate results were obtained [25]. Although the relationships
between patches could be well modeled in these methods,
the quality of reconstructed images highly relied on the sim-
ilarity between input LR images and training data.

To solve the bottleneck of computational complexity and
memory requirements of SISR, neighbor embedding-based
methods have been proposed. Such methods were based on
the manifold learning theory, which suggested that the HR
and LR patches could form manifolds with similar local
geometry and neighborhood relationship in two distinct fea-
ture spaces. Timofte et al. introduced anchored neighborhood
regression and its variant to precompute the corresponding
projection matrix of the learned dictionary to improve the
computational efficiency of SR reconstruction [26], [27]. Sun
et al. divided the training patches into groups and learned the
mapping matrix for each group. With the partially supervised
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strategy, the class information was considered for mapping
matrix matching [28]. Although, different mapping functions
have been proposed to obtain a more appropriate transforma-
tion between HR and LR spaces, the representation capacity
of dictionary atoms is usually overlooked in the process of
calculating projection matrix.

III. PROPOSED METHOD
In this section, firstly, the basics of compressive sensing-
based SISR is introduced. Then, the detailed process of
our proposed shared and cluster-specific dictionary learning
based SISR is presented in terms of dictionary modeling, dic-
tionary learning, and image reconstruction via neighborhood
regression.

A. BASICS OF COMPRESSIVE SENSING-BASED SISR
Let zhi denote the representation of the i-th image patch
extracted from an HR training image. According to compres-
sive sensing theory, zhi can be sparsely represented with the
learned HR dictionary Dh as: zhi ≈ Dhαhi, where αhi denotes
the sparse coefficient with only a few non-zero elements.
Similarly, let zli be the corresponding patch extracted from
the LR version of this image. Then, the LR counterpart zli can
be also sparsely represented with the learned LR dictionary
Dl in the same way as: zli ≈ Dlαli.
In general, the relationship between an HR image and its

corresponding LR counterpart can be modeled by blurring
and down-sampling operator ψ as: zli ≈ 9zhi. If the dic-
tionary Dh and Dl are learned jointly, based on the scale
invariance assumption between sparse coefficients of αhi and
αli, dictionaries Dh and Dl can be also related by the same
operator as: Dl ≈ 9Dh [29]. Then, the LR image patch zli
could be approximated as follows:

zli ≈ 9zhi ≈ 9Dhαhi ≈ Dlαhi. (1)

According to Eq. (1), it can be concluded that αhi ≈ αli.
Thus, given an observed LR image patch zli, with learned
dictionaries Dh, Dl , the recovered HR image patch ẑhi could
be approximated as follows:

ẑhi ≈ Dhαi,

αi = argmin
αi

{
||zli − Dlαi||22 + λ||αi||1

}
, (2)

where αi denotes the sparse coefficient and λ is a weighting
factor which balances the effect of sparsity regularization
term. l1 norm as ||αi||1 is the most commonly used constraint
due to its effectiveness and simplicity.

For dictionary learning, the HR and LR image features
extracted from a set of training data are usually jointly trained
to preserve the intrinsic relationship between LR and corre-
sponding HR counterpart as follows:

argmin
D,αi

M∑
i=1

{
||zi − Dαi||22 + λ||αi||1

}
, (3)

where D =
[
Dl
Dh

]
, zi =

[
zli
zhi

]
and M is the total number of

extracted image patches.
In order to improve the quality of recovered images, mul-

tiple sub-dictionaries based methods have been further pro-
posed. The patches with similar structures are clustered into
the same group or cluster, and a sub-dictionary Dc is learned
for each cluster c as follows:

argmin
Dc,αi

C∑
c=1

∑
i∈Ic

{
||zi − Dcαi||22 + λ||αi||1

}
, (4)

where Dc=
[
Dcl
Dch

]
, Ic denotes a set of data in the c-th cluster

andC denotes the total number of clusters. The sparse coding
coefficient or sparse code αi and sub-dictionary Dc in the
objective function Eq. (4) could be iteratively calculated via
many optimization methods [6].

Nevertheless, the similar representation shared among dif-
ferent sub-dictionaries will lead unstable sparse recovery,
which may eventually deteriorate the reconstruction results.

B. SHARED AND CLUSTER-SPECIFIC DICTIONARY
LEARNING BASED SISR
1) DICTIONARY MODELING
To address the above issue, a shared and cluster-specific
dictionary has been introduced to improve the recovery qual-
ity. For a given training dataset, the images are divided into
overlapped patches with size s∗ s. Similar to [29], four filters
are applied to extract the first and second order gradient
maps of patches as the patch-based representation of images.
Then, K-means algorithm is carried out to cluster the training
data into C groups. To enhance the modeling capability of

learned dictionary, a shared sub-dictionary Ds =
[
Dsl
Dsh

]
is

learned together with a set of sub-dictionaries Dc=
[
Dcl
Dch

]
for individual clusters simultaneously. Hence, the dictionary
learning model can be formulated as follows:

argmin
Ds,Dc,αi

C∑
c=1

∑
i∈Ic

{
||zi − Dαi||22 + ||D

/∈c,sαi||
2
2

+||zi − Dcαci − D
sαsi ||

2
2 + λ||αi||1

}
, (5)

where D =
[
D1,D2, . . . ,DC ,Ds

]
, and αci and αsi are the

sparse codes based on Dc and Ds, respectively. D/∈c,s denotes
the dictionary atoms excludingDc andDs fromD. The second
||D/∈c,sαi||22 and third ||zi − Dcαci − D

sαsi ||
2
2 terms in Eq. (5)

are to ensure that the patches belonging to c-th cluster will
be recovered only with the atoms in Dc and Ds effectively.
In this way, the shared pattern among different clusters will be
explicitly represented with Ds and the unique representation
of each Dc is obtained.
As some common patterns may appear in several clusters,

the incoherence penalty term
C∑
i=1

C∑
j=1,j6=i

∥∥(Di)TDj∥∥2F [30] is
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introduced as follows:

argmin
Ds,Dc,αi

C∑
c=1

∑
i∈Ic

{
||zi − Dαi||22 + ||D

/∈c,sαi||
2
2

+||zi − Dcαci − D
sαsi ||

2
2 + λ||αi||1

}

+η

C∑
i=1

C∑
j=1,j6=i

∥∥∥(Di)TDj∥∥∥2
F
, (6)

where F denotes Frobenius norm and η is weighting factor.
This term penalizes the similarity of the learned dictionary
atoms among different clusters, so that the uniqueness of each
sub-dictionary Dc will be promoted. Meanwhile, the com-
mon patterns will be captured with shared sub-dictionary
Ds at same time, which makes each sub-dictionary more
representative.

The optimization problem defined in Eq.(6) could be
solved by iteratively updating the dictionary atom D and
sparse coefficient α. However, the intrinsic relationships
among training data are ignored, as the coefficient αi is
calculated independently for each image patch. Since the
image patcheswith similar representation have been clustered
into same group for sub-dictionary learning, the l1,2 mixed-

norm
C∑
c=0

∥∥αci ∥∥2 [31] is introduced to enhance the group-

level sparsity of our learned dictionary. With the help of this
constraint, the sparse coefficient αi for each image patch will
tend to be represented with dictionary atoms selected from
the same cluster.

To further incorporate the structure information in dictio-
nary modeling, locality constraint ‖Pi � αi‖22 [32] has also
been added to ensure that similar image patches will be
reconstructed with similar dictionary atoms. Denote Pi =
[pi1, pi2, . . . , piN ] as a locality adapter which penalizes the
distance between input zi with each dictionary atom, N
as the total number of dictionary atom, and symbol � as
the element-wise multiplication. In this paper, we utilize
Euclidean distance as a measurement:

pij = exp
(
||zi − dj||2

δ

)
, (7)

where dj is the j-th atoms in D and δ controls the decay speed
of locality adapter Pi.
Thus, the complete objective function of our dictionary

modeling can be formulated as follows:

argmin
Ds,Dc,αi

C∑
c=1

∑
i∈Ic


||zi − Dαi||22 + ||D

/∈c,sαi||
2
2

+||zi − Dcαci − D
sαsi ||

2
2

+λ1
C∑
c=0

∥∥αci ∥∥2 + λ2 ‖Pi � αi‖22


+η

C∑
i=1

C∑
j=1,j6=i

∥∥∥(Di)TDj∥∥∥2
F
, (8)

where λ1, λ2, and η are constant term coefficients.

2) DICTIONARY LEARNING
With the clustered training data, each sub-dictionary is
initialized with K-SVD approach due to its effectiveness

and efficiency. Then, with the initialized value, the dictionary
atoms will be optimized and updated iteratively. In this way,
the optimization problem formulated by Eq. (8) can be rewrit-
ten as follows:

argmin
αi

C∑
c=1

∑
i∈Ic


||zi − Dαi||22 + ||D

/∈c,sαi||
2
2

+||zi − Dcαci − D
sαsi ||

2
2

+λ1
C∑
c=0

∥∥αci ∥∥2 + λ2 ‖Pi � αi‖22
. (9)

Such objective function Eq.(9) can be further transformed
into the following form:

argmin
αi

C∑
c=1

∑
i∈Ic

 ||z̃i − D̃αi||
2
2 +

λ1√
2

C∑
c=0

∥∥αci ∥∥2
+
λ2√
2
‖pi � αi‖22

 , (10)

where z̃i =

 zizi
0

, D̃ =
DDc,Ds
D/∈c

.
In this way, the optimization problem determined in

Eq. (10) has been transformed as a classical group LASSO
problem which could be effectively calculated. In this paper,
we utilize the projected gradient method proposed in [33] to
determine the sparse coefficient αi for each zi.

With the determined sparse coefficient αi, each dictionary
atom will be updated while others are fixed. For the sub-
dictionaryDc of cluster c, the objective function of dictionary
update can be simplified as follows by omitting the indepen-
dent terms:

argmin
Dc

∑
i∈Ic

 ‖zi−
C∑

j=1,j/∈c
Djαji−D

sαsi − Dcαci
∥∥2
2

+
∥∥zi − Dcαci − Dsαsi ∥∥22


+2η


C∑

j=1,j6=c

∥∥∥(Dc)TDj∥∥∥2
F
+

∥∥∥(Dc)TDs∥∥∥2
F

 . (11)

The method proposed in [34] is employed to calculate the
first derivative of Eq. (11) with respect to each dictionary
atom in Dc. Then, the value making the derivative equal to
zero is chosen as the updated dictionary atom.

Similarly, the atoms in shared sub-dictionary are updated
with the objective function as follows:

argmin
Ds

C∑
c=1

∑
i/∈Ic

 ‖zi −
C∑
j=1

Djαji − Dsαsi
∥∥2
2

+
∥∥zi − Dcαci − Dsαsi ∥∥22


+2η

C∑
j=1

∥∥∥(Ds)T Dj∥∥∥2
F
. (12)

3) IMAGE SUPER-RESOLUTION VIA ANCHORED
NEIGHBORHOOD REGRESSION
While it is straightforward to obtain sparse representation of
HR image patch via Eq.(2), it would be very time-consuming,
especially when the given LR image contains a large number
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TABLE 1. Comparisons of HR reconstruction performances in terms of PSNR(dB) and SSIM for upscaling factors ×2, ×3 and ×4 on Set5 and Set14.

TABLE 2. Comparison of HR reconstruction performances on natural
images for upscaling factor ×3 in terms of PSNR(dB) and SSIM.

of sampled patches. In order to reduce the computational
cost at recovery stage, the anchored neighborhood regression
approach has been utilized.

The Euclidean distance between training samples and
learned dictionary atom is calculated, and K nearest neigh-
bors from training data are collected to constitute the local
neighborhoods kdnl , kdnh for dictionary atom dn. Then, the pro-
jection from LR space to HR space for each dictionary atom
could be pre-calculated as follows:

qdn = kdnh (kdnl
T
kdnl + λI )

−1kdnl
T
, (13)

where I denotes the identity matrix.
As a result, for an input LR image patch xli, Eq. (2) can be

reformulated as:

x̂hi ≈ Dhαi,

αi = argmin
αi

{
||xli − k

dn
l αi||

2
2 + λ ‖αi‖2

}
. (14)

The problem formulated in Eq. (14) can be converted into
ridge regression [27]. That is, instead of calculating the sparse
representation via Eq. (14), the recovered HR image patch
x̂hi is effectively projected into the HR space with the nearest
matched dictionary atom and stored matrix as follows:

x̂hi = Qxli, (15)

whereQ = [qd1 , qd2 , . . . , qdN ]. In this way, the sparse coding
calculation of each image patch is avoidable which further
improve the computational efficiency of our method.

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS
In this section, we firstly compare our proposed algorithm
with a number of state-of-the-art methods on two widely
used benchmark datasets to evaluate the effectiveness and
robustness of our proposed method. Then, we utilize the real-
word images automatically extracted by surveillance system
to further evaluate the applicability of our method in the
maritime domain.

A. EXPERIMENTAL SETTINGS
We conduct our experiments on the benchmark datasets with
the same settings in [29] where 91 images were used as
training data for dictionary learning. Set5 [35], Set14 [36] and
the images provided in NCSR [37] are used as testing data
to evaluate the performances of HR reconstruction. These
images cover a wide range of categories (e.g, animals, faces,
and natural scenes) with rich details (e.g., abundant texture).
Furthermore, we utilize the maritime surveillance images to
demonstrate the applicability of our method. As maritime
vehicles are the most interesting objects of surveillance sys-
tem, 96 images of different categories of boats selected from
MarDCT dataset [38] are utilized as training data for dictio-
nary learning. The real images automatically extracted from
an intelligent surveillance system is utilized as testing data.

In the training stage, the patch size is set to s = 3 for LR
images with the overlap of 1 pixel. The number of clusters in
K-means algorithm is set to C = 7, and the number of atoms
in both Ds and Dc is set to 256. Thus, the total number of
atoms in our dictionaries is N = (7+1)×256 = 2, 048. The
extracted patch-based image representations have been nor-
malized and according to the settings in the literature [39] and
experimental performances, the parameters in Eq. (8) are set
as follows: λ1 = 0.1, λ2 = 0.5, η = 0.15, δ = 1, 000. We fix
them for all of the experiments in this paper and good perfor-
mances have been achieved without any parameters adjusting
process under different conditions. According to the setting
in [27], the neighboring size of training data is set as K =
2, 048. In our experiments, color images are transformed into
YCbCr color space. As human vision system ismore sensitive
to luminance than chrominance, our method is only applied
to the luminance channel, and the Cb and Cr channels are
interpolated with bicubic interpolation method directly.
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To evaluate the effectiveness and robustness of our pro-
posed method, 13 state-of-the-art methods are chosen for
comparison, including Bicubic interpolation, ScSR [29],
Zeyde [36], ANR [26], A+ [27], DPSR [40], SRCNN [41],
RFL [42], REDSR (RED-based SR) [43], Liang (SRCNN-
Multitask-Pr) [14], SDS [44], Wu [45] and PSANR [28].
Two metrics, PSNR (peak signal-to-noise ratio) and SSIM
(structural similarity index measure), are chosen for quanti-
tative evaluation. In general, the higher values of PSNR and
SSIM, the better quality of reconstructed HR images. For fair
comparisons, the results of those 13 methods are excerpted
from existing publications or online websites of the authors.

B. QUANTITATIVE EVALUATION
Table 1 shows comparison results of average PSNR and SSIM
on Set5 and Set14 for upscaling factors ×2, ×3 and ×4. The
best performance is highlighted in boldface, and the second
best one is underlined. The comparison algorithms could
be roughly classified into three categories: (1) compressive
sensing based methods (such as RFL [42], ScSR [29] and
SDS [44]), (2) neighbor embedding based methods (such as
A+ [27], PSANR [28] and Wu [45]), and (3) deep learning
based methods (such as SRCNN [41] and Liang [14]).

For upscaling factor ×2, compared with the second best
results, our method achieves 0.13dB and 0.05dB improve-
ments in term of PSNR on Set5 and Set14, respectively.
Compared with the best results of other compressive sensing
based methods (RFL [42]), our method achieves 0.22dB and
0.15dB improvements in term of PSNR, respectively. These
indicate that rich details can be better represented with our
shared and cluster-specific dictionary learning method for
better reconstructed quality.

For upscaling factor ×3, compared with neighbor embed-
ding based methods (such as A+ [27], PSANR [28] and
Wu [45]), our method achieves 0.1dB, 0.02dB and 0.09dB
improvements in term of SSIM on Set5, respectively.
On Set14, our method achieves 0.15dB, 0.89dB and 0.45dB
higher than other compressive sensing methods (such as RFL
[42], ScSR [29] and SDS [44]) in term of PSNR, respectively.
Our method achieves the best performances in terms of aver-
age PSNR and SSIM against other state-of-the-art methods
on both Set5 and Set14. That is, considering the similarity and
different characteristics of dictionary atoms explicitly would
further improve the accuracy of image super-resolution.

For upscaling factors ×4, compared with deep learn-
ing based methods (such as SRCNN [41]), our method
achieves 0.3dB and 0.19dB improvements in term of PSNR
on Set5 and Set14, respectively. Compared with Liang [14]
which incorporates additional prior information based on
SRCNNnetwork, our method could also achieves 0.29dB and
0.14dB improvements, respectively. These indicate that our
shared and cluster-specific dictionary learning based method
has better performances with less training data and higher
computational efficiency.

The detailed reconstruction results for upscaling factor
×3 of the most commonly used 5 images chosen from

FIGURE 2. Reconstruction results for upscaling factor ×3 on three sample
images (’butterfly’, ’leaves’ and ’comic’ from Set5 [35], Set14 [36] and
NCSR [37], respectively). (a) Ground truth. (b) Bicubic. (c) ScSR [29].
(d) Zeyde [36]. (e) ANR [26]. (f) Our method.

benchmark datasets are shown in Table 2. In average, our
method performs 0.4 dB better than the second best result
of REDSR [43] method in term of PNSR and 0.0007 better
than A+ [27] method in term of SSIM. For each image, our
method performs either best or second best among compared
methods in terms of both PSNR and SSIM.
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FIGURE 3. Average reconstruction results of different methods at
different noise conditions for upscaling factor ×3 on Set5.

C. QUALITATIVE EVALUATION
In Fig.2, we show the reconstruction results for upscal-
ing factor ×3 on sample images chosen from each bench-
mark testing dataset. It is clearly noticed that our proposed
method preserves more detailed information (e.g., edges)
and produces less artifacts than other methods. For example,
the reconstruction results via the bicubic method generally
contain a large amount of blur and tend to be over-smooth.
Although existing compressive sensing-based methods (such
as ScSR [29] and Zeyde [36]) are able to reconstruct more
details, they are limited in recovering fine texture of natu-
ral images and usually introduce watercolor-like artifacts to
reconstructed images.

D. ROBUSTNESS ANALYSIS
To further investigate the robustness of our proposed method,
Gaussian noises with zero mean and different levels of
variance (σ = 5, 10, and 20) are added to testing images.
In Fig.3, we show the average reconstruction performances
of different methods at different noise conditions for upscal-
ing factor ×3 on Set5. It is noticed that with the increase
of noise variance, the quality of reconstructed images will
decrease for all the methods. As the HR image is recov-
ered with projection matrix of effectively learned dictio-
nary, our approach is not very sensitive to noise interference
and performs best at different noise levels in terms of both
PSNR and SSIM.

FIGURE 4. Reconstruction results of different methods at different noise
conditions for upscaling factor ×3 on ’butterfly’ and ’baby’ from Set5. (a)
Bicubic. (b) ScSR [29]. (c) ANR [26]. (d) Our method.

Visual results under different noise conditions are shown
in Fig.4. The detailed images demonstrate that other methods
(e.g., the compressive sensing-based method ScSR [29] ) are
more sensitive to noises for images containing finer struc-
tures. Even under the condition of noise variance σ = 20, our
method could still preserve the edge well and recover smooth
regions effectively.

E. SUPER-RESOLVING REAL-WORD MARITIME
SURVEILLANCE IMAGES
Fig.5 shows the reconstruction results for upscaling fac-
tor ×2 on real-word images extracted from a maritime
surveillance system. Note that, the blur kernel and ground
truth HR images are not available in this case. In mar-
itime environments, the captured surveillance images own
strong characterizations consisting of various boats. As our
method learns shared and cluster-specific dictionaries simul-
taneously, the representation of specific structures will be
enhanced to reconstruct more favorable results for real-world
images. Comparing with other methods, the hull mark and
characters show that the recovery images produced by our
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FIGURE 5. Reconstruction results for upscaling factor ×2 on real-world maritime surveillance images. (a) Bicubic.
(b) ScSR [29]. (c) ANR [26]. (d) Our method.

FIGURE 6. Speed and accuracy trade-off on Set5 and Set14 for upscaling factor ×3.

method contain less noise and block effect. The maritime
image captured in foggy weather is also selected to evalu-
ate the robustness of our method. It shows that our method
could effectively reduce the fuzzy pattern between characters
and boat edge in bad weather with the learned shared and
cluster specific sub-dictionaries. Moreover, with the help of
anchored neighborhood regression, the LR image could be
more efficiently recovered in reconstruction stage.

F. COMPUTATIONAL TIME
Fig.6 shows the trade-offs between running time and accuracy
in term of PSNR on Set5 and Set14 for upscaling factor ×3.
We evaluate the speed of each state-of-the-art method on the
same machine with 3.6 GHz Interl i7 CPU (16G Memory).
As our method learns the common pattern with a shared
dictionary explicitly in training stage, the cluster-specific
dictionaries are more representative which leads to better

results in reconstruction stage. With the help of anchored
neighborhood regression, the computational efficiency of our
method is further enhanced. Hence, the proposed method
could achieve the best results with faster speed, which makes
it more suitable for practical applications.

V. CONCLUSION
In this paper, we present a novel shared and cluster-
specific dictionary learning method for single image super-
resolution. Instead of learning a dictionary within each cluster
individually, our proposed method takes the content simi-
larity among clusters into account so that cluster-specific
dictionaries are discriminant for specific content reconstruc-
tion. To preserve the relationship and structure information
among image patches in dictionary modeling, group sparsity
constraint, locality constraint and incoherence penalty term
are introduced in a unified framework. In addition, at the
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reconstruction stage, instead of calculating the sparse rep-
resentation, a neighborhood regression method is devised so
that an HR image can be efficiently reconstructed with pre-
calculated projection matrix based on the learned dictionar-
ies. Both quantitatively and qualitatively evaluations on two
widely used benchmark datasets demonstrate the effective-
ness and robustness of our proposed method over a large
number of existing super-resolutionmethods. The reconstruc-
tion results of real-word maritime surveillance images further
demonstrate the capacity of our method. Our future work will
focus on devising more adaptive clustering algorithms under
the proposed framework.
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