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ABSTRACT In the MIMO broadcasting system, channel state information (CSI) is often used for data
detection at the receiver or preprocessing techniques such as the power control and user scheduling at
the transmitter and hence, the study of its acquisition is important. Usually, the CSI can be obtained by
the training-based channel estimation. Assuming that the users have the channels’ statistical information
and adopt the minimum mean-square-error (MMSE) receivers, this paper studies how to design an optimal
training sequence to minimize the total weighted mean square error (MSE) of channel estimation. Following
this objective, we formulate this problem as a positive semidefinite problem (SDP) with two constraints,
and further transform it into a dual problem. In the solving process of the dual problem, we model it as an
optimization problem on the positive definite matrix manifold and solve it by use of the iterative geodesic
equation on the matrix manifold. The convergence and correctness of the proposed method are demonstrated
by computer simulation; the effects of key system parameters on the weighted MSE are also investigated.
Under various system configurations, the superiority of the proposed method is shown by comparing with a
few other existing schemes.

INDEX TERMS Pilot, MIMO broadcasting, positive definite matrix manifold.

I. INTRODUCTION
Multi-input multi-output (MIMO) broadcasting systems
model a network in which there is one transmitter and
multiple receivers/users, both of which are equipped with
multiple antennas, and the transmitter sends coded data that
usually consist of all users’ desired information to the users
for further decoding. Since such a system has wide appli-
cations in communications, it has been always attracting
attention [1]–[15].

References [1]–[3] are pioneering research articles on
MIMO broadcasting systems. In [1], [2], the authors estab-
lished the duality between the MIMO broadcast channel
(BC) and MIMO multiple access channel, and pointed out
that the achievable region of the ‘‘dirty paper’’ achieves the
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approving it for publication was Prabhat Kumar Upadhyay.

sum-rate capacity of the MIMO BC. Jindal et al. proposed
an iterative water-filling algorithm to maximize the sum-rate
of the MIMO BC, subject to the users’ power constraints [3].
Later, researchers studied MIMO broadcasting systems from
various aspects and also exploited a few novel applica-
tions or systems of this type. In [7], assuming the channel
state information (CSI) is not ideal, the authors studied the
user scheduling problem. In [8], the authors considered the
problem of the energy efficiency optimization in the MIMO
BC and proposed a novel optimization framework. There are
also researches that introduced novel techniques or applica-
tions into the MIMO BC, such as the cognitive ratio [9],
terrestrial broadcast TV [11], energy harvesting [12], decode-
forward relay [13], etc.

Most of the above researches are conducted with the aid
of the CSI, including the user scheduling algorithm, robust
energy harvesting maximization, and so on. Usually, the
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acquisition of the CSI is completed by channel estimation at
the receiver, which plays an important role in communica-
tion systems. According to the design criterion, there exist
a few classical channel estimation methods, including the
least square (LS) estimator [16], minimummean square error
(MMSE) estimator [16], [17], linear MMSE (LMMSE) esti-
mator [18], maximum likelihood (ML) estimator, etc. In [16],
the authors investigated channel estimation inMIMO systems
including the conventional LS and MMSE algorithms and
they also proposed the scaled LS (SLS) and relaxed MMSE
methods with less channel statistics information. According
to whether there exist training sequences or not, channel
estimation is roughly divided into three categories: blind esti-
mation [22], semi-blind estimation [21], and training-based
estimation [17]–[20]. In [22], the authors proposed a novel
blind channel estimation method by use of the 4th cumulants
for MIMO space–time block coded systems. Notice that as
the training-based estimation method is more popular com-
pared with the other two kinds of methods, this article mainly
focuses on the training-based one.

Although most researches in MIMO broadcasting systems
require the CSI, few articles study the acquisition of it. In fact,
there exists some researches addressing the CSI; however,
their focuses lie in how the incomplete CSI affects the sys-
tem performance [23] or how to design robust precoders to
combat the CSI error. On the other front, we also note that
a lot of researches about channel estimation have been done
in point-to-pointMIMO or other systems [17]–[20]; however,
they cannot be applied to theMIMOBCdirectly. Based on the
above observations, this article considers the training-based
channel estimation for MIMO broadcasting systems.

Specifically, the aim of this article is to design an opti-
mal pilot/training sequence to minimize the total weighted
MSE of channel estimation, assuming that all users adopt
the MMSE channel estimators. Consequently, we formulate
this problem as a positive semidefinite problem (SDP) with
two constraints including the positive semidefinite constraint
and the power constraint of the pilot covariance matrix. The
contributions of this article are briefly summarized as follows.

1) We propose a novel method to design the optimal
pilot sequence which minimizes the weighted chan-
nel estimation MSE. The convergence of the proposed
method is demonstrated and the correctness is also
verified via another method based on convex optimiza-
tion softwares. A few existing works are evaluated and
analyzed, including the isotropic transmission, themin-
imum variance unbiased (MVU) estimator, etc. Under
various system settings, we compare the system per-
formance of the proposed methods with that of these
existing methods.

2) In the pilot sequence design, we incorporate the theory
of information geometry. More concretely, we trans-
form the original SDP into a dual problem at first and
solve the dual problem by use of the iterative geodesic
equation on the positive definite matrix manifold. It is
worth noting that in the search of minimum of the

SDP’s Lagrangian function, we prove that, the positive
semidefinite matrix set, on which the matrix variables
of this function are defined, can be replaced by the pos-
itive definite matrix set. In this way, the geodesic equa-
tion on the positive definite manifold can be applied to
solving the SDP.

3) We provide another proof on the convexity of the SDP’s
objective function.

The rest of the article is organized as follows.
Section 2 illustrates the MIMO broadcasting system model.
Section 3 formulates the problem and proposes the pilot
design algorithm. Simulation results are presented in
Section 4, with concluding remarks in Section 5.
Notations. Vectors are denoted by boldface lowercase let-

ters and matrices are denoted by boldface uppercase letters.
The notation E(.) represents the statistical expectation; Cm×n

stands for the sets of m × n complex matrices; ⊗ is the
Kronecker product. We write CN (µ, R) to denote a complex
Gaussian distribution with mean µ and covariance matrix
R; for a matrix X, the notations X1/2, Tr(X), XH , and X∗
and denote its square root, trace, Hermitian transpose, and
conjugate, respectively; vec(X) is a column vector created
by stacking the columns of X;X�0 and X�0 mean that X
is positive semidefinite and positive definite, respectively;
besides, Im is an m× m identity matrix.

FIGURE 1. An MIMO broadcasting system model.

II. SYSTEM MODEL
As depicted in Fig. 1, consider an MIMO broadcasting sys-
tem with one transmitter TX and K receivers/users

{
RX,i

}
,

in which Tx and
{
RX,i

}
haveNT and {NR,i } antennas, respec-

tively. The system input-output relationship can be mod-
eled as

yi(n) = Hix(n)+ ni(n), i = 1, · · · ,K (1)

where x (n) ∈ CNT×1 =
∑K

i=1 xi (n) is the compos-
ite data sent from the transmitter at the n-th time slot,
tr
[
x (n) (x (n))H

]
≤ PT , xi (n) ∈ CNT×1 is the data for

user i, PT is the maximum transmission power, and yi (n) ∈
CNR×1 is the received signal for user i; Hi ∈ CNR,i×NT is
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the flat fading MIMO channel from the transmitter to user i;
ni ∈ CNR,i×1 is the i.i.d complex Gaussian noise vectors that
follows CN

(
0, σ 2

i INR,i
)
.

The channel matrix Hi can be further modeled as

Hi = θ
1/2
R,i Hω,iθ

1/2
T ,i (2)

in which the positive definite matrices θR,i and θT ,i are
channel covariance matrices at the receiver and the transmit-
ter end, respectively; Hω,i is a random matrix having i.i.d.
complex Gaussian random variables with zero mean and unit
variance, standing for the uncorrelated scattering. Note that
the channel is assumed to be block fading and hence is time-
invariant within the time period of interest.

Before the user data transmission, a pilot sequence will
be sent from the transmitter in order to perform channel
estimation at the receivers. Denote the pilot sequence as P ∈
CNT×D and it also satisfies the transmission power constraint
tr
(
PHP

)
= PT , where D is the number of time slots and PT

is the total power for pilot transmission. Stacking the user
received signal set {yi (n) , i = 1, . . . ,K , n = 1, . . . ,D}
during the pilot transmission, we have

Yi ,
[
yi(1) yi(2) . . . yi(D)

]
= HiP+ Ni (3)

where Ni =
[
ni (1) ni (2) . . . ni (D)

]
∈ CNR,i×D is the

stacked noise matrix for the i-th user.
In this article, the aim of the pilot design is to minimize the

weighted total mean square errors of all channel estimators
at their respective receivers, meanwhile satisfying the total
power constraint for pilot transmission. In addition, for the
sake of performance evaluation, assume that the noise power
σ 2
i = σ

2
n ,∀i, and define the signal-to-noise ratio (SNR) as

SNR = PT /σ 2
n .

Note that as the definition of the pilot-to-noise ratio (PNR)
is the same with SNR, we use the latter one in subsequent
sections.

III. THE PROPOSED OPTIMUM PRECODER DESIGN
A. PROBLEM FORMULATION
The MMSE estimator is widely adopted for channel
estimation in communication systems, since it has moderate
computational complexity and good performance. Hence,
we consider MMSE estimation during the pilot transmission,
which means that all receivers are equipped with MMSE
estimators and have their respective channel statistical
information.

First, from the definition of Hi in (2), the covariance of
vec(Hi), θi, is given by

θ i = θ
T
T ,i ⊗ θR,i (4)

It is well known that, the MMSE estimator ĤMMSE,i for the
channel matrix Hi is given by [17]

vec
(
ĤMMSE,i

)
= θ iP̃H

(
P̃θ iP̃H + IDNR,i

)
vec (Yi) , (5)

inwhich P̃ = PT⊗INR,i . The error covariancematrixCMMSE,i
becomes

CMMSE,i , E
{[
vec (Hi)− vec

(
HMMSE,i

)]
×
[
vec (Hi)− vec

(
HMMSE,i

)]
}
H

=

(
θ−1i + P̃H P̃/σ 2

i

)−1
(6)

Subsequently, the channel estimation MSE and normalized
MSE (NMSE) of user i can be expressed as

MSEi = E
{∥∥vec (Hi)− vec

(
HMMSE,i

)∥∥2}
= tr

[(
θ−1i + P̃H P̃/σ 2

i

)−1]
, (7a)

NMSEi = MSEi/ tr (θ i) . (7b)

Therefore, with (7), we define the total weighted NMSE
for all users as

f (P) =
K∑
i=1

wiNMSEi, (8)

where wi is the weight for user i, 0 ≤ wi ≤ 1, and
∑

i wi = 1.
Then, we formulate the problem on the pilot design.

From (8), it is seen that the pilot matrix P plays an important
role in the total NMSE equation. The aim of this article
is to find the optimum pilot matrix to minimize the total
NMSE, meanwhile meeting the pilot power constraint. Based
on the above, the optimization problem, denoted as P1, can be
formulated as

P1 : min
P

f (P) =
K∑
i=1

wiNMSEi =
K∑
i=1

wi

tr
[
θ−1i +

(
PT ⊗ INR,i

)H
×

(
PT ⊗ INB,i

)
/σ 2

i

]−1
/ tr (θ i) (9)

s.t. tr
(
PHP

)
= PT (10)

Let Q = P∗PT and we refer to it as the pilot covariance
matrix. It is clear thatQ ∈ CNT×NT is Hermitian and positive
semidefinite. Considering(

PT ⊗ INR,i
)H (

PT ⊗ INR,i
)
=

(
P∗PT

)
⊗ INR,i ,

the problem P1 can be written as another form

P2 : min
Q

f (Q) =
K∑
i=1

witr[(
θ−1i +Q⊗ INRi/σ

2
i

)−1]
/ tr (θ i)

s.t. tr(Q) = PT , Q � 0

Remark 1:Theweights in Eq. (8) are preconfigured according
to the importance of users and the users of high importance
are given large weights. Often, the users can be regarded as
equally important and their weights are identical.

VOLUME 7, 2019 99591



W. Zhou et al.: Optimal Pilot Design for MIMO Broadcasting Systems

Remark 2: In the pilot design problem, the statistical CSI
including

{
θR,i

}
, and

{
θT ,i

}
, and

{
σ 2
i

}
is required and this can

be obtained by a period of measurement. Measuring
{
σ 2
i

}
is

easy to complete by the receivers and its process is omitted
for brevity. The measurement of covariance matrices includes
the following steps. First, the transmitter sends pilots and
the receivers perform channel estimation to obtain the chan-
nel estimates, denoted by

{
Ĥ(i)
k , i = 1 · · ·Nsa, k = 1 · · ·K

}
,

where Ĥ(i)
k is the i − th channel estimate for user k , Nsa is

the number of samples. Second, the transmitter and receiver
covariance matrices can be estimated as

θ̂T ,k =
1
Nsa

Nsa−1∑
i=0

(
Ĥ(i)k

)H
Ĥ(i)k

and

θ̂R,k =
1
Nsa

Nsa−1∑
i=0

Ĥ(i)k
(
Ĥ(i)k

)H
. (11)

IfNsa is large, θ̂T ,k ≈ θT ,k and θ̂R,k ≈ θR,k . Finally, when the
measurement is completed, the receivers have the statistical
CSI and then feed it back to the transmitter.

B. PRELIMINARIES OF THE POSITIVE
DEFINITE MATRIX MANIFOLD
In recent years, matrix information geometry has been inves-
tigated and applied in neural network and information engi-
neering [24]–[28]. By use of it, some problems can be
converted into optimization problems on matrix manifolds.
In [25], the authors formulated a network control problem
as a cost function that involves matrix variables subjected to
a few constraints. They further modeled this problem as an
optimization problem on matrix manifolds to search its min-
imum value. In [26], for a system with multiple sensors for
data collection, the power spectral density (PSD) matrices of
the received signals were modeled as a so-called PSD matrix
manifold in the signal space; by introducing new Riemannian
metrics, novel algorithms were exploited to find the means
andmedians of the PSDmatrices. In [27], the author proposed
a novel metric-learning method that operates on logarithms
of symmetric positive definite (SPD) matrices, in order to
overcome the low efficiency of conventional algorithms in
image set classifications.

In this article, the theory or results on positive definite
matrix manifold will be utilized to solve the problem of pilot
design. Therefore, a few preliminaries are provided in the
followings.

Generally, an n×n complex Hermitian matrixM is said to
be positive definite if the scalar zHMz positive for an arbitrary
nonzero n×1 complex column vector z. All n×n positive def-
inite matrices construct a positive definite Hermitian matrix
manifold, denoted as SPD (n). Define the Riemann metric on
SPD (n) as follows [24],

〈A1,A2〉M = tr
(
M−1A1M−1A2

)
(12)

where M ∈ SPD (n), A1,A2 ∈ TMSPD (n), and TMSPD (n)
is the tangent space at the point M. It can be proved that
the positive definite matrix manifold SPD (n) with such a
metric is a complete Riemann manifold. Then, we present the
natural gradient of a function.

Proposition 1: If the function f : SPD (n)→ R is smooth,
with a Riemann metric defined by (12), its natural gradient
∇Mf (M) is given by [24]

∇Mf (M) =M
∂f
∂M

M, (13)

where ∂f
∂M denotes the partial derivative at the point M in

Euclidean space.
Besides, the concept of geodesic is very important in the

optimization of information geometry. The term geodesic
comes from geodesy, the science of measuring the Earth.
Originally, a geodesic was the shortest route between two
points on the Earth’s surface. Now, it is generalized and
defined as the shortest route between two points on a
manifold. The following proposition presents the geodesic
equation.

Proposition 2: For the positive definite manifold SPD (n),
the geodesic that starts fromM0 ∈ SPD (n) with its direction
A ∈ TM0SPD (n), is parameterized as

γ (t) =M1/2
0 exp

(
tM−1/20 AM−1/20

)
M1/2

0 (14)

C. THE PROPOSED PILOT DESIGN METHOD
In this subsection, a numerical algorithm will be proposed
to solve P2. We can prove that the objective function f (Q)
of P2 is convex. Though the conclusion can be inferred
from Proposition 1 in Ref. [20], herein, we provide another
proof which is shown in Appendix A. Observe that there
are two constraints in P2. Clearly, both the trace constraint
and the positive semidefinite constraint are linear and hence
convex. When the optimalQ is acquired, by taking the eigen-
decomposition of Q, i.e.,Q = UQ3QUH

Q , the optimal pre-

coder P can be readily chosen as P = UQ3
1/2
Q .

First, the Lagrangian of P2 can be expressed as

L(Q, u) = (Q)+ u [tr(Q)− PT ]

=

K∑
i=1

wi tr
[(
θ−1i +Q⊗ INR,i/σ

2
i

)−1]
/ tr (θ i)

+u [tr(Q)− PT ] (15)

where u ≥ 0 is an introduced auxiliary variable.
Then, with (15), we define a dual function as

g(u) = min
Q≥0

L(Q, u). (16)

With (16), the dual problem of P2 can be formulated as (P3)

P3 : Jdu = max
u≥0

g(u). (17)

It is obvious that there exists a strict feasible point for P2 so
that the Slater condition is satisfied. Therefore, there is no
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dual gap between P2 and P3. In other words, the two problems
are equivalent.

Next, we consider how to solve P3. The problem-solving
trait is divided into two steps: 1) given u, obtain the optimal
Q and g(u); 2) search over u and find the minimum value
of g(u). Notice that Q in the function L (Q, u) must be
positive semidefinite. If utilizing the conventional gradient
decent algorithm to solve (16), we cannot guarantee the next
iterative Q still be positive semidefinite. Hence, we resort
to the theory of matrix information geometry. Specifically,
we change the positive semidefinite constraint into positive
definite and adopt the geodesic equation (14) to solve (16). It
can be proved that solving min

Q�0
L(Q, u) is equivalent to solv-

ing min
Q�0

L(Q, u) (see Appendix C). In fact, this also illustrates

that the positive semidefinite constraint of Q in P2 can be
replaced by the positive definite constraint.

Differentiating L (Q, u) with respect to Q, one has (see
Appendix B)

∂L (Q, u)
∂Q

= −

K∑
i=1

[wi/tr (θ i)]Gi + uINT , (18)

where Gi ∈ CNT×NT =
(
Gi,mn

)
, Gi,mn = tr

(
Bi,nm

)
, Bi ∈

C(NTNR,i)×(NTNR,i) =
(
Bi,mn

)
, Bi,mn ∈ CNR,i×NR,i is the

(m, n)-th block of Bi, Bi = A−2i /σ 2
i , and Ai = θ−1i +(

Q⊗ INR,i
)
/σ 2

i .
According to Proposition 1, the natural gradient of.

L (Q, u) is given by

∇QL (Q, u) = Q
∂L (Q, u)
∂Q

Q. (19)

With the geodesic equation in Proposition 2, it is easy to
present its iterative form:

Qi+1=Q
1/2
i exp

[
−tQ−1/2i ∇QiL (Qi, u)Q

−1/2
i

]
Q1/2
i , t > 0.

(20)

Consequently, given u, we propose the following sub-
algorithm to solve g (u) and obtain Q afterwards.

Sub-algorithm I: Solve g (u)
1: Initialize the iteration index i:= 0 and the searching step
t ,0 ≤ t ≤ 1, and choose an arbitrary NT × NT complex
matrix as Q(0).

2: At the i-th iteration, compute the search direction
∇Q(0)L

(
Q(0), u

)
according to (19).

3: Update the matrix Q according to (20).
4: Increase the iteration index i := i+ 1 and repeat 2-4
until L(Q, u) converges.

The above proposed sub-algorithm will compute the
optimal Q and corresponding g(u), given u. Based on
Sub-Algorithm 1, we further propose a decent algorithm,
termed as the Main algorithm 1, to solve the dual problem
P3, summarized as follows.

Main algorithm I: Solve the Dual Problem P3 and Output
the Optimal Q

1: Initialize the iteration index i = 0, (0)u ≥ 0, the searching
step s > 0, and the constriction factor 0 < β < 1;
compute g

(
u(0)

)
and Q(0) according to Sub-algorithm

1.
2: Update u(i+1) according to
u(i+1) = max

(
0, u(i) + s1u(i)

)
, where 1u(i) is the

derivative of g(u) with respect to u at u(i) and it is derived
as

1u(i)
dg (u)
du

∣∣∣∣
u=u(i)

= Tr
[
Q(i)

]
− PT . (21)

3: Compute g
(
u(i+1)

)
and Q(i+1) according to Sub-

algorithm 1. If g
(
u(i+1)

)
< g

(
u(i)
)
, s := s×

β, and go to step 2.
4: Increase the iteration index i := i+ 1 and repeat 2-4

until g(u) converges.

FIGURE 2. The flowchart of the proposed algorithm.

The flow chart of Main-algorithm 1 is depicted in Fig. 2.
With the proposed Main-algorithm 1 above, we will obtain
the optimal Q, denoted as QOPT , and the minimum g(u).
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According to the duality principle, the minimal MSE for the
original problem P2 is g(u)’s minimum and the optimalQ for
P2 is also QOPT .

FIGURE 3. The system working sequence diagram.

Besides, the whole system process is shown in Fig. 3 and
summarized as follows.

1) Obtain the statistical CSI including
{
θR,i

}
,
{
θT ,i

}
, and{

σ 2
i

}
by a period of measurement.

2) Solve the optimal pilot matrix according to Main
algorithm 1.

3) Enter the pilot transmission phase: the transmitter send
the optimal pilot matrix and the receivers conduct channel
estimation.

4) Enter the data transmission phase.
Note that, as aforementioned in Section II, the channel

is block-fading and a block consists of a pilot transmission
phase and a data transmission phase.

D. COMPUTATIONAL COMPLEXITY ANALYSIS
Usually, the number of floating point flops is used to measure
of the complexity of an algorithm. Herein, a flop is defined as
one floating point operation and has computational complex-
ityO(1). Note that the matrix productX1X2, requiresO(mnk)
flops, where X1 ∈ Cm×n, X2 ∈ Cn×k ; for an n × n matrix,
both its inverse and eigen-decomposition operations requires
O(n3) flops [31].

For the Main algorithm 1 and Sub-algorithm 1, suppose
that numbers of iterations required to reach the given accu-
racy are T1 and T2, respectively. Observe that, the main
computation of the proposed method lies in computing (19)
and (20). The computation of (19) requires O

[
N 3
T

(
Nmax
R

)3]
flops, where Nmax

R = max
i=1...K

NR,i;; if the eigenvector

approach is adopted to calculate the matrix exponential
function [31], the computation of (20) requires O

(
N 3
T

)
flops. Therefore, the complexity of the proposed method

is T1T2 × O
[
N 3
T

(
Nmax
R

)3
+ N 3

T

]
= T1T2O

[
N 3
T

(
Nmax
R

)3],
where Nmax

R = max
i=1···K

NR,i.

IV. SIMULATION RESULTS
Computer simulation has been deployed to evaluate the per-
formance of the proposed pilot-design algorithm, and also
compare a few other existingmethods. TheMIMObroadcast-
ing system model depicted in Fig. 1 is considered, in which
the Rayleigh flat fading channel is adopted [32], [33]. The
exponential correlation model is adopted as the channel cor-
relationmatrix, with its (i, j)-th entry being ρ|i−j|, in which the
constant ρ is the correlation coefficient. Further, define ρTi as
the transmitter correlation coefficient for θT ,i and ρRi as the
receiver correlation coefficient for θR,i, respectively. Unless
otherwise specified, the weights in (8) are identical, i.e.,

FIGURE 4. The iterates of g(u) and u.

wi = 1/K , ∀i. We use the notation (K , NT , NR) to represent
a K -user NT ×NR system, where each user has NR antennas.
However, when users have different number of antennas, such
a notation is no longer suitable and this will be specially
stated.

A. THE CONVERGENCE AND CORRECTNESS
OF THE PROPOSED METHOD
Fig. 4 shows the convergence of the u and g(u), in which a
(2, 2, 2) broadcasting system is considered. The correlation
coefficients ρT1 , ρ

T
2 , ρ

R
1 , and ρ

R
2 are set to 0.5, 0.2, 0.1, and

0.5, respectively. Two cases of SNR = 6 dB and 10 dB are
included. For both cases, we set u = 0 as its initial. Observe
from Fig. 4a that, for SNR = 6 dB and 10 dB, after a few
iterations, u converges to about 0.0058 and 0.0484, respec-
tively. Meanwhile, for SNR = 6 dB in Fig. 4b, the function
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TABLE 1. The transmitter and receiver coefficients with different system
configurations.

FIGURE 5. The NMSE comparison between the proposed method and the
one based on the CVX software.

g(u) rapidly increases from−1.05 to 0.19 at the first iteration,
and then approaches 0.31 gradually. Similar phenomena can
be found for SNR= 12 dB. These results have well demon-
strated the convergence of the function g(u).
Fig. 5 compares the NMSE performance between the pro-

posed method and convex (CVX) software based method.
As P2 is convex, it can be solved by convex optimization
softwares directly [29]. In this figure, two scenarios are
considered, including a two-user 2×2 system and a three-
user 3×3 system. For the two-user system, the correlation
coefficients ρT1 , ρ

T
2 , ρ

R
1 , and ρ

R
2 are set to 0.1, 0.2, 0.5,

and 0.6, respectively; for the three-user system, the corre-
lation coefficients ρT1 , ρ

T
2 , ρ

T
3 , ρ

R
1 , ρ

R
2 , and ρ

R
3 are set to

0.1, 0.5, 0.26, 0.2, 0.6, and 0.5, respectively. Observe that,
the systemNMSE is decreased with increasing SNR. At fixed
SNR, the NMSE of the (2, 2, 2) system is less than that
of the (3, 3, 3) system. At SNR = 12 dB, the NMSE gap
between the two cases is about 1.4 dB. For both cases, there
is nearly no NMSE gap between the proposed method and the
CVX-software based method.The results have well verified
the correctness of the proposed method.

FIGURE 6. The effect of the weight of user 1 on the NMSE.

Besides, TABLE 2 listed the optimal Q’s and the optimal
pilot matrices under several system configurations, where the
corresponding transmitter and receiver coefficients are listed
in TABEL 1.

B. THE EFFECT OF KEY SYSTEM PARAMETERS
Fig. 6 shows the effect of the weight of user 1, w1, on the
NMSE. A two-user 2×2 system is studied, in which the
transmitter and receiver correlation coefficients can be found
in TABEL I. Two cases of SNR = 4 dB and SNR = 6 dB
are include. Observe that for both cases, the total NMSE is
decreased with increasing w1. For w1 = 0/1, the pilot is
designed only with respect to user 2/user 1; for 0< w1 <1,
both two users are considered. Given 0< w1 <1, the design
will make a compromise between two users and satisfice their
partial performance. The optimal pilot of P1 is not optimal for
each user and both the two users cannot achieve their respec-
tive minimum values. For instance, at SNR = 4 dB, when
considered separately, the minimum NMSE1 and NMSE2
are −4.14 dB and −3.90 dB, respectively. Given w1 = 0.5,
substituting the optimal pilot of P1, one has NMSE1 =

−4.09 dB>−4.14 dB andNMSE2 =−3.87 dB>−3.90 dB.
Fig. 7 shows the effect of the SNR on the eigenvalues

of the pilot covariance matrix Q. Two scenarios are con-
sidered, including a two-user 2×2 system and a two-user
3×1 system, where the covariance coefficients can be
found in TABEL I. The notation pi denotes the i-th eigen-
value of Q. For the two-user 2×2 system, observe that at
SNR = 0 dB, the gap between two eigenvalues is about 7 dB.
As SNR increases, the gap is decreased and nearly disappears
for SNR ≥ 15 dB. Similar phenomena can be found in the
other scenario. This indicates that, at high SNR, the optimal
Q approaches PT /NT INT and the optimal transmission
scheme approaches the isotropic transmission.

Fig. 8 presents the effect of the transmitter/receiver antenna
number on the systemNMSE, where the system has two users
and the correlation coefficients ρT1 , ρ

T
2 , ρ

R
1 , and ρ

R
2 are set to
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TABLE 2. The optimal Q’S and pilot matrices.

FIGURE 7. The effect of SNR on the eigenvalues of the pilot covariance
matrix Q.

0.8, 0.7, 0.1, and 0.2, respectively. In Fig. 8a, we study the
effect of transmitter antenna number NT on the NMSE in a
(2, NT , 2) system. Clearly, as NT increases, the NMSE
increases for both SNR = 5 dB and 10 dB. In Fig. 8b,
the number of transmitter antennas NT = 3 and the number
of antennas for user 1 is NR,1 = 2. This subfigure shows
the effect of receiver antenna number of user 2, NR,2, on the
NMSE. Observe that there is nearly no variation as NR,2
increases from 2 to 6. Hence, these indicate that only the
transmitter antenna number affects the NMSE and there
is a positive correlation between them.

Fig. 9 presents the effect of the correlation coefficients of
user 1 on the system NMSE, where a (2, 4, 3) system and
a (3, 4, 3) system are included. In Fig. 9a, for the (2, 4, 3)
system, the coefficients ρT2 , ρ

R
1 , and ρ

R
2 are 0.65, 0.72, and

0.15, respectively; for the (3, 4, 3) system, the coefficients
ρT2 , ρ

T
3 , ρ

R
1 , ρ

R
2 , and ρ

R
3 are 0.65, 0.53, 0.72, 0.15, and 0.45,

respectively; for both systems, only ρT1 varies. Observe that
the NMSE of the 3-user system is larger than or equal to that
of the 2-user system on the whole. Increasing the transmitter
coefficient decreases the NMSE, no matter what the user
number or the SNR is. Similar phenomena can be found

FIGURE 8. The effect of the transmitter/receiver antenna number on
NMSE.

in Fig. 9b. Therefore, the above illustrates that both the
transmitter and receiver coefficients are negative corre-
lated with the NMSE.
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FIGURE 9. The effect of the correlation coefficients of user 1 on NMSE.

C. THE COMPARISON BETWEEN THE PROPOSED
METHOD AND A FEW EXISTING METHODS
In Fig. 10, the NMSE performance of four different meth-
ods is compared. The isotropic transmission refers to P =
√
PT /NT INT and the receivers adopt the MMSE estima-

tors. The minimum variance unbiased (MVU) estimator
and the relaxed MMSE (RMMSE) estimator were proposed
in Ref. [8] and the details are omitted for brevity. The above
three existing methods are used as baseline comparisons.

We consider a 2-user 2×2 system and a 3-user 4×2 system,
where their respective correlation coefficients are set accord-
ing to TABLE 1. Besides, considering the future scenario of
massive MIMO, the system with a higher level of quantity
is also included, in which NT = 64, K = 16, ρTk =
(k−1)/K , and ρRk = 1−k/K , k = 1· · ·K . In Fig. 10a,
observe that the MVU estimator performs poorly since it
is unaware of the channel statistics, especially at low SNR. FIGURE 10. The NMSE comparison of four methods.
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The proposed method has best performance among the
four methods. However, the NMSE gaps are not noticeable
among the proposed method, RMMSE, and isotropic trans-
mission; this is becauseNT is small. In Fig. 10b, with increas-
ing NT , the NMSE gaps among the four methods are a little
larger, compared with Fig. 10a. In Fig. 10c, the superiority
of the proposed method is more obvious. In addition, we
also find that the isotropic transmission with MMSE esti-
mator approaches the proposed method when SNR is large;
therefore, it is an optional choice instead of the proposed
method, at high SNR.

V. CONCLUSION
For the MIMO broadcasting system with correlated Rayleigh
fading channels, the optimal pilot sequence has been studied
and designed aiming at minimizing the system users’ MSE of
channel estimation. The design problem can be formulated
as a SDP; by using the convex optimization technique, and
after a few transformations, we transform it into a dual one.
Both the two problems have no duality gap according to
the Slater’s condition. In the process of solving the dual
function, we model it as an optimization problem on the
positive definite matrix manifold. By introducing the concept
of the nature gradient, we have solved this problem based
on the iterative geodesic equation on this kind of manifold.
Under various system configurations, the proposed method
has been thoroughly investigated by computer simulation.

The results reveal the followings. First, the proposed
method is convergent and also correct by mutual validation
with the CVX-software based one. Second, only the trans-
mitter antenna number affects the total NMSE and there is
a positive correlation between them. Third, both the trans-
mitter and receiver coefficients are negative correlated with
the NMSE. Fourth, compared with a few existing methods,
including the isotropic transmission with MMSE estimation,
the RMMSE, and the MVU estimation, the proposed method
has a better performance in terms of the total NMSE. At high
SNR, the performance gap between the isotropic transmission
with MMSE estimation and the proposed method is small,
and hence it can be chosen as an optional scheme.

The proposed pilot-design method and above results can
be a reference for practical system implementation. Our
further work will consider how to enhance the robustness
of the design in the case of incomplete channel statistical
information.

In the future works, we will incorporate the wireless
caching technique [36]–[39] to enhance the network trans-
mission performance, especially for the transmission of
video files. Moreover, we will apply the intelligent algo-
rithms [40]–[43] to optimize the system design, especially
when the system cannot gather all of the required channel
parameters.

APPENDIX A
First, we prove that the function f̃ (X) = tr

(
θ̃
−1
+ X⊗ I

)
is convex with respect to X, where θ̃ is positive definite and

X is positive semidefinite. LetX1 � 0,X2 � 0, and construct
a function g (t) as follows.

g(t) = tr
[
θ̃
−1
+ (tX1 + (1− t)X2)⊗ I

]−1
}, 0 ≤ t ≤ 1

(A-1)

Then, we would like to find the second derivative of g (t).

dg (t) = −tr
{[
θ̃
−1
+ (tX1 + (1− t)X2)⊗ I

]−1
×d

[
θ̃
−1
+ (tX1 + (1− t)X2)⊗ I

]
×

[
θ̃
−1
+ (tX1 + (1− t)X2)⊗ I

]−1}
= −tr

{[
θ̃
−1
+ (tX1 + (1− t)X2)⊗ I

]−1
× [(X1 − X2)⊗ I]

×

[
θ̃
−1
+ (tX1 + (1− t)X2)⊗ I

]−1}
dt

Therefore, the first derivative of g(t) is given by

dg (t)
dt
= −tr

{[
θ̃
−1
+ (tX1 + (1− t)X2)⊗ I

]−1
× [(X1 − X2)⊗ I][
θ̃
−1
+ (tX1 + (1− t)X2)⊗ I

]−1}
. (A-2)

For the sake of easy manipulation in the followings, let
D =

[
θ̃
−1
+ (tX1 + (1− t)X2)⊗ I

]
.

d
(
dg (t)
dt

)
= tr

{
D−1 [(X1 − X2)⊗ I] dt

×D−1 [(X1 − X2)⊗ I]D−1
}

+ tr
{
D−1 [(X1 − X2)⊗ I]D−1

× [(X1 − X2)⊗ I] dtD−1
}

= 2tr
{
D−1 [(X1 − X2)⊗ I]D−1

× [(X1 − X2)⊗ I]D−1
}
dt

Therefore, the second derivative of g(t) is given by

d2g (t)
dt2

=2tr
{
D−1 [(X1−X2)⊗I]D−1 [(X1−X2)⊗I]D−1

}
.

(A-3)

Further manipulating d2g(t)
dt2

yields

d2g (t)
dt2

= 2tr
{
D−1 [(X1 − X2)⊗ I]D−

1
2

×D−
1
2 [(X1 − X2)⊗ I]D−1

}
= 2tr

{
D−1 [(X1 − X2)⊗ I]D−

1
2

×

[
D−1 [(X1 − X2)⊗ I]D−

1
2

]H}
. (A-4)
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In the derivation of the above formula, we have used
a few matrix properties including DH

= D and
[(X1 − X2)⊗ I]H = [(X1 − X2)⊗ I]. Clearly, from (A-4),
we have d2g(t)

dt2
≥ 0. In other words, the function g(t) is

convexwith respect to t . It follows that tg (0)+(1− t) g (1) ≥
g (t). Since g (0) = f̃ (X1), g (1) = f̃ (X2), and g (t) =
f̃ [tX1 + (1− t)X2], one has

t̃f (X1)+ (1− t)f̃ (X2) ≥ f̃ [tX1 + (1− t)X2] . (A-5)

Hence, the function f̃ (X) = tr
(
θ̃
−1
+ X⊗ I

)
is convex.

Second, it is straightforward that the function f̃
(
X/σ 2

)
=

tr
(
θ̃
−1
+ X⊗ I/σ 2

)
is also convex. Observe that the objec-

tive function f (Q) of P2 is a nonnegative weighted sum of
convex functions that are similar to f̃

(
X/σ 2

)
. According the

rule of preserving convexity [29], f (Q) is convex.

APPENDIX B
To start with, consider the partial derivative of the function

tr
[(
θ−1i +Q⊗ INR,i/σ

2
i

)−1]
, with respect to Q.

∂

{
tr
[(
θ−1i +Q⊗ INR,i/σ

2
i

)−1]}
= −tr

{
A−1i ∂AiA−1i

}
= −tr

{
A−1i

(
∂Q⊗ INR,i

)
/σ 2

i A
−1
i

}
= −tr

{(
∂Q⊗ INR,i

)
/σ 2

i A
−1
i A−1i

}
= −tr

{(
∂Q⊗ INR,i

)
· Bi

}
= −tr (Ci) (B-1)

where Ai = θ
−1
i +

(
Q⊗ INR,i

)
/σ 2

i , Bi = A−2i /σ 2
i , and Ci ∈

C(NTNR,i)×(NTNR,i) =
(
∂Q⊗ INR,i

)
· Bi.

Then, lettingY = ∂Q = (∂Qmk), it can be verified that the
(m, n)-th block of the matrix Ci is given by

Ci,mn =

NT∑
k=1

YmkBi,kn (B-2)

where Y = (Ymk) and Bi,kn ∈ CNR,i×NR,i is the (k , n)-th block
of Bi. With (B-2), we have

tr (Ci) = tr

( NT∑
m=1

Ci,mm

)
= tr

[ NT∑
m=1

NT∑
k=1

YmkBi,km

]

=

NT∑
m=1

NT∑
k=1

Ymk tr
(
Bi,km

)
=

NT∑
m=1

NT∑
k=1

∂Qmk tr
(
Bi,km

)
= −tr (A) . (B-3)

With (B-3), one obtains

−
∂tr (A)
∂Qmk

= tr
(
Bi,km

)
. (B-4)

Consequently, we finally have

∂tr (A)
∂Q

= −Gi (B-5)

where Gi ∈ CNT×NT =
(
Gi,mn

)
and Bi,kn ∈ CNR,i×NR,i is the

(k , n)-th block of Bi. With (B-5) and Eq. (15), we obtain that

∂L (Q, u)
∂Q

= −

K∑
i=1

[wi/tr (θi)]Gi + uINT . (B-6)

APPENDIX C
This appendix shows the equivalence of min

Q�0
L(Q, u) and

min
Q�0

L(Q, u).

First, when u = 0, it is easy to find that min
Q�0

L(Q, u) =

min
Q�0

L(Q, u) = 0, for Q = c I and c→∞.

Second, when u > 0, this issue can be divided into two
cases.

For one thing, if the optimal Q that satisfying min
Q�0

L(Q, u)

is positive definite, obviously, it is also the solution of
min
Q�0

L(Q, u).

For another, to begin with, denote QA as the solution of
min
Q�0

L(Q, u) and Q(i)B � 0 as the solution of min
Q�0

L(Q, u) at

the i-th iteration, respectively. ForQA is positive semidefinite
but not positive definite, it is deduced that Q(i)B converges
to QA. This can be proved by using reduction to absurdity.
Assume thatQ(i)B converge to some matrixQB, butQB 6=QA.
Observe that the function L (Q, u) is convex and hence has
only one extreme point which is also the global minimum.
The matrix QB cannot be positive definite; if so, QB is also
the solution of min

Q�0
L(Q, u), which contradicts the prerequi-

site. Therefore, QB can only be positive semidefinite. Since
QB 6=QA, we have. Introduce QA + εI � 0 for ε > 0. If ε is
small enough, the inequality L (QA, u) < L (QA + εI, u) <
L (QB, u) holds. However, L (QA + εI, u) < L (QB, u) can-
not hold because L (QB, u) shall be larger than all L (Q, u)′ s
for Q � 0. Therefore, the assumption that QB 6=QA does not
hold, and we have QB = QA, that is, Q

(i)
B converges to QA.

To sum up, solving min
Q�0

L(Q, u) is equivalent to solving

min
Q�0

L(Q, u).
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