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ABSTRACT In the field of automatic target recognition and tracking, long-term tracking for aerial infrared
target has been recently seen with great interest. Although deep trackers and correlation filtering trackers
offer competitive results on performance, the problems of deformation, abrupt motion, heavy occlusion, and
out of view still remain unsolved. In addition, since this paper focus on infrared images, it is also important to
consider that infrared images have a significant drawbacks, such as low resolution, low contrast, and lack of
textures. In this paper, we adopt correlation filtering trackers and deep learning detection method to achieve
accurate tracking results. Our tracking system composed of three parts: the DTB correlation filtering tracker
(DTB-CF), a better regression model to discriminate the target from the background with adjustable Gaussian
window functions; the UTA correlation filtering tracker (UTA-CF), an optimum regression model to update
the target appearance with simultaneously optimal in position, scale, and integration of multi-feature fusion;
and the YOLOV3 re-detector, which ensures re-location of the correct position of the target when the tracking
fails. In addition, we introduce the ratio between average peak-to-correlation energy (APCE) of the current
frame and average APCE of former frames as a criterion to update the UTA-CF tracker to maintain the target
model stability. And we combine the nearest neighbor maximum value method with APCE as criterion
together to initialize the YOLOV3 re-detector. We evaluate our algorithm on real aerial infrared target
thermal image sequences in terms of precision plot, success plot, and speed. The experimental results show
that our method has a significant improvement than the state-of-the-art methods for long-term tracking both
in accuracy and robustness for aerial infrared object tracking.

INDEX TERMS Aerial infrared object tracking, correlation filtering, deep learning detection, multi-feature

fusion, APCE criterion.

I. INTRODUCTION

Object tracking is one of the most fundamental concerns
in computer vision, which has been widely used in the
fields of surveillance, human computer interaction, behavior
recognition and unmanned driving. Given the initialized state
(e.g., position and size) of a target object in the first frame,
the task of object tracking is to predict the states of the target
in the subsequent frames. Infrared image has the advantages
of unsusceptible to illumination, strong anti-interference
ability and all-weather working. Infrared object tracking is
becoming a popular research topic and is also employed in
various military, scientific and medical areas. In this paper,

The associate editor coordinating the review of this manuscript and
approving it for publication was Shangce Gao.

114320

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/

we focus on the problem of long-term aerial infrared object
tracking.

Compared with visual tracking, infrared object tracking is
more challenging. It needs not only to solve the problem of
universal tracking (e.g., deformation, abrupt motion, heavy
occlusion and out of view), but also to consider its significant
defects with low resolution, low contrast and lack of textures.
An effective and real-time tracking algorithm should be able
to consistently track the infrared object for a long time with-
out failing under these situations.

At present, the mainstream methods of tracking algo-
rithms are based on two types: the first is the traditional
correlation filtering method, and the other is the convolu-
tional neural network method. The convolutional neural net-
work method has powerful capability of feature extraction.
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Instead of extracting hand-crafted features, the tracking algo-
rithms benefits from this method can directly use pre-trained
convolution neural network (CNN) to extract convolutional
features [1]-[3]. Moreover, in [4]-[10], online updat-
ing model for tracking is built without pre-trained CNN.
Whereas, the lack of training data and real-time requirement
limit the application of convolutional neural network method
in engineering. Correlation filters are not sensitive to visual
and infrared images of different spectra, which are more suit-
able for infrared object tracking [11]. In addition, the meth-
ods based on correlation filtering are very effective for their
fast calculation speed, outstanding real-time performance,
and high precision. The basic idea of correlation filtering
method is to find a filtering template and make this filtering
template convolve with next frame, and the region with the
largest response is the predicted target. According to this idea,
a large number of tracking algorithms based on correlation
filtering have been proposed. Bolme ef al. [12] propose to
learn a minimum output sum of squared error (MOSSE),
which produces stable correlation filters when initialized by
using a single frame, where the learned filter encodes target
appearance with updates on every frame. MOSSE algorithm
forms multiple samples with random affine, which will cause
redundancy; Henriques et al.  [13] propose to adopt the
theory of circulant matrices for fast detection and update
with the Fast Fourier Transform. The CSK method builds
on illumination intensity feature, as an enhancement, is fur-
ther improved by using HOG feature in the KCF tracking
algorithm [13]. In order to solve scale change problem,
Danelljan et al.  [14], [15] present a novel approach by
learning separate filters for translation and scale estimation.
Good feature is important for object tracking, so it is essen-
tial that the target is represented by multi-feature fusion.
Li and Zhu [16] present a scale adaptive kernel correlation
filter tracker with feature integration (SAMF) by integrating
the powerful features including HOG and color-naming to
further boost the overall tracking performance. The boundary
effect seriously affects the performance of the correlation
filtering algorithm. Danelljan et al. [17] adopt a spatial
regularization technique to weigh the filter coefficients, and
boundary effect is effectively alleviated.

Advancements in the correlation filtering method mostly
focus on incorporating robustness to specific challenges such
as scale change, illumination change, boundary effect, but fail
to track under other conditions like deformation, occlusion,
varied distractors etc. To successfully track the target all
the time, three key issues should be addressed in long-term
tracking. The first one is the well-known stability-plasticity
dilemma. It is related to online update mechanism of cor-
relation filtering algorithm. If the learning rate is too high
and frequent, filtering template easily result in drifting due
to noisy updates. On the contrary, if the learning rate is too
low and conservative, the target has been distorted, but the
filtering template is still the same template. It is a fact that
the target will not be recognized. The second issue is to
extract better features to make the target easier to identify and
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multi-feature fusion can improve tracking performance [18].
The third issue is to judge whether the tracker fails to locate
the target and add a re-detector in tracking process. When
the tracking fails, the re-detection is performed to obtain the
correction position for successful tracking.

Our approach builds on these three observed issues.
We adopt correlation filter and re-detection to track the
target that may disappear, deform, or occlusion heavily in
long-term tracking. Aiming at stability-plasticity dilemma,
our algorithm effectively alleviates this dilemma by using two
regression models based on correlation filters with different
learning and updated rates to update the target appearance and
discriminate the target from the background. The regression
model to discriminate the target from the background is called
DTB-CF based on KCF. It is designed to aggressively adapt
to translation estimation against significant deformation and
heavy occlusion, and we extend the DTB-CF trackers with the
capability of handling scale change by introducing adjustable
Gaussian window functions for better back-and-foreground
separation around the target, leading to increased accuracy
and robustness. The regression model to update the target
appearance, UTA-CF is sampled with different scales, and
is conservatively adapted and applied for optimal location
and optimal scale. Aiming at improving tracking performance
with better features, we can employ various powerful features
to exploit the advantages of multi-feature fusion. We inte-
grate HOG, histogram feature of intensity, and histogram
feature of local intensity for DTB-CF tracker, and HOG,
color-naming, and gray feature for UTA-CF tracker. In the
literature of [19], it merely adopted the maximum response
as the re-detection criterion, however, the information of the
fluctuating response map will be lost. Therefore, we intro-
duce the APCE criterion to evaluate the fluctuation degree
in the tracking process to determine whether the tracker
needs to be updated or initialized by re-detector. As we
know, deep learning could act as state-of-the-art in the detect-
ing process. It could learn very general representation of
objects. YOLOv3 [20]-[22], one of the most balanced target
detection networks for speed and accuracy, is used as the
re-detector. This work aims to address the problem of defor-
mation, occlusion, varied distractors etc., and achieve better
performance in long-term aerial infrared object tracking.

The structure of this paper is as follows. Section II first
present the closely related works to our long-term aerial
infrared object tracking framework. Section III presents the
general framework of the proposed tracking approach and its
main modules in detail. The proposed approach is validated
by experiments in Section IV. Section V draws the conclu-
sions of this paper.

Il. RELATED WORKS

This section introduces the state-of-the-art tracking and
detection approaches, which are closely related to this work.
Moreover, we explain the reason for using a structure
of combing correlation filter and re-detection to achieve
long-term track, and introduce the idea of verification in
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tracking, which inspired us to design the structure of our
approach.

A. TRACKING ALGORITHMS

A lot of tracking algorithms can be found in current
literature. Many of them have been evaluated with the
Visual Tracker Benchmark [23], [24] and in the VOT
challenge [25]. We restrict our review here to those track-
ing algorithms that are close to our work, including
Struck [26], TLD [27], MOSSE [12], CSK [28], KCF [13],
CN [29], DSST [15], SAMF [16], BACF [30], SKCF [31],
OMEFL [32], C-COT [33], ECO [34], LCT [19], LMCF [34],
CA-CF-SVM [35], and CTAD [36].

Struck, one of the most representative trackers relies on a
kernelized structured output Support Vector Machine (SVM)
to distinguish between the tracked object and the background.
It achieves appealing results. TLD combines the traditional
tracking algorithm with detection algorithm to solve the prob-
lem in long-term tracking. At the same time, the parameters
of the tracking module and the target template of the detection
module are constantly updated by the online learning mech-
anism, making the tracking outcome more stable, robust and
reliable.

However, the computational cost of Struck and TLD is high
which makes them less appealing compared to the correlation
filtering algorithm. In addition, the correlation filtering algo-
rithms MOSSE, CSK, and KCF outperform both of the track-
ers mentioned above in Visual Tracker Benchmark and VOT
challenges, while also being significantly faster. Last but not
least, when the correlation filtering algorithm is applied to the
infrared object tracking, the tracking performance will hardly
decline [11]. Therefore, we focus on correlation filtering
tracking algorithms.

Danelljan et al. [29] exploit the color attributes of a target
object and learn an adaptive correlation filter by mapping
a multi-channel features into a Gaussian kernel space. The
DSST tracker learns adaptive multi-scale correlation filters
using HOG features to handle the scale change of objects. The
BACEF tracker is capable of learning/updating filters from real
negative examples densely extracted from the background
instead of shifted foreground patches, achieving superior
accuracy with real-time performance. The SKCF tracker uses
the Gaussian window to create a better separation of the
target and the background, improving accuracy and getting
the same result with improved BACF algorithm [37]. The
OMFL tracker uses novel features, i.e., intensity, color names,
and saliency, to respectively represent both the tracking object
and its background information in a background-aware cor-
relation filter (BACF) framework instead of only using the
histogram of oriented gradient (HOG) feature to get better
tracking effect. The multi-feature learning approach is able
to improve the object tracking performance. However, these
methods do not resolve the critical issues regarding online
model update. We also explored the implication of C-COT
and ECO which are excellent algorithms while the high
computational complexity cannot meet real-time demand.
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Therefore, these correlation filtering tracking methods are
susceptible to drifting and less effective for handing
long-term occlusion and out-of-view problems. Our DTB-CF
tracker is designed to aggressively adapt to translation esti-
mation against significant deformation and heavy occlusion
with high and frequent learning rate. Based on the result of
DTB-CF tracker, our UTA-CF tracker uses target regressor
to get optimal target position and scale information with
low and conservative learning rate, achieving target accurate
evaluation. Meanwhile we integrate HOG, histogram feature
of intensity, and gray feature for DTB-CF tracker, and HOG,
color-naming, and gray feature for UTA-CF tracker. There-
fore, our approach effectively adapts to appearance changes
and alleviates the risk of drifting. Virtually, our DTB-CF is
derived from the fusion of BACF and SKCF trackers, and it
relies on the Gaussian window to retain foreground informa-
tion, exploiting background patches together with the target
patch to train the tracker. The UTA-CF tracker is derived
from the SAMF tracker, which can get optimal object tracking
result with simultaneously optimal in position and scale.

To judge whether the tracker needs to be updated or
initialized by the re-detector, the LCT tracker adopts the
maximum response as a criterion. However, it would lose
the information of the fluctuating response map. The LMCF
and CA-CF-SVM trackers use APCE as the criterion, which
indicates the fluctuated degree of response maps and the
confidence level of the detected targets. The CTAD tracker
proposes an algorithm composed of a tracker based on the
structure of the LCT tracker and a deep learning detect-
ing method based on the YOLOV3, which improves the
tracking performance. Therefore, we adopt correlation fil-
ter and re-detection to track the target, where we also use
YOLOV3 as the re-detector, which could take advantage of
both deep tracker and high-speed correlation filter. At the
same time, we innovatively improve the APCE criterion to
initial the re-detector (YOLOvV3) and update the UTA-CF
tracker, achieving better experimental results.

B. DEEP DETECTION ALGORITHMS

Due to the advantages of deep convolutional network in fea-
ture expression, researchers have gradually combined deep
convolutional network with target detection. R-CNN [38],
using convolutional neural network to express the nature
attributes of the target, is the earliest method to achieve
better detection effect. Based on the R-CNN detector, Fast
R-CNN [39] and Faster R-CNN [40] appeared one after
another, but they still cannot satisfy the real-time demand.
YOLO [20] regards the target detection process as a regres-
sion problem, which has satisfying real-time performance.
Aiming at the poor detection rate of the YOLO algo-
rithm, the author of YOLO proposed various improvements
to the YOLO detection method called YOLO9000 [21].
YOLO9000 is greatly advanced in terms of recognition rate.
In [22], the author makes some changes to YOLO9000. Com-
pared with the two previous methods, the YOLOV3 is faster
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and more accurate. The real-time performance and accuracy
of YOLOV3 is the best.

In summary, we adopt two correlation filters (DTB-CF and
UTA-CF) and a re-detection method based on the YOLOV3 to
track the target. As a result, it could take advantage of both
deep tracker and high-speed correlation filter. At the same
time, we innovatively improve the APCE criterion to initialize
the YOLOV3 re-detector and update the UTA-CF tracker.

ill. METHODOLOGY

In the following section, we would like to introduce the details
of our algorithm. The basic idea of our algorithm is the
combination of tracker and re-detector. We evaluate the track-
ing effect and re-detection initialization by its confidence
level. Our DTB-CF tracker is designed to aggressively adapt
to translation estimation against significant deformation and
heavy occlusion. The confidence level will not influence
online update mechanism of DTB-CF correlation filtering
algorithm whose filtering template will be updated all the
time. Our UTA-CF tracker uses target regression to get opti-
mal target position and scale information. When the confi-
dence level is higher than the threshold, the UTA-CF will
be updated, getting accurate target filtering template. When
the confidence level is lower than the threshold, the target
may be significantly deformed and heavily occluded, and the
tracker cannot continuously track the target; we re-detect the
target in the current frame and re-locate the correct position
of the target. Therefore, judging the tracking confidence of
the target is an important aspect. We use the APCE criterion
to make judgments. Firstly, we would like to introduce the
framework of our algorithm. Then we would like to present
the specific implementation procedures. The DTB-CF corre-
lation filtering algorithm is introduced in section B, and we
show UTA-CF correlation filtering algorithm in section C.
In section D, re-detection based on the YOLOV3 is presented.
In section E we improve the APCE criterion and give the
details of its usage.

A. FRAMEWORK

The algorithm mainly contains four parts: DTB-CF, UTA-CF,
YOLOV3 and APCE criterion. These four parts are associated
with each other to achieve real-time and efficient infrared
target long-term tracking. Illustration of the algorithm is show
in Figure 1.

e DTB-CF tracker: Regression model to discriminate
the target from background. Our DTB-CF tracker is
designed to aggressively adapt to translation estima-
tion against significant deformation and heavy occlu-
sion. The adjustable Gaussian window functions are
introduced for better back-and foreground separation
around the target, leading to increased accuracy and
robustness.

e UTA-CF tracker: Regression model to update the target
appearance. The features of HOG, color-naming and
gray are integrated for UTA-CF tracker. An optimal
object tracking result with simultaneously optimal in
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position and scale was obtained, and we can get accu-
rate tracking result.

e YOLOv3 re-detector: Re-detector to re-locate the cor-
rect position of the target. YOLOV3 is based on deep
learning, which can support an accurate detection result
for its strong ability of characteristic expression. When
the tracking fails, it is important for YOLOv3 to search
for the target again.

e APCE: Criterion that the tracker needs to be updated or
initialized by the re-detector. We use the ratio between
APCE of the current frame and their historical average
values as criterion to update the tracker to maintain
the target model stability. And we combine the nearest
neighbor maximum value method with APCE as crite-
rion together to initialize the YOLOV3 re-detector.

The DTB-CF tracker is initialized in the first frame and
we can get the translation position of the target. Based on
the information of translation position of the target, UTA-CF
tracker realizes an optimal object tracking result with simul-
taneously optimal in position and scale. Meanwhile we can
achieve the confidence values, and we use the improved
APCE criterion to make judgment about when the tracker
needs to be updated or initialized by the re-detector. With the
implication of the re-detector, the tracker could get verifica-
tion. Then, we still use the tracker to track the target until
the end of the process. The DTB-CF model is updated frame
by frame, which is not affected by the APCE criterion. The
tracking algorithm has been evaluated in our infrared image
sequences, which could track the target properly, even in a
complex background.

B. DTB-CF TRACKER

The DTB-CF tracker is proposed to aggressively adapt to
translation estimation against significant deformation and
heavy occlusion. It is derived from the fusion of BACF and
SKCEF trackers, and which has the advantages of the two
algorithms, so it is not only robust to the problems such as
rotation, fast motion, and background clutter, but also has
strong capability for occlusion and deformation in long-term
tracking. We set it as the baseline algorithm to aggressively
adapt to translation estimation against significant deforma-
tion and heavy occlusion.

A typical tracker based on correlation filtering models
the appearance of a target object by using a filter trained
on an image patch x of M*N pixels, where all the circular
shifts of x;, », (m,n) € {0, 1,...,M-1}*{0, 1, ..., N-1}, are
generated as training samples with Gaussian function label
y(m, n),i.e.,

w=argmin = (f@mn) = ym, ) + A lwl (1)

m,n

where f denotes the result of correlation between the training
samples and the filter w, and A is the regularization coefficient
which prevents overfitting. According to the Representer
theorem [41], the objective function can be expressed as
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follows:

w=Y"alm, n)f(mn) ©)

m,n
where « is the filter coefficient, which is defined by

1 F(y)

©=7 []-'(kxx)+A] ©)
where F and F~! denotes the discrete Fourier opera-
tor and inverse Fourier operator and {y(m,n)| (m,n) €
{0,1,...,M-1}*{0, 1,...,N-1}}. ky is defined as kernel
correlation in KCF tracker. In this paper, we adopt the Gaus-
sian kernel which can apply the circulant matric trick as
below:

1
K =exp<—;<nxu2+ IxI?—2F " NFx) 0 Fa*)) @)

where © is the Hadamard product. The tracking task is carried
out on an image patch z in the new frame with the search
window size M*N by computing the response map as

y = F [ Flky) © F(a)] Q)

Therefore, the new position of target is detected by search-
ing for the location of the maximal value of y.

Contrasting from prior work, as shown in Figure 2, we train
the DTB-CF tracker by taking both the target and surrounding
background into account to get the filtering model Rj, since
this information remains temporally stable and useful to dis-
criminate the target from the background in the event of heavy
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FIGURE 2. DTB-CF regression model learned from a single frame.

occlusion and significant deformation. Meanwhile with the
capability of handling scale change by introducing adjustable
Gaussian window functions for better back-and-foreground
separation around the target leading to increased accuracy and
robustness. The multi-feature fusion is the same with LCT
tracker, which use feature vectors with 47 channels, including
Hog, histogram feature of intensity and the histogram of local
intensity. The R, model is updated with a big and frequent
learning rate n frame by frame as

Flx) =1 —mF @) +nF'x)
Fla) =1 —nF )+ nF (@) (©6)

where t is the index of the current frame.

It is well known that the purpose of windowing is usual
to isolate the signal of interest while reducing the frequency
leakage in image processing. It is important for tracking to
separate the target signal from the background. When the
frequency spectrum of the original target signal mixes other
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frequencies, it easily results in frequency leakage. Adjustable
windows are functions that are capable of reducing the fre-
quency leakage while controlling the bandwidth, which can
guarantee that the frequency spectrum of a measured input is
what we want to analyze. The Fourier operator of Gaussian
is also a Gaussian which ensures the separation between
foreground and the background while reducing the frequency
leakage. However, the cosine window has no such property.
Therefore, Gaussian window has been widely used for win-
dow filter for its benefits.

G(m, n, oy, op) = g(m, 0,,)*g(n, o) (N

The function g(N, o) returns a vector of size N computed
as follow:

1 i—(N+1)/2

gN,0) = exp(—=(————5)), 1<i<N (8
2 o

The bandwidth o of the Gaussian function g(N, o) is
computed independently for the horizontal and vertical ori-
entations. o,, and oy, are calculated by the side length ratio of
target to tracking area in horizontal and vertical orientations.
The replaced cosine window is computed as

| .
cos _window = 5(1 — COS(Z]T]LV)), 1<i<N (9

The gaussian and cosine window filtering raw pixel value
example is shown in Figure 3.

FIGURE 3. Gaussian and cosine window filtering raw pixel value example.
The tracked region has a size of (130*186). First column: Same region
with targets at two different scales (i.e., small (70*34), large (124*56)).
Second column: Gaussian windows according the target size (i.e., small
(ow = 0.54, 05, = 0.18), large (ow = 0.96 , o = 0.3 )). Third

column: Cosine window (i.e., size (130*186)). Fourth and fifth

columns: Images filtered with Gaussian and cosine windows respectively.
Figure shows how the fixed cosine window fails to represent the target
compared to the Gaussian windows. The cosine window includes
background for small targets and discards information for big targets.

C. UTA-CF TRACKER

As shown in Figure 4, the UTA-CF tracker is derived from the
SAMEF tracker, which can get optimal object tracking result
with simultaneously optimal in position and scale. We inte-
grate HOG, color-naming and gray feature for the UTA-CF
tracker, and train UTA-CF by taking the most reliable target
appearance into account to get the filtering model R;, which
is an accurate target filtering template. Specifically, we use
improved APCE criterion to update the tracker to maintain
the stability of the model. Only the filtering model with high
confidence could be updated. It is worth noting that the cosine
window is not being used in the UTA-CF tracker. We use
the scaling pool S = {1 0.975 0.98 0.985 0.99 0.995 1.005
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1.01 1.015 1.02 1.025 1.03 1.035}. The o used in Gaussian
function is set to 0.8.

D. YOLOV3 RE-DETECTOR

As we all know, the real-time performance and accuracy of
YOLOV3 is the best. It uses a single convolutional network
which simultaneously predicts multiple bounding boxes and
class probabilities for those boxes, then trains the network
on full images, and directly optimizes detection. YOLOvV3
re-detector has many advantages, such as high speed and
robustness.

bounding box confidence score

result

class probability

FIGURE 5. YOLOv3 block diagram.

As shown in Figure 5, firstly, the input image is divided
into an S*S grid. If the center of an object falls into a grid
cell, that grid cell is responsible for detecting that object. Each
grid cell predicts B bounding boxes and confidence scores for
those boxes. These confidence scores reflect how confident
the model is that the box contains an object and also how
accurate it thinks the box is that it predicts. At the same time,
each grid cell also needs to predict C class probability, which
predict the percentage of the grid cell containing different
objects.

YOLOV3 predicts 4 coordinates for each bounding box, ¢,
ty, tw, ty. If the cell is offset from the top-left corner of the
image by (cy, ¢y) and the bounding box prior has width and
height (p,,, pn), then the predictions correspond to:

by =0(ty) +cx
by =0(ty) +c¢y

10
by, = pye™ {10

by, = ppe'™.
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YOLOV3 predicts an objectness score for each bounding
box using logistic regression. If the bounding box prior over-
laps a ground truth object by more than any other bound-
ing box prior, it should be 1, and vice versa. In summary,
YOLOV3 is good re-detector, which is fast and accurate. And
we use improved APCE criterion to initialize the YOLOv3
re-detector.

E. UPDATE MECHANISM
In order to get accurate target filtering template, when the
target disappear, deform, or occlusion in the view, we should
not update object tracking model of the UTA-CF tracker.
This may ensure the target filtering template is less prone to
drifting caused by model update with noisy samples. At the
same time, when the tracking fails, it is important for tracker
to search the target again. Aiming at this problem, a good
re-detector is essential. Therefore, the criterion for updating
target filtering template and initializing the re-detector is very
important. There are two schemes to deal with the tracking
confidence of the target. The first is the maximum response
value of the current frame, and the second is the discrimina-
tive algorithm defined by the response map named average
peak-to-correlation energy (APCE) [34]. When the target is
occluded severely, the response map fluctuates fiercely, while
the maximum response value remains strong enough. If we
choose to update the model in this frame, then the tracking
model will be corrupted. At present, the APCE is regard as
the best criteria, so we use APCE to deal with the tracking
confidence of the target. We introduce the APCE criterion
to evaluate the fluctuation degree in the tracking process to
determine whether the tracker needs to be updated or ini-
tialized by re-detector. Specifically, we use the ratio between
APCE of the current frame and their historical average values
as criterion to update the UTA-CF tracker to maintain the
target model stability. And we combine the nearest neighbor
maximum value method with APCE as criterion together to
initialize the YOLOV3 re-detector.
The APCE criterion is defined as follows:
2
APCE: |Fmax Fm1n| (11)

mean( Y (Fyid hei — Fmin)?)
wid ,hei

where Frin, Fmax, and Fyi4 pei denote the minimum, maxi-
mum and width row height column response value respec-
tively. The maximum response value of the current frame
cannot assess the confidence of the tracking for it ignores
the fluctuations in the tracking process. The APCE value
reflects the degree of fluctuation of the response map and
the confidence of the target object. When there is less noise,
the value of APCE becomes larger, and the response map gets
smoother except for only one peak, and vice versa.

When the ratio between APCE of the current frame and
their historical average value is larger than a certain threshold
0.8, the tracking result in the current frame is considered
to be high-confidence, which shows that the target filter-
ing template is accurate without any deform or occlusion.
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Then the UTA-CF tracker will be updated online with a learn-
ing rate parameter £. Despite UTA-CF tracker has high con-
fidence of the target model, the confidence maximum shows
a decreasing trend in the process of occlusion and re-capture.
A certain threshold cannot be a criterion for tracking failure,
but tracking failure is related to the nearest neighbor maxi-
mum value of APCE. When the ratio between their historical
average value and the nearest neighbor maximum value of
APCE in the current frame is less than a certain threshold
0.8, the re-detector is performed. This can increase the per-
formance of the algorithm in long-term tracking. Figure 6
illustrates the update mechanism process. And an outline of
our method is presented in Algorithm 1.

\ Part
occlusion

APCE

0.8

0.6~

0.4

0 100 200 300 400 500 Frame number

FIGURE 6. Online update mechanism.

Algorithm 1 Proposed Tracking Algorithm
Input: Initial target bounding box Xj.
Output: Estimated object state X; = (X¢, Y, St)s
DTB-CF regression model Ry,
UTA-CF regression model R;, and
YOLOVvV3 detector.
repeat

1) Crop out the search window in frame t according to
(Xt—1, yi—1) and extract the features.

2) Do translation estimation by DTB-CF regression
model Rb to get the new position (x{, y{).

3)  Building scaling pool around (x{,y;). and do
optimal estimation by UTA-CF regression model
Rt to get optimal simultaneously position and scale
(Xt, ¥y, st), and APCE also can de achieved.

4) Improved APCE satisfies UTA-CF update mecha-
nism, the target filtering template R; will be updated.

5) Improved APCE satisfies YOLOv3 re-detector
update mechanism, the candidate states x will be
used.

Until End of video sequences.

IV. EXPERIMENTAL RESULTS
We conduct four experiments to evaluate the efficacy of our
proposed algorithm. Firstly, we implemented four trackers
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with various settings, including Adaptive Gauss Weighted
tracker (AGW), Optimal Position and Scale tracker (OPS),
Re-detector (LCT-YOLOV3) and the proposed integrated
algorithm. Finally, we compare them with a relevant tracker
LCT. Secondly, we evaluate our proposed tracker against the
state-of-the-art tracker to show the effectiveness of algorithm.
Additionally, we compare our algorithm with five representa-
tive trackers on challenging sequences for qualitative evalua-
tion and compare the center location error frame-by-frame to
show the validity of the proposed method. Experimental data
is derived from real aerial infrared thermal images made up
of 8 sequences, public database named The Thermal Infrared
Visual Object Tracking challenge 2016 (VOT-TIR2016) and
Army Missile Command (AMCOM), and infrared simulation
images. Figure 7 shows some samples of aerial infrared ther-
mal image sequences.

FIGURE 7. Some samples of aerial infrared thermal image sequences.
(a) Aerial infrared thermal images. (b) VOT-TIR2016 and AMCOM infrared
images. (c) Infrared simulation images.

All the tracking methods are evaluated by two metrics.
The first one is precision plot, which shows the percentage
of image frames whose tracked location is within the given
threshold distance of ground truth. The second metric is
success plot, which shows the degree of overlap between the
predicted target area and the real target area. The overlap
score is defined as S = \B, N Bgt|/|Bt U Bg |, where B; is
the tracking bounding box, By, is the ground truth bounding
box, and N and U denote the intersection and union opera-
tors. To verify the real-time performance of the algorithm,
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we introduce the FPS (frames per second) with the following
equation:

> i1 Ni
Dy ti
where N; represent the length of the image sequence,
t; denotes the cost time, and i denotes the frame index of the
image sequence.

FPS = (12)

A. EXPERIMENT SETUP

We implemented the proposed tracker using MATLAB and
Darknet on an Intel i7-6700 CPU (2,80 GHz) PC with 4 GB
memory. The re-detector YOLOV3 is performed with Darknet
and the others are implemented in MATLAB. The two net-
works communicated with each other via a simple TCP-IP
socket. The re-detector is based on YOLOv3, which was
trained with a training dataset consisting of 1500 infrared
labeled images, which is selected from each sequence.
We selected one for a training dataset every ten frames. The
iteration times is 5000.

We use the same parameter configurations for all imple-
mentations as described in [9]. The regularization parame-
ter of (1) is still set to A = 10~*. The used in Gaussian
function is set to 0.8. However, there are some changes in
our proposed method. The sizes of the search window for
DTB-CF tracker and UTA-CF tracker are set to 1.8 times
and 1.2 times of the target size respectively. The learning
rates n and & for DTB-CF and UTA-CF trackers are set
to 0.01 and 0.008 respectively. We use the scaling pool
S ={1 0.975 0.98 0.985 0.99 0.995 1.005 1.01 1.015 1.02
1.025 1.03 1.035}. All parameters are same for all following
experiments.

B. ABLATION STUDY

We evaluate the performance of our four implementations
trackers, which is made up of Adaptive Gauss Weighted
tracker (AGW), Optimal Position and Scale tracker (OPS),
Re-detector (LCT-YOLOv3) and the proposed integrated
algorithm. We compare these trackers with the LCT tracker.
Firstly, the introduction of the Gaussian window in AGW
results in increased precision and success rates over the LCT
tracker. Secondly, we implement a tracker which can locate
optimal position and scale simultaneously. The idea of inspi-
ration comes from SAMF trackers, which is used in the LCT
tracker with multi-feature fusion. In addition, the re-detector
YOLOV3 is used in the LCT tracker, it is essential for the
tracker to re-detect the target when the algorithm fails to track
targets successfully. We report the results on aerial infrared
thermal image sequences by using the precision plot at a
threshold of 20 pixels, for we can easily see the contributions
of each component to the whole algorithm. The difference of
five trackers is summarized in Table 2.

As shown in Figure 8, comparing to LCT, the AGW
tracker outperforms the LCT by the distance precision of 5%
due to the use of the adjustive Gaussian window. The OPS
tracker can locate optimal position and scale simultaneously
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TABLE 1. Comparisons with state-of-the-art trackers on aerial infrared image sequences. Our approach performs favorably against existing methods in
distance precision (DP) at a threshold of 20 pixels, overlap success (OA) rate at an overlap threshold 0.5.

OURS KCF SAMF CSK TLD DSST LCT SRDCF MOSSE FDSST BACF C-COoT EISCO- ECO
DP(%) 100 19.9 239 39 493 564 756 76.9 85 88.2 98.2 98.6 98.8 98.9
((‘;)A) 65 9 12 18.1 14 2 37.1 29.1 55.8 57.8 222 40.4 57.4 63.5
FPS 224 101.8 41.66 927 12.4 114 40.1 221 1509 192.87 62.64 0.62 71.32 2.63
. Precision plots of OPE implementations, meanwhile these improved methods all out-
e e perform LCT tracker.
— OP'S [0.953]
08 — AGW [0.562]
| CT [0.512)
S 06 C. OVERALL PERFORMANCE
3% We evaluate the proposed algorithm with 13 state-of-the-
a 04 art trackers, including TLD [17], MOSSE [2], CSK [18],
o2 KCF [3], DSST [5], SAMF [6], BACF [20], FDSST [4],
SRDCF [7], LCT [9], C-COT [23], ECO-HC [24], and
o - 2 % m o ECO [24]. For fair evaluations, we compare all the methods
Location error threshold on our aerial infrared image sequences. These methods con-
FIGURE 8. Precision plot for five implementations. tain deep trackers, correlation filtering method and machine
learning method. The tracking results are reported in one-pass
evaluation (OPE) which uses the distance precision plot and
TABLE 2. The difference among five trackers. overlap success plot in Figure 9.
_ _ _ _ In addition, we present the quantitative comparisons of
Index Gadqusable Optimal POSIon Re.detector BN distance precision plot at 20 pixels, overlap success plot at
LCT No No No Yes 0.5, and tracking speed in Table 1. Our approach is optimal
AGW Yes No No Yes in both distance precision and overlap success, and the FPS
oPs No Yes No Yes is moderate.
LCT-YOLOV3 No No Yes Yes In order to test the algorithm further, one experiment was
Integrated Yes Yes Yes Yes done on two public databases named VOT-TIR2016 and
algorithm

which can get accurate tracking results with distance pre-
cision of 95.3%. The LCT-YOLOV3 tracker significantly
outperforms the OPS method due to the effectiveness of the
target re-detection scheme in case of tracking failure. The
proposed integrated approach (equipped with all the compo-
nents) performs favorably against the other three alternative

Precision plots of OPE

s OURS [1.000]
ECO [0.989]
s ECO-HC [0.988]
— C-COT [0.986]
e BACF [0.982)
FDSST [0.882]
e MOSSE [0.850] ||
s SRDCF [0.769]
LCT[0.756]
e DSST [0.564]
e TLD [0.493]
=== CSK [0.390]
SAMF [0.239]
= KCF [0.199]

Precision

20 30
Location error threshold

40 50

Success rate

AMCOM. For VOT-TIR2016, there are 25 infrared image
sequences. The paper mainly studies rigid body objects,
and 7 of those can meet the requirement. The available
sequences are boatl, boat2, carl, car2, quadrocopter, quadro-
copter2, and ragged. In a similar way, for AMCOM, there
are 5 infrared image sequences, and they are all avail-
able. We compare all the methods on the 12 available
sequences. The tracking results are reported in one-pass eval-
uation (OPE) which uses the distance precision plot and

Success plots of OPE

s OURS [0.650]
ECO [0.635]
— FDSST [0.578]
0.8 - — ECO-HC [0.574] | |
s MOSSE [0.558]
G-COT [0.404]
0.6 m— | CT[0.371] |
s SRDCF [0.291]
BACF [0.222]
s CSK [0.181]
0.4 s TLD [0.140] il
== == SAMF [0.120]
KCF [0.090]
02 == == DSST[0.002]
0
0 0.2 0.4 0.6 0.8 1
Overlap threshold

FIGURE 9. Precision plot and success plot over infrared image sequences about aerial target.
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Precision plots of OPE
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SAMF [0.373]
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0
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Success plots of OPE

e SRDCF [0.629]
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s ECO-HC [0.468]
0.8 AN — FDSST [0.455] ||
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\
\
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Overlap threshold

FIGURE 10. Precision plot and success plot over the choosing sequences of VOT-TIR2016.

TABLE 3. Comparisons with state-of-the-art trackers on aerial infrared image sequences. Our approach performs favorably against existing methods in
distance precision (DP) at a threshold of 20 pixels, overlap success (OA) rate at an overlap threshold 0.5.

OURS KCF SAMF CSK TLD DSST LCT SRDCF MOSSE FDSST BACF C-COoT E}(;(?- ECO

DP (%) 93.2 38.1 373 46.7 46.6 21.7 47 379 83 88.3 82.6 94.9 86.9
((3/13 81.8 153 17.8 17.4 17.6 0.3 245 17.4 455 42.8 273 46.8 41.9
FPS 20.7 111.4 44.22 1142 16.48 106 303 1897 168.39 55.37 0.68 59.83 2.19

Precision plots of OPE
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Success plots of OPE
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FIGURE 11. Precision plot and success plot over infrared image sequences about aerial target.

overlap success plot in Figure 10. We also present the quan-
titative comparisons of distance precision plot at 20 pixels,
overlap success plot at 0.5, and tracking speed in Table 3. Our
approach is inferior to the ECO-HC tracker in tracking pre-
cision. However, the ECO-HC tracker has a poorer tracking
overlap success than that of our approach. Though SRDCF
tracker has a higher overlap success than that of our approach,
it has a poor real-time performance. Our approach is also
good in both distance precision and overlap success, and the
FPS is moderate.

Nowadays, the use of public databases is the most com-
mon tool to evaluate the performance of object track-
ing algorithms. However, algorithm testing is performed
over a limited set of scenarios for aerial infrared target,
which will affect the testing validity. Aiming at this prob-
lem, we use 1000 groups of infrared simulation image
sequences to test algorithm, and each image sequence
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contains 600 to 1000 image frames. The infrared simulation
image sequences are obtained by simulation platform. The
simulation platform uses Microsoft Visual Studio as the
development environment and uses common modeling soft-
ware to create the scene model. In the end, the platform uses
OSG to complete the final rendering. The tracking results
are reported in one-pass evaluation (OPE) which uses the
distance precision plot and overlap success plot in Figure 11.
We also present the quantitative comparisons of distance
precision plot at 20 pixels, overlap success plot at 0.5,
and tracking speed in Table 4. Our approach is inferior to
the ECO tracker, ECO-HC tracker, and C-COT tracker in
tracking precision. However, both the C-COT tracker and
ECO tracker are deep learning trackers which have poor
real-time performance. The ECO-HC tracker has a poor
tracking overlap success. Though SRDCF tracker has a
higher overlap success than that of our approach, it has
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TABLE 4. Comparisons with state-of-the-art trackers on aerial infrared image sequences. Our approach performs favorably against existing methods in
distance precision (DP) at a threshold of 20 pixels, overlap success (OA) rate at an overlap threshold 0.5.

ECO-

OURS KCF SAMF CSK TLD DSST LCT SRDCF MOSSE FDSST BACF C-CoT HC ECO

DP (%) 97.4 50.9 53.1 67.3 67.1 323 66.3 64.8 50.7 77.9 88.3 98.6 98.8 98.9
(O(y?) 39.6 18.8 22 22.4 24.4 0.1 32.6 48.2 21.9 225 19 333 32 40.7
FPS 234 106.8 46.87 1008 18.4 118 35.46 2.19 1659 175.6 584 0.65 63.57 2.45

FDSST: ECO TLD
(a) Aerial infrared image sequence1 containing scale change, abrupt motion, deformation, heavy occlusion and out of view.

OURS LCT SAMF

OURS LCT SAMF FDSST- ECO TLD
(b) Aerial infrared image sequence2 containing abrupt motion, deformation, and heavy occlusion.

FIGURE 12. Tracking results of our algorithm, TLD, LCT, SAMF, FDSST and ECO methods on two representative aerial infrared image sequences.

a poor real-time performance. Our algorithm has a good
performance in both distance precision and overlap success,
and the FPS is moderate.

LCT [9], SAMF [6], FDSST [4], and ECO [24]), which
can solve different problems, such as long-term tracking,
multi-feature fusion, scale change and deep feature learn-
ing. Compared with other trackers, our approach could track

D. QUALITATIVE EVALUATION

In the experiment, we made a qualitative evaluation
between our algorithm and other trackers. Figure 12 sum-
marized qualitative comparisons of our method with five
representative state-of-the-art trackers (e.g., TLD [17],
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the aerial infrared target reliably. Likewise, in the event
of multiple challenges (e.g., deformation, abrupt motion,
heavy occlusion and out of view), our algorithm can track
the center of target accurately. As shown in Figure 12(a),
the SAMF tracker is based on a correlation filter learned
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from multi-feature fusion (i.e., HOG, CN and gray features).
The SAMF tracker performs well in handling significant
deformation and fast motion due to the robust representation
of fusion features.

However, it drifts when target object is surrounded by
complex background and does not re-detect targets in the case
of tracking failure. LCT cannot adapt to scale change well.
In the case of serious scale change, the tracking precision
would decrease. And LCT tracker cannot get optimal position
and scale simultaneously, which easily result in bad tracking
result. The FDSST tracker can deal with scale change very
well for its feature pyramid construction. However, when the
target is out of view, it cannot evaluate the scale accurately
and the target will be lost. As shown in Figure 12(b), although
the TLD tracker is able to re-detect target objects in the case of
tracking failure, it does not fully exploit the temporal motion
cues and therefore does not follow targets undergoing signif-
icant deformation and fast motion. Moreover, when the target
is small, the TLD method cannot perform well. Our approach
and ECO tracker can achieve the tracking successfully in the
event of multiple challenges. But our algorithm is superior to
ECO tracker in both accuracy and speed.
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(a). The center location error results of infrared image sequence1
(b). The center location error results of infrared image sequence2

FIGURE 13. Frame-by-frame comparison of center location errors
(in pixels) of TLD, LCT, SAMF, FDSST, ECO and our methods on two
representative aerial infrared image sequences.

In addition, we compare the center location error frame-
by-frame on the two representative aerial infrared image
sequences in Figure 13, which shows that our method per-
forms well against existing trackers. Our method is able to
track targets accurately and stably. As shown in Figure 13(a),
the aerial infrared target begins to do leap maneuver, change
scale seriously and be out of view in the 120th, 309th and
450th frames respectively, the SAMF, LCT and FDSST track-
ers fail to track target one after another. The deep tracker,
ECO, benefits from the expressive power of CNN features,
and achieves good tracking effect. The TLD tracker can
manage to re-detect the target when trackers fail to locate
the target. Our approach takes advantage of both deep fea-
tures and re-detector, achieving the best tracking results. In a
similar way, as shown in Figure 13(b), when the target is
small, the TLD and SAMF methods cannot perform well.
Although the ECO, LCT, FDSST and our trackers all get
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better performance, our algorithm works better among these
trackers.

Overall, our proposed approach performs well in long-term
tracking on these challenging aerial infrared target image
sequences. The four Components, DTB-CF, UTA-CF,
YOLOvV3 and APCE criterion are related to each other
to achieve real-time and efficient infrared target long-term
tracking, all playing an important role in the algorithm.

V. CONCLUSION

This paper undertakes an in-depth study over twenty used
object tracking algorithms, including deep trackers, correla-
tion filtering tracker and machine learning tracker. The lack of
training data and real-time requirement limit the application
of deep tracker in engineering. We focus on our research
on correlation filtering tracker and machine learning tracker.
Firstly, aiming at the problem of universal tracking, many cor-
relation filtering algorithms only can address one situation.
For example, MOSSE, DSST, and SRDCF trackers can solve
the problem of limited samples, scale estimation, and bound-
ary effect respectively. However, an LCT tracker achieves
near-perfect solution which can address various cases by
decomposing the task of tracking into translation and scale
estimation of objects. The translation and scale estimation of
objects is a good idea to improve tracking performance for
infrared object tracking. Secondly, aiming at the significant
defects of infrared images, many useful features need to be
integrated. For example, the SAMF tracker integrates the
powerful features including HOG and color-naming to further
boost the overall tracking performance. Therefore, achieving
the best multi-feature fusion is useful for improving tracking
performance for infrared object tracking. Last but not least,
it is inevitable to re-detect targets in engineering. Only a
few existing algorithms consider this problem, such as TLD,
LCT, and CTAD trackers. Re-detecting targets in the case
of tracking failure for infrared object tracking is important.
On this basis, aiming at the problem of universal tracking and
significant defects of infrared images, correlation filtering
tracker and re-detection are combined to achieve long-term
tracking for aerial infrared target.

Aiming at stability-plasticity dilemma, our algorithm
effectively alleviates this dilemma by using two regression
model based on correlation filters, namely UTA-CF and
DTB-CF, to update the target appearance and discriminate
the target from background. Aiming at the problem of track-
ing failure, the re-detection YOLOV3 is performed to obtain
the correction position for successful tracking. In addition,
we further improve the APCE criterion to determine whether
the UTA-CF tracker needs to be updated or the target position
should be initialized by re-detector YOLOV3. Our algorithm
is suitable for long-term tracking because it is outstanding
for solving the problem of long-term tracking. We prove
by experiments that our approach is more valid against
state-of-the-art methods in terms of efficiency, accuracy, and
robustness.
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In the future, we will improve the aerial infrared image
database to better assess the performance of the object track-
ing algorithm. On this basis, we will use deep learning algo-
rithms to extract the effective features and put forward a new
correlation filtering framework based on deep features with
better performance.
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