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ABSTRACT Protein remote homology detection is one of the most challenging problems in the field of pro-
tein sequence analysis, which is an important step for both theoretical research (such as the understanding of
structures and functions of proteins) and drug design. Previous studies have shown that combining different
ranking methods via learning to the rank algorithm is an effective strategy for remote protein homology
detection, and the performance can be further improved by the protein similarity networks. In this paper,
we improved the ProtDec-LTR1.0 and ProtDec-LTR2.0 predictors by incorporating three profile-based
features (Top-1-gram, Top-2-gram, and ACC) into the framework of learning to rank via feature mapping
strategies. The predictive performance was further refined by the pagerank (PR) algorithm and hyperlink-
induced topic search (HITS) algorithm. Finally, a predictor called ProtDec-LTR3.0 was proposed. Rigorous
tests on two widely used benchmark datasets showed that the ProtDec-LTR3.0 predictor outperformed both
ProtDec-LTR1.0 and ProtDec-LTR2.0, and other nine existing state-of-the-art predictors, indicating that the
ProtDec-LTR3.0 is an efficient method for protein remote homology detection, and will become a useful tool
for protein sequence analysis. A user-friendly web server of the ProtDec-LTR3.0 predictor was established
for the convenience of users, which can be accessed at http://bliulab.net/ProtDec-LTR3.0/.

INDEX TERMS Protein remote homology detection, profile-based features, feature mapping strategy,
learning to rank, pagerank, hyperlink-induced topic search.

I. INTRODUCTION
The proteins belonging to the same superfamily but different
families are remote homology proteins [1]. Homologous pro-
teins refer to proteins belonging to the same family. Different
homologous proteins may belong to the same superfamily.
The sequence similarity between remote homologous pro-
teins is usually less than 40%, while homologous proteins
usually share less than 95% sequence similarity [1].

As one of the key tasks in the field of protein sequence
analysis, protein remote homology detection is playing an
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important role in analyzing the structures and functions of
proteins.

In order to efficiently detect the proteins sharing remote
homology relationship, some computational methods have
been proposed, which can be divided into two categories
[1], [2]: discriminative methods and ranking methods.

Discriminative methods treat protein remote homology
detection as a classification problem, where the proteins are
represented as fixed length feature vectors, and then fed
into classifiers to train the models. Finally, for the unknown
samples, their homology relationship can be detected by
these models. A key to improve their predictive performance
is to find features to reflect the characteristics of proteins.
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In this regard, several powerful features have been proposed.
Most of these features were generated only based on the
sequence information, such as Pse AAC [3], Kmer [4], physic-
ochemical property [5], secondary structure [6], [7], hybrid
features [8], etc. Among these features, the profile-based
features showed highly discriminative power, because they
take the evolutionary process of proteins into consideration,
such as Top-n-gram [9], ACC [10], DT [11], SOFM [12],
PDT [13], profile-based protein representation [14], etc.
Recently, in order to explore more accurate profile-based
features, the deep learning techniques have been employed
to automatically generate the features from PSSMs [4]. Most
of these features can be generated by the Pse-in-One [15].

Ranking methods treat protein remote homology detection
as a ranking task or database retrieving task. Some early
ranking methods were constructed based on the alignment
methods, such as Smith—Waterman algorithm. [16], Local
Alignment BLAST [17], PSI-BLAST [18], HAlign [19], [20]
etc. Later, the ranking methods were improved by employ-
ing more accurate alignment algorithms based on multi-
ple sequence alignments, such as Hmmer [21], Coma [22],
HHBblits [23], etc. Recently, some advanced techniques have
been proposed to further facilitate the development of the
ranking methods, such as semantic embedding [24], PageR-
ank [25], Rank Aggregation [26], etc. These ranking methods
have achieved the-state-of-the-art performance, and showed
complementary predictive results. Therefore, the Learning
to Ranking algorithm [27] have been employed to combine
different ranking methods in a surprised manner, and a pre-
dictor called ProtDec-LTR [1] has been established. Later,
the ProtDec-LTR2.0 [28] improved ProtDec-LTR by com-
bining the profile-based protein representation and Learning
to Ranking algorithm. Recently, HITS-PR-HHblits [29] per-
forms PageRank algorithm (PR) [30] and Hyperlink-Induced
Topic Search algorithm (HITS) [31] on the protein similarity
network constructed by HHblits [23] to further improve the
detection performance. For more information of these meth-
ods, please refer to a recent review paper [32].

All these computational methods have made great con-
tributions to the development of this very important field.
However, detection performance improvement is still desired
for accurately investigating the structures and functions of
proteins. As discussed above, the profile-based features
showed the highest discriminative power, and ranking meth-
ods achieved the best performance. Can we incorporate the
profile-based features into the ranking methods? In order
to answer this question, we proposed the feature map-
ping method to incorporate the profile-based features into
the Learning to Ranking algorithm and combine PageRank
algorithm and HITS algorithm [29] to further improve the
accuracy of protein remote homology detection results, and
established a new predictor called ProtDec-LTR3.0, which
is an important improved version of ProtDec-LTR1.0 [1]
and ProtDec-LTR2.0 [28]. Experimental results showed that
ProtDec-LTR3.0 outperformed other existing methods for
protein remote homology detection. Finally, a web server
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of the proposed was established, which can be accessed at
http://bliulab.net/ProtDec-LTR3.0/.

Il. MATERIALS AND METHOD

A. BENCHMARK DATASET

In order to facilitate the comparison with other existing
computational methods, and fairly evaluate the performance
of the proposed method, two widely used benchmark datasets
were used in this study [24], [26], [28], which were con-
structed based on the SCOP and SCOPe database [33].
The benchmark datasets can be found at the link
http://SCOP.berkeley.edu/astral/.

B. MAIN EXPERIMENTAL FLOW CHART OF
PROTDEC-LTR3.0

Learning to Rank algorithm [34] is one of the most pow-
erful machine learning techniques, which has been applied
to the field of protein remote homology detection, and
showed promising predictive performance [1], [28]. Previous
study [29] shows that PageRank algorithm and HITS algo-
rithm can improve the accuracy of query feedback results by
constructing protein similarity networks.

In this study, we combined Learning to Rank model,
PageRank and HITS to further improve the accuracy the
feedback list results. The flow chart of ProtDec-LTR3.0 is
shown in Fig. 1.

C. BASIC RANKING METHODS

In this study, three state-of-the-art ranking methods (PSI-
BLAST [18], Hmmer [21] and HHblits [23]) are viewed
as the basic ranking predictors. These methods are
complementary, because they can produce different char-
acteristics basing on different technologies, for example,
PSI-BLAST [18] is a profile-sequence alignment method,
which constructs profiles of query proteins and iteratively
searches the database. Hmmer [21] is a HMM-sequence
alignment method, which constructs HMM profiles of query
proteins. The HMM-HMM alignment method HHblits [23]
constructs HMM profiles for both query proteins and proteins
in the database, and then iteratively searches the query HMM
profile against the database of HMM profiles. The para-
meters of PSI-BLAST [18] were set as ‘‘-num_iterations
= 3 and -outfmt = 6”. The Jackhmmer was used as the
implementation of Hmmer [21]. The parameters of Jack-
hammer and HHblits [23] were set as default.

For a given query protein g, a set of feedback protein
sequences of q were obtained by three basic methods, includ-
ing PSI-BLAST [18], Hmmer [21] and HHblits [23], which
can be represented as:

C@={p p - n}j (1)

D. BASIC RANKING METHODS

As demonstrated in previously studies [3], [4], [9], [10],
profile-based features outperformed the other sequence-
based features, because they consider the evolutionary
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FIGURE 1. The flowchart to show how protdec-LTR3.0 works.

information extracted from multiple sequence alignments.
Therefore, two profile-based features were employed in this
study, including Top-n-gram [9] and ACC [10].

1) TOP-N-GRAM

Top-n-gram [9] is a novel profile-based building blocks of
proteins based on the frequency profiles. In this study, the fre-
quency profiles were generated by using PSI-BLAST [18],
to search against the NCBI’s nrdb90 database [35] with the
parameters that set as default. A protein P can be represented
by the normalized occurrence frequencies of Top-n-grams
as [9]:

T
_ Top-n-gram Top-n-gram Top-n-gram
P - |: 1 f2 A 20" ] (2)
where symbol “T° means the transformation symbol in
vector operations. n is the parameter of Top-n-gram [9],
and fl.T()pfnigram represents the normalized frequency of the
corresponding Top-n-gram occurring in P.

2) AUTOCROSS-COVARIANCE (ACC)
Autocross-covariance [10] is a combination of auto covari-
ance (AC) and cross covariance (CC) [10] based on
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PSSM profiles. AC is used to represent the correlation bet-
ween the same amino acids and the distance of lag, which is
described as follow [10]:

AC(. lag) = ZL—lag (mij — m;) (mijtiag — M)

j=1 (L —lag) )

where m; ; is the score of amino acid i in the j-th position
in the PSSM, and m; is the average score of amino acid i.
PSSM profiles were generated by PSI-BLAST with the same
parameters for generating Top-n-grams. L is the length of
the protein sequence. Cross covariance CC represents the
correlation between the different amino acids with a distance
of lag, which is described as follow [10]:

CC (i1, iz, lag) = ZJ:lag (mil’j - ml(lL) (_mli;»glag — miZ)

“

where i; and i, are different amino acids.

As the combination of AC and CC, the feature vector of
ACC can be represented as [10]:

acc 1T
f 400LAG ] (5)

ACC ACC
P= [fl f
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where LAG represents the maximum distance of amino acids,
and the value of LAG is 2.

E. FEATURE MAPPING STRAEGY
As shown in many previous studies [3], [4], [9], [10], features
based on profiles have strong discriminative power to dis-
tinguish the remote homology proteins. These features were
widely used in many discriminative methods. The features
extracted by ACC and top-n-gram cannot only reflect the
evolutionary information of proteins, but also contain the
characteristics of protein sequences. Can we combine these
profile-based features and Learning to Rank algorithm to
further improve the performance of the ProtDec-LTR [1] and
ProtDec-LTR2.0 [28]? However, it is never an easy task,
because all these features cannot directly reflect the relation-
ship between the two proteins including query protein and
feedback protein. In this regard, in this study, inspired by
the idea of bitwise operation [36], we proposed the feature
mapping strategy to measure this relationship. Here, we will
introduce its steps.

Two profile-based features Top-n-gram [9] and ACC [10]
are used to represent the proteins, and the resulting feature
vector of a protein can be represented as:

P=[fi f I3 2071400246 ]T (6)
where the beginning Y 7, 20" dimensions represent the
Top-n-gram features [9], and the last 400 LAG dimensions
represent the ACC features [10].

The profile-based feature matrix Il is used to measure
the relationship between the features of query protein and the

corresponding features of all the feedback proteins in C (q)
(cf. Eq. 1), which can be represented as:

®1(¢q,p1) ©2(q,p1) -+ Oq (g, p1)

©1(q,p2) ©2(q,p2) --- Oq (g, p2) -

1 =
O1(¢q,p1) ©2(q,p) --- Oa(q,p1)

where the value of Q is Y, 20"+400LAG, and ©, (¢.p;)
can be calculated by

O, (9.pi)
_ uTop—n—gram (6]) _fuTop-n—gram (Pz) |1 S u S ZZ:] 20"
IF.AC (@) =12 () | Y20+l sus=Q
®

F. INCORPORATING ALL FEATURES INTO LEARNING TO
RANK ALGORITHM

Following previous studies [1], [28], the alignment score
feature matrix of the three ranking methods was constructed
based on the alignment scores generated by three state-
of-the-art ranking methods, including PSI-BLAST [18],
Hmmer [21] and HHblits [23]. The alignment score feature
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matrix II, can be represented as :

®1(¢q,p1) ©2(q,p1) -+ O11 (¢, p1)

O1(q,p2) ©2(q,p2) -+ O11(q, p2)
) ; . )

Iy =
O1(q,p1) O2(q,p1) --- O11(q,p1)

where  ©1(q,pi), ©2(q,pi),0O3(q,p;) and O4(q,p;)
repress-ent identity, E-value, bit score, and the recip-
rocal of the posi-tion generated by PSI-BLAST. [18];
©s5(q,pi),O6(q,pi) and ©O7(q,p;) represent E-value,
bit score, and the reciprocal of the position generated
by Hmmer [21]; Og(q,pi), ©9(q,pi),O10(g,pi), and
®11 (g, pi) represent prob, E-value, bit score, and the recip-
rocal of the position generated by HHblits [23].

Finally, matrix Iy and matrix II; were combined to train
the Learning to Rank model (10), as shown at the top of the
next page.

G. COMBINING LEARNING OF RANK, PAGERANKE (PR)
AND HYPERLINK-INDUCED TOPIC SEARCH
ALGORITHM (HITS)
Previous study [29] indicated that using the similarity among
proteins to construct protein similarity network can improve
the accuracy of the existing ranking lists. In this study,
we followed this study [29] to apply the PageRank (PR) and
Hyperlink-Induced Topic Search algorithm (HITS) to further
improve the performance of ProtDec-LTR3.0. Its detailed
steps will show in the following sections.

The ranking results of query proteins obtained by Learning
to Rank [34] model can be represented as:

R(g) = {p{ s1)  p3(s2) pi(s)} Ay
where p? represents the i-th feedback in the ranking list
of the query ¢, and s; is the score of the j-th feedback
protein qu. The R (g) is sorted in descending order according
to the corresponding feedback protein scores.

We assume proteins with higher scores in R (g) are more
likely to be homologous proteins. According to the charac-
teristics of homologous proteins, they should show a close
relationship in the constructed protein similarity network
with higher node weights. Therefore, homologous proteins
should be detected by local network, while weak homologous
proteins should be calculated by global network. Because
HITS performs well in local network search, while PageRank
performs better in global network search in information
retrieval [29]. In this study, we divided the results ranking list
of query feedback proteins into strong homology proteins and
weak homology proteins according to the scores of feedback
proteins, and employed different adjustment strategies for
different parts. In this study, if the protein with score value
higher than ¢ (the value of ¢ is 3), the HITS algorithm was
performed on it, otherwise, the PageRank algorithm was
employed.
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®1(¢,p1) 0O2(q,p1) Ogq (¢, p1)
®1(q,p2) ©O2(q,p2) Ogq (¢, p2)
=10 +1II) = . . .
O1(q,p1) ©2(q,.p1) Oq (¢, p1)
Oqi1 (g, 1) Ogi2(q,p1) Oq+11 (g, p1)

Oqt1(q,p2) Oqi2(q,p2)

Oq+1 (g, p1)

Oq+111 (g, p2)
. (10

Oq42 (g, p1) Oq+11 (g, p1)

The update rule of PageRank algorithm to update the value
of each protein node in the network is calculated by [29]:

N
Vi =) O Prp) V-1 (o) +vo () (12)

where N is all the number of the proteins in the network. For
the detailed information of other parameters for constructing
protein similarity networks, please refer to [29].

Closed-loop links in the protein similarity network will
result in Rank-Leak and Rank-sink [29], [30] during the
iteration process. To solve this problem, in this study,
we employed smoothing strategy to calculate node value of
the protein similarity network. Because the score of feedback
protein calculated by Learning to Rank has the same sig-
nificance for all query-feedback proteins in the benchmark
dataset, we set the initial weights of network nodes as their
corresponding scores of feedback proteins, which can be
represented as:

© (pi pj)
1, if pi»  pj € SASE (i) =Sk (p))
= logg [P ()|, if pPi=q. pi€SApjeRp)
y, otherwise

13)

where p; and p; are two proteins in database S. Sg (p;) =
Ske(p;) represents p; and p; are in the same superfamily. g is
the query protein. pjcore (p:) represents the score of p;p;j in
the ranking list R(p;). The logarithmic function is performed
on the | pj‘?core (i) | to avoid the extreme values, which would
have negative influence on the performance of PageRank and
HITS. B is a regulator. The function of g is to enhance the
score difference of feedback proteins, which is set as 8, which
is the optimized value. The value of y is set as 0.01, which
is the default value in the field of information retrieval [37].
The edge weight value ©' can be defined as:

’ @ s Pi 1 - d
kZI © (pi, i)

where ©’ (pi, pj) represents the importance of protein pairs
(pi, pj) in the whole network. The value of N is the number
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of all nodes. (1 — d)/N denotes the smooth value. The value
of d is set as 0.99.

The update rule of Hyperlink-Induced Topic Search to
calculate the hub value 7, and authority value ¢, of the
protein p; can be represented as [29]:

1 m

= 450 (a.0) (15)
1 m

), = m Lz p; © (qvpj) (16)

where m is the number of nodes. ®(q, p;) represents the
similarity between the feedback proteins p; and the query
protein q calculated by

O (g, pi) = logg

ijCOI‘C (q) ‘ (17)

where p?core (q) represents the score of feedback protein p;
in R(g). B is a regulator to regulate the score difference of
feedback proteins, which was set as 8 in this study.

H. EVALUATION METHODOLOGY

5-fold cross-validation was used to evaluate the performance
of different methods [38], [39]. The average ROCI and
ROC50 scores [40] were employed to evaluate the perfor-
mance of each method. The higher ROC1 and ROCS50 are,
the better the methods perform.

Ill. RESULT AND DISCUSSION

A. PROTDEC-LTR3.0 OUTPERFORMS OTHER

LTR-BASED METHODS

In order to prove whether incorporating profile-based fea-
tures, HITS and PR can improve the performance of Learning
to Rank or not, the ProtDec-LTR3.0 predictors with different
feature combinations were constructed and compared, and the
results are shown in TABLE 1 and Fig. 2. The statistical sig-
nificance between ProtDec-LTR3.0 (AT, PH) and other LTR-
based methods was estimated by using Wilcoxon signed rank
test [41], [42], and the results are shown in TABLE 2. We can
see the followings: 1) All the two ProtDec-LTR3.0 predic-
tors outperform the ProtDec-LTR1.0 and ProtDec-LTR2.0,
indicating that combining the profile-based features into the
framework of Learning to Ranking is an efficient way to
improve the predictive performance; 2) ProtDec-LTR3.0 (AT,
PH) significantly outperforms all the other three predictors,
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TABLE 1. Performance of protdec-LTR3.0 predictors with different
features and the reordering strategies on SCOP benchmark dataset via
5-fold cross-validation.

Methods ROCI1 ROCS0

ProtDec-LTR1.0 * 0.8278+0.0075 0.8944+0.0067
ProtDec-LTR2.0 ® 0.8839+0.0037 0.8954+0.0043
ProtDec-LTR3.0(AT) ¢ 0.8999+0.0048 0.9057+0.0053
ProtDecLTR3.0(AT,PH)¢  0.9117+0.0061 0.912140.0064

* represents the ProtDec-LTR1.0 predictor;

® represents the ProtDec-LTR2.0 predictor using pseudo protein sequences;
¢ represents the ProtDec-LTR3.0 predictor using three basic ranking
methods, and profile-based features (ACC, Top-1-gram and Top-2-gram);
4 represents the ProtDec-LTR3.0 predictor using all the features and
combining Learning to Rank algorithm with reordering strategy including
PR and HITS.

TABLE 2. Statistical significance of differences between
protdec-LTR3.0(AT,PH) and other three LTR-based predictors on SCOP
benchmark dataset 2.

Methods P-value of ROC1 P-value of ROC50
ProtDec-LTR1.0 1.233e-21 1.111e-18
ProtDec-LTR2.0 2.818e-05 1.815¢e-04
ProtDecLTR3.0(AT) 3.906e-04 7.040e-04

? For the explanations of AT and PH, see the footnote of TABLE 1.

indicating that the feature mapping strategy and the reorder-
ing strategies (PR and HITS) are able to significantly improve
the predictive performance, and it is useful for protein remote
homology detection, which is full consistent with previous
studies [14], [29].

B. PERFORMANCE COMPARISON WITH HIGHLY
RELATED METHODS

The performance of the proposed ProtDec-LTR3.0 pre-
dictor is compared with other 11 state-of-the-art predic-
tors, including Hmmer [21], Coma [22], HHblits [23],
PSI-BLAST [18], PsePro-Coma [26], PsePro-HHblits [26],
PsePro-Hmmer [26], PsePro-PSI-BLAST [26], ProtDec-LTR
1.0 [1], ProtDec-LTR2.0 [28], and HITS-PR-HHblits [29].

102504

TABLE 3. Performance comparison of the protdec-LTR3.0 with 11
state-of-the-art methods on SCOP benchmark dataset via 5-fold

cross-validation.

Methods ROC1 ROC50

ProtDec-LTR3.0* 0.9117+0.0061 0.912140.0064
HITS-PR-HHblits 0.8852+0.0028 0.8860+0.0029
ProtDec-LTR2.0 0.8839+0.0037 0.8954+0.0043
ProtDec-LTR1.0 0.8510+0.0075 0.8969+0.0067
PsePro-PSI-BLAST 0.7851+0.0102 0.8363+0.0076
PsePro-HHblits 0.8295+0.0056 0.8804+0.0068
PsePro-Hmmer 0.8137+0.0093 0.8302+0.0089
PsePro-Coma 0.7293+0.0105 0.8119+0.0083
PSI-BLAST 0.7499+0.0046 0.8005+0.0066
HHblits 0.8427+0.0077 0.8834+0.0086
Hmmer 0.7894+0.0063 0.7915+0.0061
Coma 0.6972+0.0102 0.7774+0.0081

* represents ProtDec-LTR3.0 predictor using all the features (AT) and
combining Learning to Rank algorithm with reordering strategies including
PR and HITS.

TABLE 3 and Fig.3 show the predictive results of various
methods. TABLE 4 is the statistical significance of dif-
ferences between ProtDec-LTR3.0 and other state-of-the-art
methods on SCOP benchmark dataset by using Wilcoxon
signed rank test [41], [42]. The following conclusions can
be reached that the ProtDec-LTR3.0 predictor significantly
outperforms other competing methods. These results further
confirm that the ProtDec-LTR3.0 predictor is an accurate
approach for protein remote homology detection, and will
facilitate the development of protein sequence analysis.

C. PERFORMANCE OF PROTDEC-LTR3.0 PREDICTORS ON
THE SCOPE BENCHMARK DATASET

For the SCOP benchmark dataset, there are 359 protein
superfamilies with only one protein. Therefore, when these
proteins are used as the queries, their homology proteins can-
not be detected without the template in the dataset. In other
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FIGURE 3. Performance comparison of various methods in terms of ROC1 scores (a), and ROC50 scores (b). The higher
the curve is, the better performance of the corresponding predictor is.

TABLE 4. Statistical significance of differences between

protdec-LTR3.0 with others state-of-the-art methods on SCOP benchmark

TABLE 5. Performance of protdec-LTR3.0 predictors with different

features on SCOPe and SCOPe-R benchmark datasets via 5-fold

dataset. cross-validation 2.

Methods P-value of ROC1 P-value of ROC50 Methods Datasets ROCI1 ROC50
HITS-PR-HHblits 4.680e-07 2.357¢-07 ProtDec-LTR1.0

; A +0. A +0.
ProtDec-LTR2.0 2.812¢-05 1.815¢-04 @ SCOPe  0.959610.0026  0.9617x0.0026
ProtDec-LTR1.0 1.233e-21 1.111e-18 bProtDeC-LTRZO SCOPe- )983540.0024  0.984240.0025
PsePro-PSI-BLAST 2.287¢-39 1.747e-35 R
PsePro-HHblits 1.591e-16 4212¢-13 P/:"TthC'LTm'O SCOPe  0.9717+0.0024  0.9789+0.0024
PsePro-Hmmer 5.426e-13 6.214e-12 (AT)
PsePro-Coma 9.335¢-54 9.454¢-48 E;"Tt?,'ﬁ)' FIR0 T SCOPE T 0.991240.0019  0.9916+0.0018
PSI-BLAST 5.810e-63 2.230e-56 e e
HHblits 181912 3 460e-10 or the explanations o an , see the footnote o .
Hmmer 2.333e-19 6.811e-18 o . o
Coma 5.811e-63 2.230e-56 significantly higher than on SCOPe, indicating that the

words, when using such dataset to evaluate the ProtDec-
LTR3.0 predictor, its performance will be underestimated.
This is the main reason for the abrupt decline of ROC1 and
ROCS50 scores starting from 0 to the next immediate point for
the Figs. 2,3. Therefore, we used a more updated and compre-
hensive dataset SCOPe benchmark dataset to further evaluate
the ProtDec-LTR3.0 predictors. In order to reduce the influ-
ence of the query proteins without templates, we construct
another SCOPe benchmark dataset SCOPe-R via removing
the superfamilies with only one protein sequence. The results
are shown in TABLE 5, from which we can see the follow-
ings: 1) As we expected, all the four ProtDec-LTR3.0 pre-
dictors trained with SCOPe database (see TABLE 5)
outperform the ProtDec-LTR3.0 predictors trained with
SCOP database (see TABLE 1). The reason is that the SCOPe
database is more comprehensive than the SCOP database,
leading to a more accurate Learning to Rank model and a
more comprehensive network, based on which the remote
homology relationship of proteins can be accurately detected
with the help of PR and HITS. 2) For both the two ProtDec-
LTR3.0 predictors, their predictive results on SCOPe-R are

VOLUME 7, 2019

proteins without templates do have impact on the detection
performance, because they cannot be detected.

Please note that although ProtDec-LTR3.0 employs three
profile-based features, including PSI-BLAST, ACC and Top-
n-grams. These features extract the evolutionary information
from profiles in different approaches, and previous study [4]
showed that these features are complementary, for examples
PSI-BLAST calculates the alignment scores between two
proteins. ACC calculates the correlation between amino acids
at different positions in the PSSMs. Top-n-gram removes the
noise information in the PSFMs by the occurrences of amino
acids with high frequencies. Therefore, the performance
of ProtDec-LTR3.0 can be improved by combining these
features.

D. WEB SERVER AND USER GUIDE

Construction of publicly accessible web servers is a key step
for developing useful bioinformatics tools. In this regard,
the corresponding web server of ProtDec-LTR3.0 has been
established, by which users only need to submit the query
protein sequences in FASTA format, and their homology pro-
teins will be automatically detected, and shown. Its detailed
steps are as follows.
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FIGURE 4. The screenshot of the protdec-LTR3.0 web server, which can be
accessed from http://bliulab.net/ProtDec-LTR3.0/.

Step 1. Clicking the link http://bliulab.net/ProtDec-
LTR3.0/, you will see the page of ProtDec-LTR3.0 web server
as shown in Fig. 4.

Step 2. Click on the sever button, and the system will jump
to the server interface. In the input box of the server interface,
you can type, copy and paste FASTA formatted proteins,
or click the Browse button to upload directly.

Step 3. In order to satisfy different precision requirements
of users, we provide two models for users. Users can select
different models through different models through dataset
selection buttons. Then click the submit button, and the pre-
dictive results will be displayed on the screen. For exam-
ple, when you select the default model and use two query
sequences in the Example window as input, and then click the
Submit button, you will see for the first query sequence, its
18 homology proteins are detected, and for the second query
sequence, its 4 homology proteins are detected, which are
completely consistent with experimental observations. The
3D structure information of the homology proteins can also
be visualized.
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