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ABSTRACT N2pc is defined as a negative event-related potential component that appears after
about 250 ms at posterior electrodes contralateral to a target’s location in visual search, which can be used to
measure attentional shifts between bilateral visual hemifields and locate the spatial location of lateral targets.
However, the waves between the left and right hemispheres elicited by lateral targets usually exhibit a small
amplitude difference and strong synchronicity, which may lead to low classification performance. Therefore,
the present study explored the feasibility of a multiple correlated components analysis (MCORCA) methods
to identify the lateral targets in visual search tasks with a single trial, which could weight the target signals
by spatial filters to enlarge the amplitude difference between bilateral hemispheres and extract the linear
combinations of multiple channels across trials with an optimal subset of correlated components to avoid
the loss of efficient information. The classification rate achieved 82% with a single short-duration trial when
using the proposed method with Leave-one-out-cross-validation (LOOCV). The findings demonstrated that
the MCORCA-based methods could be used to improve the classification performance for the N2pc-based
brain-computer interfaces (BCI) in visual search.

INDEX TERMS N2pc, MCORCA, visual search, brain–computer interfaces.

I. INTRODUCTION
A brain–computer interface (BCI) can convert brain signals
into the required control signals for communication and the
operation of devices without anymotor muscular movements.
Electroencephalography has been widely used for BCI due
to its high temporal resolution, portability, ease of use, and
low cost. There are four main types of EEG-based BCI: slow
cortical potentials (SCP), sensorimotor rhythms, P300, and
steady-state visual evoked potentials (SSVEP) [1]–[7]. These
brain activities, related to specific internal or external events,
which are called the event-related potential [8], have a high
signal-to-noise ratio (SNR).

Traditionally, BCI systems have been used to assist people
with severe motor disabilities to communicate or achieve
motor control [9]–[12]. However, in the last decade,
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BCI research for healthy users has increasingly attracted
attention, focusing on the augmentation of human func-
tions [8] or the detection of users’ mental states [13]. For
example, observers were able to detect rare, attended targets,
which could elicit a distinct positive waveform at approx-
imately 300 ms after a rare or salient stimulus onset, i.e.
P300 event-related potential [8], in the oddball paradigm [14].
The first P300-based BCI was a speller proposed by Far-
well and Donchin [15]. Various P300 speller paradigms were
developed and provided reasonable BCI control [5]–[7], [16].
One of these applications focused on augmenting the human
search capabilities in the process of visual search [17]–[19].
The N2pc component usually serves as an indicator for atten-
tional selection in the visual search paradigm [20]. N2pc was
evoked at about 250 ms after stimulus onset over posterior
electrodes contralateral to the visual hemifield of the targets’
location in the visual search scene, which was related to the
shift of attention towards a candidate target [21]–[23].
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Visual search displays contain a unique singleton target
among uniform distractor items, and the N2pc component
may be triggered in response to the singleton item [21], [24].
Specifically, when a visual search target is clearly visible
among a set of distractors, the ERP waveform becomes more
negative at contralateral scalp sites compared to ipsilateral
scalp sites. The voltage difference of the waveform between
the contralateral and ipsilateral sites was defined as the N2pc
component [25]. Generally, the N2pc appears during the
time window from 180 to 300 ms after stimulus onset and
the maximal amplitude of the N2pc is located at channels
PO7/PO8 [21], which could represent attentional shifts to
object locations. Since the N2pc is evoked by lateral visual
targets in the left or right visual fields and presents a con-
tralateral hemisphere, i.e. the left visual targets elicit the right
hemisphere N2pc (mainly located at channel PO8) and the
right visual targets elicit the left hemisphere N2pc (mainly
located at channel PO7), this component may disappear for
targets presented on the vertical meridian of the whole visual
field [24]–[26].

Since the N2pc effectively locates the desired target in
the hemifield of the visual field, the N2pc can be exploited
as a control signal for BCI to identify a certain area of
the visual field where the target is located. However, very
few studies have considered the N2pc for controlling a BCI
and the related classification performance still needs to be
improved. For example, N2pc was utilized to localize the
spatial location of targets in aerial images presented by a
rapid serial visual presentation (RSVP) protocol using single-
trial classification, achieving a median area under the receiver
operating characteristic curve (AUC) of 0.76 with a support
vector machine (SVM) [18]. Awni et al. also found that N2pc
can help identify the left and right colored digits (i.e. pop-
out targets) with linear discriminant analysis (LDA). When
averaging three trials, the mean classification accuracy (CA)
achieved 75% and one individual’s CA reached nearly 90%,
indicating that N2pc-based CA varied across participants.
With single-trial classification, all of the subjects showed
poor CA, which was only marginally better than chance [27].
Moreover, the combination of N2pc and P300 was used to
manipulate a BCI for Internet browsing and a robotic arm
with healthy users. And an application was also developed to
assist disabled people with basic communication, achieving
a CA of 80% after twelve repetitions of the stimuli [28].

For the N2pc-based BCI mentioned above, the amplitude
of N2pc was chosen as a feature. However, the inter-trial
variability in amplitude and latency impaired the detection
of N2pc. Generally, in order to increase the signal-to-noise
ratio and improve the classification performance in BCIs,
the usual approach was to average multiple repetitions of
each stimulus [27], [28]. The drawbacks of this approach
were that repetitions could cause fatigue and a decrease in
speed, which impairs the information transfer rate. Therefore,
it was a good way to improve the task performance that
single-trial extraction, combined information over multiple
channels and enlarging the amplitude difference of N2pc

between the left and right hemispheres, could achieve a high
performance [29].

In this paper, we propose a novel method based on cor-
related component analysis (CORCA) for single-trial N2pc
detection. In essence, EEG reflects thousands of synchronous
neural oscillations in the brain [30]. When using EEG to
measure signals from the same neurophysiological processes,
it captures synchronous oscillations from channel record-
ings located in the task- related regions [31], which indi-
cates that there are inherent correlations between EEG series
from different channels in the spatial distributions determined
by anatomy for the same cognitive tasks [32]. In visual
search tasks, the activation region is mainly located around
channel PO8 for the left visual-field-search target, while
the activation regions are mainly located around channel
PO7 for the right visual-search target. These contralateral
activations further indicate that the neural oscillations related
to the same visual-field-search tasks should hold strong
synchronicity. Thus, preserving this inherent character will
enhance the features’ discriminability in EEG-based classifi-
cations. However, the canonical correlation analysis method
requires the canonical projection vectors to be orthogonal,
which drops this inherent correlation [32], [33]. Compared
to CCA, CORCA proposed the linear combinations of mul-
tiple channels across subjects with maximal correlation so
as to take advantage of the inherent correlations between
channel recordings in the same cognitive tasks [32], which
was introduced to recognize the SSVEP components and
achieved satisfactory performance [4]. Zhang’s group only
extracted a maximally correlated component of the specific
frequency in SSVEP recognition [4], ignoring the comple-
mentary relationships between multiple correlation compo-
nents, which may lose the information with discriminative
power. Thus, in this work, MCORCA is proposed to allow
for the complementary correlations in multiple time series.
Moreover, the MCORCA weighted the target signals by spa-
tial filters to extract the spatial information for different visual
search targets, which could increase the amplitude difference
between bilateral hemispheres. The main goal of our study
was to employ a novel method for feature extraction and clas-
sification in a visual search task that allows the efficient iden-
tification of the left visual field (LVF) and right visual field
(RVF) lateral targets with respect to the horizontal midline.
In addition, we will explore and comparatively analyze the
performance for the subset of components with the proposed
multiple correlated component analysis (MCORCA) and the
classical SVM.

II. METHODS
A. PARTICIPANTS
Thirty healthy subjects (19–21 years of age, average
age 20.4 years, 20 males and 10 females) participated. All
subjects were right-handed with normal vision or corrected
to normal vision. None of them had a history of any neuro-
logical or psychiatric disorders. All subjects signed a con-
sent form before the experiments and received monetary
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FIGURE 1. An example of the experiment. Each trial started with a
fixation cross (0.5◦ × 0.5◦) at the center of the display for 500 ms. The
display randomly contained a variable number of items (4, 8 or 12)
equally distributed in the four quadrants of fixation.

compensation after the experiments. The experimental proce-
dures were approved by the Ethics Committee of Chongqing
University of Posts and Telecommunications and conducted
according to the Declaration of Helsinki.

B. EXPERIMENTAL DESIGN
The experiments were similar to our previous study [34].
A fixation cross (0.5◦ × 0.5◦) was presented at the center
of the display throughout the entire block. Stimuli consisted
of circles (O) and arcs (C) presented on a black background.
The diameter of these items subtended 0.8◦. One tenth of the
circle was cut off to form a gap in each arc. The stimuli items
were randomly placed in the four quadrants around the center
cross, forming a square area (Fig. 1). In each trial, the display
randomly contained a variable number of items (4, 8 or 12),
equally distributed in the four quadrants of fixation. The
visual search displays contained either an O among Cs, or all
Cs, in which the circle was the target and the arcs were the
distractors (serial search).

Each participant completed two sessions in the serial
search task. Participants performed a series of 100 trials in
each session, divided into 20 blocks of 5 trials each. Specifi-
cally, in each session, the 4 items condition was used for 20%
of the trials, and the 8 and 12 items for 40% respectively. The
target was absent in 10% of the trials (i.e. catch trials).

Each trial began with a central fixed cross flashing
for 500 ms, which then changed to the stimulus array
for 1500 ms or terminated when participants responded.
A fixation cross was then presented for 500 ms and was
immediately followed by the next trial. In the search task,
participants were instructed to press the right mouse button
quickly with their right hand when the target appeared in the
right side of the center cross and press the left mouse button
when the target appeared in the left. For no-target trials,
participants were required to withhold their response. In all
experiments, speed and accuracy were emphasized equally.
No feedback was provided.

C. EEG RECORDING AND PROCESSING
Participants were required to sit comfortably in front of an
LCD screen with their eyes approximately 57 cm away.
EEG signals were recorded by a 64-channel Neuroscan
EEG System (SynAmps2, bandpass filter: 0.05∼100 Hz,
sampling rate: 1000 Hz), which was positioned according to
the extended international 10-20 system. The vertex was used
as the reference online and the impedances of all channels
were maintained below 5 k�.
The EEG was re-referenced offline into the infinity

reference [35], [36]. After re-referencing, the data were
down-sampled to 250 Hz and filtered with a band-pass
of 0.1–30 Hz. From these filtered data, we further extracted
segments corresponding to a time period of 200ms before and
1000 ms following stimulus onset and utilized 200 ms prior
to the stimulus for baseline correction. Moreover, we con-
ducted linear-detrending and artifacts removal. For artifacts
removal, we visually removed the EEG epochs containing
common artifacts such as eye blinks, eye movements, head
movement, and muscle activity. Automated rejection was
further performed with the amplitude criteria of an absolute
threshold (< 60 µV).

D. CONTRALATERAL AND IPSILATERAL WAVEFORMS
In order to detect whether the N2pc component was elicited
by the lateral target, we performed ERP analysis for all
subjects. The data epochs were first separately averaged
according to the appearance location of a target, i.e. the
LVF and RVF target categories. Then, the averaged
waveforms were divided into contralateral and ipsilateral
waveforms across brain hemispheres. Thus, for LVF targets,
the contralateral waveforms represented ERPs on the right
hemisphere (i.e. right posterior-occipital region) while the
ipsilateral waveforms represented ERPs on the left hemi-
sphere, and vice versa [25].

E. DIFFERENCE AMPLITUDE-BASED FEATURE
EXTRACTION
As mentioned above, the N2pc was closely related to the
attention selection process, which was usually related to
the lateral orienting of attention in the visual search tasks.
The usual way to extract the amplitude of the N2pc was
to compute the amplitude differences between paired pos-
terior electrodes corresponding to symmetric positions with
respect to the brain’s median plane. Here, eight paired poste-
rior symmetric electrodes were selected for further analysis,
i.e., P1/2, P3/4, P5/6, P7/8, PO3/PO4, PO5/PO6, PO7/PO8,
O1/2 [18].

For the position recognition of the visual search task,
these amplitude differences are usually used as features for
the input of classifiers such as SVM [18] and LDA [28].
For comparison, SVM with recursive feature elimination
(SVM-RFE) using the difference amplitude feature has also
been used to compare the performance with the proposed
MCORCA method in the current study.
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F. SUPPORT VECTOR MACHINE WITH RECURSIVE
FEATURE ELIMINATION (SVM-RFE)
The support vector machine (SVM) [37], [38] has been
widely used for data classification due to its excellent gener-
alization performance. SVM implements the following idea:
it maps the input vectors into a high dimensional feature space
and finds a hyperplane which has the largest margin to split
the data into two sets. The goal of the SVM classifier is
to separate features X ∈ Rd into two classes by finding a
decision function f (x) = sign(wTφ(x)+ b). SVM solves the
following quadratic optimization problem:

min
w,b,ξ

1
2
‖w‖2 + C

n∑
i=1

ξi

s.t. yi(wTφ(xi)+ b) ≥ 1− ξi (1)

wherew is the normal vector of the hyperplane, the function φ
maps the original feature vector xi into a higher dimensional
space [39], the parameters ξi are slack variables that relax
the constraints of the canonical hyperplane for non-separable
cases, and C is a regularization parameter on the training
error.

SVM-RFE was proposed by Guyon et al. [40], who elimi-
nated recursively the features based on the concept of margin
maximization. SVM-RFE used criteria from the coefficients
in SVM models to assess features and iteratively discarded
features that correspond to the smallest ‖wi‖2 [41]. The
present study adapted thismethod for feature ranking. At each
iteration step, the electrode pair with the lowest score was
eliminated. The SVM-RFEwas performed based on the train-
ing data, leading to a ranked list of electrode pairs [41], [42].

G. MCORCA-BASED METHOD
The previous method, CORCA, proposed the linear combi-
nations of multiple channels across subjects with maximal
correlation [4], [32]. In other words, CORCA estimated a
weight vector that maximized the inter-subject correlation
with similar temporal activation among subjects. Given a set
of N subjects data matrices X1,X2, . . . ,XN , where XN ∈
RNc×Ns , Nc and Ns denote the number of channels and sam-
pling points, respectively. Then, the subject-aggregated data
matrices can be defined as follows:

X1 =
[
XI11XI21 . . .XIP1

]
(2)

X2 =
[
XI12XI22 . . .XIP2

]
(3)

where Ii = {Ii1, Ii2} = {(1, 2), (1, 3), . . . , (N − 1,N )}
denote the set of all P = N × (N − 1)/2 subject
pairs. With CORCA, a projection vector ω was observed,
which maximized the correlation between y1 = X

T
1 ω and

y2 = X
T
2 ω. The optimization problem was transformed to

seek the Pearson Product Moment Correlation Coefficient
between y1y1 and y2y2:

yT1 y2
‖y1‖ ‖y2‖

=
ωTR12ω(

ωTR11ω
)1/2 (

ωTR22ω
)1/2 (4)

Rij =
1

Ns × P
X iX

T
j (5)

FIGURE 2. Illustration of the proposed MCORCA-based method.

where Rij was the sample covariance matrix. Assuming
ωTR11ω = ωTR22ω [32], [43], the projection vector ω which
maximizes the inter-subject correlation between y1 and y2
can be estimated through the following single eigenvalue
equation

(R21 + R12) ω = λ (R11 + R22) ω (6)

where λ is the generalized eigenvalues, and the eigenvalues
are arranged according to their absolute value. The optimal
component projection is the eigenvector ω of matrix with
the maximal eigenvalues and captures the largest correlation
between subjects.

In the current study, within-subject correlations were com-
puted to obtain the spatial filters for LVF targets and RVF
targets respectively. With the projection vector ω, we could
obtain the projection signals of a single-trial test data and a
reference signal and then calculate the correlation coefficient
between the two signals as the classification feature [4].

With individual training data X i ∈ RNc×Ns×Nt , i ∈
{left, right} denoted as LVF targets or RVF targets, Nt denot-
ing the number of trials, we can obtain the weight vector
ωik ∈ RNc×1 with CORCA. ωik represents the k-th weight
vector for the i-th class. Denote Ci ∈ RNc×Ns as the refer-
ence signals which are obtained by averaging across multiple
training trials X i. Next, the correlation coefficient between
the test sample X ∈ RNc×Ns and the reference signal Ci can
be computed as follows:

ri =
K∑
k=1

ρ
(
ωTikX , ω

T
ikCi

)
, i ∈ {left, right} (7)

The class of the test data is then recognized as the
class of the template signals with the maximal correlation
coefficients:

max
i
ri, i ∈ {left, right} (8)

Furthermore, we chose the k strongest components to
be used for feature extraction and classification (named as
multiple correlated component analysis (MCORCA)), and
expected the optimal components subset to exhibit a high
classification performance. Specifically, if k = 1, it repre-
sents the CORCA with a maximum correlation component.
The schematic diagram of the proposed methods is shown
in Fig. 2. The method includes the following steps:
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Step 1, computing the amplitude differences between
paired posterior electrodes for all data sets.

Step 2, in the training stage, the CORCA is used to cal-
culate the spatial filters for LVF and RVF respectively. The
reference signals are obtained by averaging across multiple
training trials.

Step 3, in the test stage, the spatial filter is used to calculate
the correlation coefficient between the test signal and all the
reference signals by formula (7). The LVF and RVF lateral
targets are recognized by formula (8).

H. PERFORMANCE EVALUATION
The classification accuracy (CA) and information transfer
rate (ITR) were used to evaluate the performance of the meth-
ods mentioned above. We evaluated the influence of different
component numbers (k = 1, . . . , 8) on the CA and ITR. The
SVM-RFE method was used to compare the performance
with the MCORCA method.

For each participant, a leave-one-out cross validation was
used to evaluate the classification performance. Specifically,
one trial was selected as the test sample, and the rest of
the trials were considered as the training samples to esti-
mate the classifier. The procedure was repeated until each
trial had been used once for testing. The feature selection
was performed inside the cross-validation loop, which led
to a specific ranking of the eight electrode pairs in each
fold. For each fold, the classifier was trained on the best k
(k = 1, . . . , 8) components (electrode pairs) respectively,
and tested on the corresponding components of the test set.
The corresponding CAs over all folds were averaged to yield
an overall accuracy. Finally, an estimate of the classification
accuracy could be obtained for each number of selected com-
ponents. Besides the CA, the ITR was also used to evaluate
the performance [44]. The ITR can be quantified by the bit
rate per minute:

B = log2 N + P log2 P+ (1− P) log2[
1− P
N − 1

] (9)

ITR = B/T (10)

where P is the classification accuracy and N is the number
of classes. B is calculated in bits per trial according to Shan-
non’s theorem and T is the time duration in minutes, which
leads to the calculation of ITR in bits per minute. A paired
t-test was implemented to investigate the statistical differ-
ence of the classification performance between MCORCA
and SVM-RFE.

III. RESULTS
A. N2pc
The grand-averaged waveform for lateral targets at the
paired channels of PO7/PO8 across all participants is shown
in Fig. 3, in which the contralateral curve is defined as the
average waveform at the channel PO7 for RVF targets and the
waveform of the channel PO8 for LVF targets. Meanwhile,
the ipsilateral curve is the average waveform at the channel
PO7 for LVF targets and the waveform at the channel PO8 for

FIGURE 3. Grand-averaged ERPs over 30 participants with 95%
confidence intervals at channels PO7 and PO8.

FIGURE 4. The average CAs (a) and ITRs (b) across all subjects of the two
methods with different numbers of components. The asterisk (∗)
indicates significant difference between the two methods by paired
t-tests (p < 0.05).

RVF targets. As shown in Fig. 3, N2pc appears at approxi-
mately 200–300 ms after stimulus onset. For clear, the 95%
confidence intervals are also presented in Fig.3 [45]–[47].
For considering the variance between subjects, we use the
averaged amplitude values in the time window from 200 to
300ms to test the difference between ipsilateral and con-
tralateral waveforms rather than the peak value. The paired
t-test showed that there was significant difference between
the averaged ipsilateral and contralateral amplitude during the
interval of 200-300ms (t = 5.05, p < 0.05).

B. CLASSIFICATION FOR LVF VERSUS RVF
As shown in the ERP analysis, significant amplitude dif-
ferences between the contralateral and ipsilateral wave-
forms were obtained during the intervals of 200–300 ms
after stimulus onset. Therefore, with the MCORCA-based
method, the spatial filters of the LVF targets and RVF targets
from individual training data were calculated in this interval
respectively. The spatial filters (eigenvectors) corresponding
to the eigenvalues were sorted in descending order, and the
sorted spatial filters corresponding to the k best eigenvalues
were used as the projection vector ω. As shown in Fig. 4,
the classification accuracies and the ITRs presented a con-
sistent tendency following the increased number of compo-
nents of both MCORCA and SVM-RFE. From the statistical
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analysis with the paired t-test, the performance of the
MCORCA-based method was better than that of the
SVM-RFE method when the number of components selected
was from 2 to 8 (all with p < 0.05).
To determine the proper number of components for high

classification performance, we performed one-way ANOVA
and multiple comparisons on the CA and ITR of different
components across all subjects. For CA, there was a statis-
tically significant main effect for the number of components
(MCORCA: F = 46.28, p < 0.001; SVM-RFE: F = 52.56,
p < 0.001). Post hoc multiple comparisons using the Bonfer-
roni correction showed that there was significantly increased
CA with the number of components when k < 5 (all with
p < 0.05), but no significant increase of CA when k ≥ 5
(all with p > 0.05) for the two methods. However, there
was a downward trend for the proposed MCORCA-based
method. For the ITR, there was a significant increase in
the ITR with the number of components at k < 5 for
the two methods (all with p < 0.05), which was
consistent with the CA results. No significant increase
was observed at k ≥ 5 for the SVM-RFE method
(all with p > 0.05). However, the ITR showed a
significant decrease with the number of components for
the MCORCA method. The results show that we can
obtain the best number of components for classifica-
tion and achieve good performance with the proposed
method.

With the difference amplitude feature and recursive feature
elimination, we trained the SVM classifier to distinguish LVF
from RVF lateral targets for different numbers of compo-
nents. The mean CA and ITR with amplitude and the SD of
cross-validation were 75% ± 4.60% and 22 ± 4.20 bit/min,
respectively, when the number of components was 5 (Fig. 4).
This result showed that there was a poor performance for
lateral targets detection based on single-trial classification
using SVM-RFE, which was consistent with the previous
study [27]. For the MCORCA-based method, the average
CA and ITR respectively reached up to 82% ± 3.70% and
35 ± 3.31 bit/min when the number of components was 5.
Overall, these results indicate that the MCORCA-based
method for feature extraction and classification performed
better than SVM-RFE in the visual search task with single-
trial classification.

We also investigated the classification performance of the
two methods across all the subjects at various time windows
using a sliding window of 100 ms with a step of 50 ms
(0–100 ms, 50–150 ms, 100–200 ms, 150–250 ms,
200–300 ms, 250–350 ms, 300–400 ms). The number of
components was set as 5.

As shown in Fig. 5, the MCORCA-based method yields
better performance than the SVM-RFE method in the time
window of 200–300 ms after the stimulus onset. Consistent
with the results of ERP analysis, the N2pc components were
elicited by the target at approximately 250 ms post-stimulus
(Fig. 3) and good performance was observed in this window.
Furthermore, the time window between 200–300 ms was an

FIGURE 5. The average CAs (a) and ITRs (b) across all subjects of the two
methods for a sliding window of 100 ms with a step of 50 ms. The
asterisk (∗) indicates significant difference between the two
methods by paired t-tests (p < 0.05).

FIGURE 6. The averaged CAs across all subjects of the two methods with
different numbers of training samples per class. The asterisk (∗) indicates
significant difference between the two methods by paired
t-tests (p < 0.05).

optimal choice for CA and ITR, prior to the P300-based BCI
(usually time window > 300 ms).
To evaluate the influence of the sample numbers on

the classification performance of MCORCA, the following
11 values (i.e. the number of training trials per class) were
further tested: 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, and 60.
For each class per subject, the training samples were ran-
domly selected from the data set and the remaining trials
served as the test set [48], [49]. The number of components
was set as 5. For each size of the training set, this procedure
was repeated 20 times [48]. Fig. 6 shows the average classifi-
cation results for different numbers of training trials across all
subjects. Using the paired t-test, we found that the proposed
MCORCA method outperformed the SVM-RFE method in
all conditions.

IV. DISCUSSION
In this study, the MCORCA method for N2pc-based
BCIs was proposed to identify the LVF and RVF lateral
targets with a single trial in visual search tasks. Our results
demonstrate that the proposedMCORCAmethod can achieve
good performance with a short duration (< 300 ms EEG
data).

In our visual search paradigm, the N2pc compo-
nent was elicited by responding to the lateral targets at
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about 200–300 ms post-stimulus (Fig. 3), which was con-
sistent with the previous literature on the N2pc [18], [21],
[25], [27]. During this time window, the MCORCA-based
method was applied to learn the spatial filters of the LVF and
RVF targets. The good performance of our method, which
could detect the electrophysiological differences between
LVF and RVF targets efficiently, can be attributed to the
effective spatial filters learned during the training stage.
Meanwhile, the EEG background artifacts were effectively
removed and the SNR of the N2pc signals was improved by
the spatial filters. With the spatial filters, the shared neuro-
psychophysiology components in response to the specific
target locations were captured by calculating the optimal
inter-trial correlative components instead of the maximal
correlative components. In fact, traditional CCA methods
require the canonical projection vectors to be orthogonal,
which drops the inherent correlations among channel record-
ings that reflect the synchronous oscillations for a given
cognitive task [32]. Compared with CCA, CORCA pro-
posed the linear combinations of multiple channels across
subjects with maximal correlation so as to take advantage
the inherent correlations between channel recordings in the
same cognitive tasks [4]. However, CORCA mainly utilized
the component corresponding to maximal correlation [4],
ignoring the complementary relationships between multiple
correlation components, whichmay lose the information with
discriminative power. Compared with this, MCORCA allows
for complementary correlations inmultiple time series, which
enhances the SNR and discriminative power of features,
resulting in good performance in a short duration (< 300 ms
EEG data). As shown in Fig. 4, the highest classification
performance was observed with the five strongest correl-
ative components (5 paired electrodes), i.e. CA: 82% and
ITR: 35 bit/min.

Moreover, the worst classification performance was
observed when a maximal correlative component was
selected, similar to the previous study [4]. In addition, when
the number of the strongest correlative components was
greater than 5 (i.e. k > 5), the CA and ITR showed a sig-
nificant decline. Though the decline of the CA (when k > 5)
did not have a significant effect, a declining trend of the CA
could also be observed (Fig. 4a). However, the SVM-RFE
classification based on difference amplitude features showed
a poor performance with single-trial discrimination of the
LVF and RVF lateral targets when compared to MCORCA,
which resulted in inter-trial variability in the amplitude and
latency of the ERPs. The findings revealed that our proposed
MCORCA-based method could get the optimal subset on the
number of electrodes to achieve high classification perfor-
mance.

In the current study, there were variations in performance
across subjects, and one reason for this difference might be
the choice of time window of N2pc. It should be noted that
determination of the time window was based on averaged
ERP analysis across all subjects, ignoring individual differ-
ences. We did not evaluate the subject-specific N2pc latency,

which may be a factor that led to induce these variations
in performance. Moreover, it has been previously demon-
strated that the latency and amplitude of N2pc is related to
different visual search tasks [50], [51] and the interstimulus
interval [52]. Because of the inter-subject variability,
we trained the classification model with the same individual.
In future, a transfer learning method could be applied to
improve the subject-specific classification performance by
transferring the general features learned from multiple sub-
jects or experiments. A study that designs a proper exper-
iment paradigm across subjects for the visual search task
would be beneficial to BCI application. In addition, the per-
formance of the MCORCA-based method for single-trial
lateral targets identification was tested here on an offline
experiment only, and online performance will be investigated
in future work, where a larger number of training data could
improve the performance. To some extent, the calibration
stage is usually time-consuming, and may prove fatiguing
for subjects. Therefore, reducing the calibration time is crit-
ical for actual BCI application. One of the most widely
used approaches is the transfer learning method that exploits
shared features between training data recorded from multiple
subjects or sessions.

V. CONCLUSION
In this paper, a novel ERP identification method, the
MCORCA-based method for N2pc-based BCIs, was pro-
posed to identify the LVF and RVF lateral targets with
single-trial classification in visual search tasks. The proposed
method was designed to find the linear combinations of
multichannel EEG signals that were the optimally correlated
components subset in time instead of a maximally correlative
component, and to take advantage of the inherent correla-
tions between channel recordings in the same cognitive tasks.
Moreover, the proposed method weights the target signals by
spatial filters to extract the spatial information for different
visual search targets, and improve the SNR of N2pc signals.
In short, the MCORCA-based method could get an optimal
subset of the correlated components and achieved a good
classification performance on CA and ITR when compared
to SVM-RFE.
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