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ABSTRACT The rapid growth of mobile devices in recent years has led to the rapid progress of mobile
computing. However, this has exposed certain limitations that have, first, been addressed by mobile cloud
computing. Once the Internet-of-Things devices have started being put online, a new step in the evolution of
mobile networks was taken through the addition of edge and fog computing, where small nodes at the edge
of the network take up some of the load on the cloud backend. Nevertheless, even this model has shown some
limitations, which is why in this paper, we address the problem of off-loading data and computations from a
mobile device to the cloud to fog nodes, or to other mobile devices in the vicinity. The novelty of our proposal
is the addition of a layer composed exclusively of mobile devices that collaborate in an opportunistic fashion,
as a first resort when needing some computations to be off-loaded. Through a thorough analysis using the
MobEmu mobile network simulator, we show that our solution is able to reduce total computation time by
as much as 19%, decrease the cloud usage with up to 40%, and reduce battery consumption with more than
6%.

INDEX TERMS 4G mobile communication, clouds, collaborative work, edge computing, mobile nodes,
peer-to-peer computing, social computing, wireless communication.

I. INTRODUCTION
Mobile devices are becoming our everyday companions, and,
whether they are smartphones or wearables, they represent an
essential part of our life. This has led to the rapid progress of
mobile computing, which has become a very important aspect
in the development of IT, as well as commerce and other
domains. However, despite the increasing usage of mobile
computing, exploiting its full potential is difficult due to its
inherent problems such as resource scarcity, frequent discon-
nections, and mobility. The appearance of cloud computing
has represented a huge opportunity for the development of
mobile services.

With the development of the cloud computing concept,
mobile cloud computing (MCC) has been introduced as a
potential technology for mobile services [1]. It can address
these problems by executing mobile applications on resource
providers external to the mobile device. More commonly,
the term mobile cloud computing assumes running an

The associate editor coordinating the review of this manuscript and
approving it for publication was Liqun Fu.

application on a remote resource-rich server, while themobile
device acts like a thin client connecting to the server through
Wi-Fi or 3G/4G. Some examples of this type are Facebook’s
location-aware services, Twitter for mobile, and mobile
weather widgets.

Due to the fact that the consumer and enterprise market for
mobile applications is set to reach $188.9 billion by 2020,1

there is a lot of interest in designing efficient methods of man-
aging mobile networks. Thus, in time, other methods have
been developed starting from the mobile cloud computing
concept in order to improve the usage and performance of
the mobile network and all its devices by increasing speed,
while at the same time reducing latency and costs.

Mobile edge computing (MEC) proposes moving
resources (both computing and storage) at the base stations
of cellular networks [2]. The purpose is to lower the mobile
core usage and to reduce latency, which have increased
due to the high amount of data traffic required by many

1https://www.statista.com/statistics/269025/worldwide-mobile-app-
revenue-forecast/.
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mobile applications that rely on data and services hosted
remotely. To match these increasing demands, operators need
to enhance and upgrade the capacities of existing network
resources continuously.Moreover, they are forced to integrate
new technologies (such as LTE Advanced) into their infras-
tructure in order to provide a good quality of experience for
users, since they can provide higher bandwidth capacities and
lower latency. However, improving existing resources and
integrating new technologies may add significant operational
costs, which is why mobile edge computing is considered
a technology that is suitable for addressing this issue in
certain scenarios. It aims to reduce network load by shifting
computations from the cloud to the edge of the network.

Fog computing extends cloud computing by providing
virtualized resources and engaged location-based services to
the edge of the mobile networks so as to better serve mobile
traffic [3]. The major difference between cloud computing
and fog computing is the support of location awareness.
The cloud ‘‘resides’’ in a centralized place and serves as a
centralized global portal of information, whereas fog com-
puting extends the cloud to reside at the user’s premises and
is dedicated to localized service applications. The idea of
fog computing is to place lightweight cloud-like facilities in
the proximity of mobile users. The fog can therefore serve
mobile users with a direct short-fat connection as compared to
the long-thin mobile cloud connection. The main advantages
of fog computing are enhancing service quality to mobile
users and improving the network efficiency (by avoiding the
back-and-forth traffic between cloud andmobile users). How-
ever, while bringing certain advantages such as low latency,
energy saving and context awareness [4], several challenges
in fog systems still need to be addressed, including creating
human-driven distributed systems, ensuring security and pri-
vacy, as well as scalability [5].

Mobile crowd sensing (MCS) presents a new sensing
paradigm based on the power ofmobile devices [6]. The sheer
number of user-companioned devices (including mobile
phones, wearable devices, and smart vehicles) and their
inherent mobility enable a new and fast-growing sensing
paradigm: the ability to acquire local knowledge through
sensor-enhanced mobile devices (location, noise level, traffic
conditions, etc.) and the possibility to share this knowledge
with devices in proximity. The information collected on the
ground and with the support of the cloud where data pro-
cessing takes place make MCS a versatile platform that can
often replace static sensing infrastructures. A formal defi-
nition of MCS specifies that it is a new sensing paradigm
that empowers ordinary citizens to contribute data sensed or
generated from theirmobile devices, which is then aggregated
and fused in the cloud for crowd intelligence extraction and
people-centric service delivery.

All these components combine together into the paradigm
ofDropComputing [7], which assumes that mobile nodes can
offload data and computations to the cloud, to fog devices,
and also to other neighboring nodes through close-range
protocols. Such a network requires a set of new and improved

offloading solutions, that are able to adapt to conditions
and select one or more of the available offloading methods.
Thus, our contributions in this paper are as follows. We first
present the Drop Computing paradigm and place it in the
context of cloud, fog and mobile computing. We then present
novel data and computation offloading solutions for Drop
Computing-based networks, that are able to increase user
QoE (quality of experience), reduce costs for application
and service developers, and decrease the rate of battery con-
sumption. Through thorough and valid experimentation on
synthetic and real-life scenarios, we are able to show that
our proposed mechanisms are indeed able to improve upon
the aforementioned metrics. Furthermore, we discuss the
potential of Drop Computing and its compatibility with new
and future communication technologies, and present some
real-life use cases.

The rest of this article is structured as follows. In Section II,
we discuss related work in the area of mobile offloading, and
then we present solutions similar to our proposal, highlight-
ing their drawbacks and showing how our solution attempts
to address them. Then, Section III contains details about
our proposed techniques for offloading in various scenarios,
while Section IV offers a thorough analysis of the proposed
mechanisms. Finally, in Section Vwe draw some conclusions
and present future work.

II. RELATED WORK
The cellular industry has experienced a large growth in the
past few years, especially in terms of data traffic, which,
already surpassing voice traffic, is continuously increasing
by an order of magnitude every year [8]. This is creating
challenges for the existing cellular networks, which brings
the need of mobile data offloading. This refers to the delivery
of data meant initially for mobile cellular networks onto
other interfaces, through the use of complementary network
technologies, with the purpose of alleviating congestion and
making better use of available network resources. The goal
is to maintain a certain level of quality of service for users,
while reducing the cost and impact of medium and large-scale
services on the mobile network. It is predicted that mobile
offloading will become a top industry segment very soon,
as traffic on mobile networks continues to rapidly grow.

The main reason for advancing mobile offloading is the
increase in data traffic on cellular networks, which is causing
congestion and affecting user experience. This increase can
be attributed to several factors [9]. Firstly, the increase in
number of high-end devices like smartphones or tablets has
led to a spike in traffic (e.g., a smartphone can generate
up to 35 times more traffic than a basic feature phone).
Another important factor is the increase of average traffic per
the devices themselves, which happened mainly because the
network speeds have increased, while batteries have become
more powerful. Thirdly, the increase in mobile video content
has also led to congestion, because it has much higher bit
rates than other content types. Furthermore, large screen sizes
and mobile video optimization also contribute to the growth
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of video traffic. As a fourth factor, we should mention the
availability of mobile broadband services at low prices and
speeds similar to those of fixed broadband.

Data offloading over Wi-Fi has caught traction in recent
years, due to the ubiquitousness of wireless access points.
There are considered to be two types of data offloading over
Wi-Fi [9]: on-the-spot and delayed. On-the-spot offloading
refers to using spontaneous connectivity to Wi-Fi and trans-
ferring data on the spot; when users move out of the Wi-Fi
coverage, they discontinue the offloading and all the unfin-
ished transfers are transmitted through cellular networks.
Most of the smartphones which give priority toWi-Fi over the
cellular interface in data transmissions can be expected to cur-
rently achieve on-the-spot offloading. In delayed offloading,
each data transfer is associated with a deadline and, as users
come in and out of Wi-Fi coverage areas, they repeatedly
resume data transfer until the transfer is complete. If the data
transfer does not finish within its deadline, cellular networks
finally complete it. Most smartphones with Wi-Fi are already
performing on-the-spot offloading by default, but delayed
offloading is relatively new. Its notion is very close to that of
delay-tolerant networks where applications can tolerate some
amount of delays. It is true that users want the data immedi-
ately, but network carriers can provide monetary incentives
for users to transfer with longer deadlines.

A recent approach to offloading mobile data traffic using
opportunistic communications has been proposed [8]. Most
of the information delivered over mobile networks comes
from content service providers and may include multimedia
newspapers, small computer games, weather reports, and so
on. The service providers can benefit from the delay-tolerant
nature of such applications and may deliver the information
only to a small group of users (target users). The target users
can further disseminate the information to subscribed users
when their mobile phones are in proximity and can commu-
nicate opportunistically usingWi-Fi or Bluetooth technology.
Apart from these two technologies, device-to-device (D2D)
communication using cellular resources can also be employed
for such opportunistic communication. Such an offloading
approach is attractive as there is little or no monetary cost
associated with it. However, it is challenging due to a num-
ber of factors such as the heterogeneity of data traffic from
service providers (varying in delay and content size), varied
user demands and preferences for data traffic, incentives for
target users, and battery and storage constraints of mobile
devices.

Several frameworks for offloading data in mobile networks
have been proposed recently, but they have several important
limitations that we aim to address with our solution. Firstly,
Huerta-Canepa and Lee propose an offloading framework
where static identical devices are able to work together at
parts of a series of common tasks [10]. However, the fact
that the nodes are not mobile, they are all the same, and they
can only communicate directly when in range (and not over
multiple hops) are some downsides of this solution that are
solved by the offloading mechanisms proposed in Section III.

A solution that also employs the cloud as an alternative
to device-to-device communication is mCloud [11], but it
has the drawback that it expects mobile network carriers to
offer incentives for participation. Furthermore, it has the same
limitation as all the other solutions, namely that it does not
allow the mobile nodes to communicate opportunistically.
A framework also called mCloud [12] further introduces the
third dimension of offloading, composed of edge devices.
In mCloud, node are thus able to offload over Wi-Fi, Wi-Fi
Direct (but again in a single-hop fashion), Bluetooth and 3G,
and the interface selection is performed using a multi-criteria
optimization approach that considers several context param-
eters such as battery consumption or resource availability.

Verbelen et al. introduce the notion of cloudlets [13], which
are groups of nodes located in the same network that can
collaborate to help with computations (either for a node
inside the cloudlet, or even for an external device). There are
elastic cloudlets built specifically in datacenters, and ad-hoc
cloudlets that get created when multiple devices that need to
offload tasks are connected to the same network at the same
time. The main drawback of this solution is that there needs
to be a central service that is aware at all times of all the
cloudlets and their locations, which defeats the purpose of
decentralization. Furthermore, this would be even harder to
implement if we took into account the fact that mobile nodes
move around a lot and thus change their cloudlet membership
very often.

III. DATA AND TASK OFFLOADING MECHANISM
In this section, we first present the Drop Computing paradigm
that our offloading mechanisms are implemented and tested
on, and then we propose our solutions for various scenarios.

A. DROP COMPUTING
The data and computation solution that we present here is
based on the Drop Computing paradigm [7], [14], as shown
in Figure 1. Themain idea of DropComputing is the introduc-
tion of an additional crowd computing layer below the classic
fog/edgemodel, wheremobile nodes can collaborate between
each other without the need for access to the infrastructure.
At this layer, the interactions between nodes are guided by
social connections, which add a new and interesting dimen-
sion to distributed computing. Basically, this bottom layer is
an opportunistic network [15] governed by the store-carry-
and-forward paradigm.

Opportunistic networks (ONs) are a natural evolution of
mobile ad hoc networks (MANETs), where most (or some-
times all) of the nodes are mobile wireless devices. In the
case of ONs, routing information is not stored, due to the
volatile nature of the links between nodes. ON nodes have
no knowledge of the network when they join it, they are only
aware of other nodes that they come in close contact with,
depending on the radius of their communication mechanism
(e.g., Wi-Fi Direct, Bluetooth, NFC, etc.). Secondly, the exis-
tence of a path between two devices is not guaranteed, since
the topology is unknown (even if it would be known, a node
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FIGURE 1. The Drop Computing paradigm.

can exit the local network anytime it wants to, or go idle for
an undefined period of time.)

In such circumstances, traditional TCP/IP protocols or any
other legacy Internet routing approach based on topological
information will fail to accomplish the network needs. ONs
address this issue through a store-carry-forward approach in
which a node that wants to relay a message will store it
and carry it around the network until the destination node is
reached, or another node with a high chance of encountering
the recipient is found. In this case, the message will be passed
from the sender to the intermediate node, which now becomes
the new sender.

However, opportunistic networks by themselves still have
several unresolved challenges, which is whyDropComputing
employs them only as a first layer in the communication
process. The first challenge, and one of the greatest problems
that must be tackled when developing routing algorithms for
opportunistic networks, is the high degree of unreliability:
not having to rely on any topology means that the routing
will somehow have to constantly adapt to the new changes in
topology, and also determine the best routes.

Secondly, since contacts between nodes are hardly pre-
dictable in real life (due to the complexities of human mobil-
ity patterns), some form of opportunistic decisioning must be
taken in order to maximize the rate of messages reaching their
destinations. Ideally, in order to correctly select the next hop,
the future state and behavior of the network must be known,
but this is not the case for ONs.

Another type of concern addresses the storage limitations
that most of the existing hand-held smart device have: this
directly impacts the number of messages one node can store.
The bigger the storage space is, the more transient messages
can exist in the network at a given time. If a node’s message
buffer gets full, it cannot receive any other messages unless
some of the existing ones are dropped. This can eventually
lead to the congestion of the network, in which case the
network simply ‘‘freezes’’ and a waiting interval has to pass
in order for the overwhelmed nodes to drop some of the
messages.

Given the fact that the majority of mobile devices run
using a limited amount of battery available, and that

network operations are known for being power-demanding,
the routing algorithms have to take into consideration the
short amount of time in which data transfers should take
place and the protocol being used: typically, Bluetooth is
considered to be a low-power, low-energy protocol, whereas
Wi-Fi or broadband technology such as 3G and 4G are much
more energy-consuming.

Two other issues are privacy and security, which are
unavoidable as the data being sent make their way throughout
the network with the help of stranger nodes acting as for-
warders. To prevent then from being tempered with, encryp-
tion methods must be employed that must assure both the
integrity and the secrecy of the content being sent. Each
routing algorithm designed for an opportunistic networkmust
address those issues in order to provide a sustainable commu-
nication channel between parties.

In the case of Drop Computing, these issues are addressed
by only employing the opportunistic network as part of a
layered architecture. On top of this crowd-based computing,
Figure 1 shows that there is also a component for server-based
computing. This is where the fog and edge nodes are located,
which can be employed by Drop Computing nodes when in
range and when the nearby nodes cannot help with a request
in a satisfying fashion. The fog and edge nodes are generally
static devices that are located at the edge of the network,
and that are used to alleviate the load on the cloud backend,
and to increase response times for the requests due to their
positioning closer to the devices being served.

If the edge and fog devices are not sufficient, then the
cloud is employed. Thus, it can be observed that the Drop
Computing paradigm has several levels of data and computa-
tion offloading: the ad-hoc opportunistic network composed
of other nearby devices, the fog and edge nodes, and the
cloud itself. It is in this context that we propose a solution
for offloading in the next section.

B. PROPOSED SOLUTION
On top of the Drop Computing paradigm presented in the
previous section, we now propose offloading mechanisms
that aim to improve the quality of experience (QoE) for
users, the costs for developers, as well as battery consumption
(which is of the utmost importance when dealing with mobile
networks composed of battery-powered devices). In this
paper, we focus on task computation as an offloadable action,
but the solutions we propose can be easily mapped onto the
offloading of data.

In [7], we introduced the Drop Computing paradigm and
proposed a simple offloading model that only takes into
account the cloud and other mobile devices located in close
proximity. In [14], we extended this solution by adding fog
nodes and presenting a more complex offloading mechanism
and highlighting its advantages. In this paper, we take this
one step further, by proposing a unified offloading solution
for Drop Computing that takes into consideration all levels
of the architecture presented in Section III-A and thoroughly
analyzing it in various scenarios.
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As previously seen, there are three kinds of entities in Drop
Computing: mobile devices, fog nodes, and the cloud. This
leads to four scenarios of offloading, and in the remainder of
this section we propose a method for each of them:
• device-to-device (D2D) only - there are only mobile
nodes in the network, so they can either compute the
tasks themselves, or spread them in the opportunistic
network composed of neighboring nodes

• cloud only - mobile devices do not communicate with
each other, they can only compute the tasks themselves
or employ the cloud when they consider this necessary
(assuming unlimited resources in the cloud)

• D2D and cloud - in this scenario, mobile nodes can
compute the tasks themselves or offload them oppor-
tunistically to other devices or to the cloud

• D2D, cloud and fog - in addition to the previous sce-
nario, fog nodes are added here, which are located at the
edge of the network, between the opportunistic layer and
the cloud backend.

1) D2D ONLY OFFLOADING
This type of offloading is very similar to the basic idea of
opportunistic routing or dissemination, where a source node
sends a message that needs to reach a particular destination
or a set of interested nodes. However, when dealing with task
offloading, the communication needs to be bi-directional.
First, the node that generates a task (its owner) needs to
move it towards a good executor. Then, after the task is
computed, it needs to make its way back to the owner, not
necessarily on the same path (especially taking into account
the fact that nodes in an opportunistic network are extremely
mobile and thus do not spend much time in the same place).
Another difference from opportunistic networks is the next
hop selection criteria. In ON routing, the destination of a mes-
sage is known in advance, so nodes that are encountered are
analyzed based on their suitability of delivering the message
closer to the destination (as shown by popular solutions such
as BUBBLE Rap [16], PROPHET [17], ONSIDE [18], ML-
SOR [19], RANK [20], dLife [21], SPRINT [22], etc.). For
ON dissemination, next hops are selected based on the tags of
a message and of the interests of the encountered nodes (well-
known proposals include ContentPlace [23], SocialCast [24],
SANE [25], ONSIDE [18], etc.). In the D2D offloading case,
when a task needs to be computed, devices are selected based
on their resources and load, so different heuristics need to be
employed. Once a task is computed, the logic of bringing it
back to the owner behaves exactly like opportunistic routing
(with a destination known in advance), so well-known algo-
rithms can be employed for this stage.

Our proposed mechanism for offloading through D2D is
presented in Algorithm 1. There are two main functions
that need to be implemented for all four proposed solutions:
onDataExchange and onTick. The former method is called
whenever two nodes encounter and start a data exchange
(from the standpoint of a node A encountering a node B),
whereas the latter is called on every clock tick. The onTick

TABLE 1. Helper functions for the offloading mechanisms.

function is straightforward, as shown at lines 1-12 in Algo-
rithm 1: each node simply computes as many tasks as it can
from its list. This may include not only tasks that belong to the
current node, but also tasks that other devices have offloaded.
Whenever a task is completed, if it belongs to the current node
then it is marked as solved and sent to the application level,
otherwise it is put into a list of computed tasks, so it can then
be delivered to its owner node.

When two nodes A and Bmeet, the first step is to exchange
information about completed tasks. If a completed task from
node A belongs to B, then a data exchange is performed,
so B now knows that its task was completed, although not
necessarily by A (lines 16-18). If a completed task’s owner
is not node B, then B will only get the information about the
completed task fromA if it is socially connected (on a network
like Facebook, for example) with the task’s owner (this is seen
in lines 19-21 of Algorithm 1).

After exchanging information about completed tasks,
the nodes decide which set of tasks each of them keeps to
compute or further move in the network. By comparing the
tasks that each of the two nodes carry, this is an attempt to
solve the following optimization problem (where A and B are
the nodes, N .t is the set of uncomputed tasks carried by a
node N , N .cptu is the number of cycles per time unit that a
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Algorithm 1 D2D Only Offloading Mechanism (Helper
Functions Are Presented in Table 1)
1: procedure onTick(A)
2: for all tasks t in getTasks(A) do
3: if canCompute(A, t) then
4: compute(A, t)
5: if hasFinished(t) and getOwner(t) = A then
6: markAsSolved(A, t)
7: end if
8: else
9: return
10: end if
11: end for
12: end procedure
13:

14: procedure onDataExchange(A, B)
15: for all tasks t in getExecuted(B) do
16: if getOwner(t) = A then
17: send(t, B, A)
18: markAsSolved(A, t)
19: else if areSociallyConnected(A, getOwner(t))

then
20: send(t, B, A)
21: end if
22: end for
23:

24: if getContacts(A, B) ≥ 2 then
25: familiar = true
26: else
27: familiar = false
28: end if
29:

30: if ¬areBalanced(A, B) then
31: balance(A, B, familiar)
32: end if
33: end procedure

node N can perform, while T .c is the dimension of a task in
cycles):

minimize |
∑
T∈A.t

T .c× A.cptu−
∑
T∈B.t

T .c× B.cptu|

subject to A.t ∩ B.t = ∅ (1)

This is a bound constrained optimization problem that
should balance the computation load on the two nodes by
minimizing the difference between the total computation
durations of the tasks carried by the two nodes, calculated
as the product between the number of cycles per task and
the duration of a cycle per node. In Algorithm 1, this step
is performed by the balance method as seen at line 31 (the
areBalanced method invoked at line 30 simply checks if the
difference between the loads on the two devices is higher
than a given threshold). After the minimization problem is
solved, the nodes exchange the necessary tasks between each
other, in order to remain with the most optimal task set.

Algorithm 2 Cloud Only Offloading Mechanism (Helper
Functions Are Presented in Table 1)
1: procedure onTick(A)
2: for all tasks t in getTasks(A) do
3: if canCompute(A, t) then
4: compute(A, t)
5: if hasFinished(t) then
6: markAsSolved(A, t)
7: end if
8: else
9: break
10: end if
11: end for
12:

13: for all tasks t in getTasks(A) do
14: if hasExpired(t) then
15: sendToCloud(t)
16: end if
17: end for
18: end procedure

For solving the problem, the balance function employs a
greedy approach: node A selects the task that takes the longest
for it to compute, then B chooses one or multiple tasks that
take a similar amount of time, and so on.

When node A transfers a task to node B, it has two options.
It can either keep the task even after transfer (in which case it
can work on computing it in the future or pass it along to other
nodes) or it can delete it (and then only node B decides what
to dowith the task). In order tomake this decision, we analyze
the familiarity between the two encountering nodes, as seen
at lines 24-28 of Algorithm 1. Thus, if there have been at
least two contacts between A and B in the last time window,
then the familiar variable is set to true and the sending node
does not keep the task. This happens because we consider
that, when two nodes are familiar, there is an inherent trust
in each other. Furthermore, this may also mean that, since A
and B meet often, they will both encounter a similar set of
neighbors.

2) CLOUD ONLY OFFLOADING
The second type of offloading is when devices do not com-
municate with each other opportunistically, but they only
have access to the cloud. This is actually the classic case of
mobile cloud computing [1], so our proposal for this scenario,
as shown in Algorithm 2, is relatively straightforward. More
specifically, the first part (lines 2-11) is very similar to the one
for D2D offloading from Algorithm 1 (the only difference is
that, for this case, a node can only compute tasks that belong
to itself, so it simply marks them as finished and sends them
to the application level upon execution). Whenever a task
expires, the cloud is employed to help with the computations.
Expiration times depend on the size of the task and the com-
putation expectancy of the user of the particular application
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Algorithm 3D2D and Cloud OffloadingMechanism (Helper
Functions Are Presented in Table 1)
1: procedure onTick(A)
2: for all tasks t in getTasks(A) do
3: if canCompute(A, t) then
4: compute(A, t)
5: if hasFinished(t) and getOwner(t) = A then
6: markAsSolved(A, t)
7: end if
8: else
9: break
10: end if
11: end for
12:

13: for all tasks t in getTasks(A) do
14: if hasExpired(t) then
15: sendToCloud(t)
16: end if
17: end for
18: end procedure
19:

20: procedure onDataExchange(A, B)
21: for all tasks t in getExecuted(B) do
22: if getOwner(t) = A then
23: send(t, B, A)
24: markAsSolved(A, t)
25: else if areSociallyConnected(A, getOwner(t))

then
26: send(t, B, A)
27: end if
28: end for
29:

30: if getContacts(A, B) ≥ 2 then
31: familiar = true
32: else
33: familiar = false
34: end if
35:

36: if ¬areBalanced(A, B) then
37: balance(A, B, familiar)
38: end if
39: end procedure

that is using the offloading mechanisms (generally in terms
of quality of experience).

3) D2D AND CLOUD OFFLOADING
TheD2D and cloud offloadingmechanism presented in Algo-
rithm 3 is basically a combination of the D2D and cloud only
solutions shown in Algorithms 1 and 2. More specifically,
nodes compute the tasks they have in their lists upon each
tick (lines 2-11) and send them to the application layer or
store them to be disseminated to other nodes. Upon a D2D
contact, the nodes first exchange information about executed
tasks (lines 21-28), and then attempt to balance their tasks (as
shown at lines 30-38 in Algorithm 3). The advantage of this

solution over the two versions presented in Sections III-B.1
and III-B.2 is that more tasks will be computed because they
are sent to the cloud when they expire, but at the same time
the costs for the developers will be lower, because the cloud
will not be used as much as in the cloud-based solution.

4) D2D, CLOUD AND FOG OFFLOADING
When adding fog nodes into the network, the logic needs to
be changed in order to account for and take advantage of these
devices. Our proposal is shown in Algorithm 4, and it can be
observed that the behavior of the onTickmethod is the same as
for the D2D and cloud approach: devices compute themselves
as many tasks as they can at each tick, and they offload to the
cloud all the tasks that expire upon a tick.

The first different approach of this solution occurs when
exchanging executed tasks. In this case, if a mobile node
encounters a fog device, it sends its entire list of executed
tasks. This happens because fog nodes have larger storage
space and they are placed in locations where they have many
contacts with other devices, which increases the chance of an
executed task to find its owner. This is shown at lines 26-28 of
Algorithm 4.

There is also a special case regarding tasks that have
not been fully computed yet, as observed at lines 40-53 of
Algorithm 4. In this situation, a mobile node will pick one
task from its list, offload it to the fog node, wait for the
executed task, and then repeat this action until the two nodes
are no longer in contact or all of the mobile device’s tasks
are executed. Upon the execution of each task, the mobile
node sends it to the application level or stores it for future
delivery, depending on the case. If the mobile node is not
the task’s owner, the fog node also keeps the result in its
list of executed tasks, in order to improve the task result
delivery. By employing the fog devices, mobile nodes take
full advantage of their higher computing power whenever
they are in range.

IV. ANALYSIS
In this section, we present a thorough analysis of the behavior
of the offloading mechanism proposed in Section III. We start
by describing the various scenarios that we simulated and the
way they are implemented, and then we analyze the results
obtained by our solution, highlighting its advantages and the
places where it can be improved.

A. EXPERIMENTAL SETUP
This section addresses the experimental setup of our simu-
lations. We first describe the MobEmu framework that was
used for all our tests, and then go into detail regarding each
scenario and the behavior of all entities involved (mobile
nodes, fog devices, the cloud, etc.).

1) MobEmu
MobEmu [26] is an open-source mobile network simula-
tor2 that can replay a mobility trace or a synthetic mobile

2Its code is freely available under MIT license at
https://github.com/raduciobanu/mobemu.
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Algorithm 4 D2D, Cloud and Fog Offloading Mechanism
(Helper Functions Are Presented in Table 1)
1: procedure onTick(A)
2: for all tasks t in getTasks(A) do
3: if canCompute(A, t) then
4: compute(A, t)
5: if hasFinished(t) and getOwner(t) = A then
6: markAsSolved(A, t)
7: end if
8: else
9: break
10: end if
11: end for
12:
13: for all tasks t in getTasks(A) do
14: if hasExpired(t) then
15: sendToCloud(t)
16: end if
17: end for
18: end procedure
19:
20: procedure onDataExchange(A, B)
21: for all tasks t in getExecuted(B) do
22: if getOwner(t) = A then
23: send(t, B, A)
24: markAsSolved(A, t)
25: else if areSociallyConnected(A, getOwner(t))

then
26: if isFogNode(A) then
27: send(t, B, A)
28: end if
29: end if
30: end for
31:
32: if getContacts(A, B) ≥ 2 then
33: familiar = true
34: else
35: familiar = false
36: end if
37:
38: if ¬areBalanced(A, B) and ¬isFogNode(B) then
39: balance(A, B, familiar)
40: else if isFogNode(B) then
41: for all tasks t in getTasks(A) do
42: if canCompute(B, t) then
43: send(t, A, B)
44: compute(B, t)
45: send(t, B, A)
46: if hasFinished(t) and getOwner(t) = A

then
47: markAsSolved(A, t)
48: end if
49: else
50: break
51: end if
52: end for
53: end if
54: end procedure

node interaction model and allow the users to implement
their own logic on top of these interactions. It started out
as a tool for testing opportunistic network routing and
dissemination behavior on large-scale scenarios (having
implementations for solutions such as Epidemic [27], Spray-
and-Wait [28], BUBBLE Rap [16], Interest Spaces [29],
etc.), but it has evolved to allow for the existence of a
cloud backend, edge and fog devices, and other specialized
network entities that need to be simulated in various mobile
network-related
scenarios.

Although other opportunistic network simulators existed at
the time MobEmu was created (such as ONE [30], DTN2,3

or OMNet++,4) they had several disadvantages, such as
lack of support for opportunistic dissemination, community
detection, social connections, context data, etc., which is the
reason that MobEmu was implemented.

It has a very intuitive interface, where a Node class is
used to simulate a network entity, and two methods need
to be implemented to guide the behavior of a mobile node:
onTick (called at every clock tick of the simulation) and
onDataExchange (called when two nodes are in contact
and start communicating). Aside from this, each node has
several additional components that can be attached, such
as Battery (to simulate battery consumption, as detailed
in Section IV-A.5), Network (for network transfer behavior
using various close-range protocols), Community (for node
community grouping), etc.

2) TRACES
For testing the solution proposed in Section III, we used one
real-life mobility trace collected in an office environment
(where the number of mobile nodes and their interactions
are fixed and cannot be controlled in the simulation) and the
HCMM mobility model [23], which simulates device con-
tacts based on approximations of the human behavior (and
which allows for a high control on the number of nodes in the
simulation and their grouping, the size of the simulation area,
the number of contacts, etc.).

The real-life trace (entitled ‘‘UPB 2015’’) was collected
for a period of several weeks in an office in Bucharest, but
for the experiments we perform here, we selected a sample
obtained in a 7-hour interval of a single day (since it is a
working environment where the same employees work and
interact, the trace is very similar on a daily basis). For col-
lection, we employed the HYCCUPS Tracer [31], which is
an Android application that collects information about the
behavior of a mobile device, including battery consump-
tion, CPU behavior (frequencies, hotplugging, sleep states,
etc.), memory management, user activity, and also contacts
between nodes. For contact tracing, HYCCUPS uses the

3https://sites.google.com/site/dtnresgroup/home/code/
dtn2documentation.

4https://omnetpp.org.
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TABLE 2. Testing scenarios in MobEmu. For UPB 2015, the parameters
marked with ‘‘N/A’’ cannot be controlled when running the trace.

AllJoyn framework5 to detect interactions over Wi-Fi access
points and Bluetooth.

On the other hand, the Home-Cell Mobility Model
(HCMM) is a synthetic model that generates user interactions
that try to mimic real-life contacts between humans carrying
mobile devices, by following the caveman model [32]. The
advantage of HCMM is that it allows us to configure the
behavior of the mobile network through various parameters,
as shown in Table 2.

As shown in Section III, our solution assumes that there
are also fog devices in the network, which can alleviate some
of the load placed on mobile devices or the cloud. For this
reason, support for such devices was needed in MobEmu.
For HCMM, we simply added the desired number of static
fog nodes in the simulation, and generated contacts whenever
mobile devices were in range, which allowed us to vary
the number of fog nodes. It can be seen in Table 2 that,
for our experiments, we tested with 2, 4 and 10 static fog
nodes. On the other hand, since UPB 2015 is a real-life trace
and we wanted to test with real data, we placed two static
nodes in locations at our faculty (in a large amphitheater
and in a laboratory) and configured their Wi-Fi interfaces
in monitor mode and listened for Wi-Fi beacons from other
devices in range [14]. We then mapped the most seen nodes
to the 6 nodes in the UPB 2015 trace (choosing the 7-hour
interval with the most contacts) and ran our experiments this
way.

3) TESTING SCENARIOS
In order to highlight the advantages brought forth by our pro-
posed solution, we devised several scenarios. Firstly, we test
a scenario where there is only device-to-device communi-
cation. In this situation, if a node needs to compute a task,
it can either perform this computation itself, or it can request
help from other nodes in the network when they are in range.
Requests for computations can be forwarded between the
nodes in a multi-hop opportunistic fashion, so a task may end
up being solved by a node that is never in contact with the
task’s owner. In this situation, the difficulty lies in correctly
choosing which node to forward the task to, and then which

5https://openconnectivity.org/developer/reference-
implementation/alljoyn.

node to use as a relay for the result of task, in order for it to
make its way back to its original owner.

For the second scenario, we assume that nodes do not
communicate with other devices, but they have access to the
cloud (so this is the classicmobile cloud computing scenario).
In this case, they can either compute the tasks themselves or
they can employ the cloud backend for help.

The third scenario sees the mobile nodes able to commu-
nicate with each other (D2D), while also having access to the
cloud, which means that they need to carefully decide when
to request help from their neighbors (e.g., when the other
devices in range have the necessary capabilities and they are
predicted to be encountered again shortly) and when to go to
the cloud.

Finally, the fourth test case is the complete scenario that
the solution we presented in Section III attempts to address,
namely when nodes can compute the tasks themselves, ask
for help from neighbors, go to the fog devices when in range,
or compute the tasks in the cloud.

We execute these four scenarios for the two traces pre-
sented in Section IV-A.2, in order to see how our solution
behaves for different environments. Furthermore, we run our
solution on two versions of the HCMM scenario. In the first
version, the 40 nodes are grouped into 4 communities, which
means that nodes inside a community will tend to encounter
each other a lot, whereas interactions between nodes from
different communities are rarer. In this scenario, each com-
munity also has a traveler node, which moves through the
other communities with a higher probability than regular
nodes, acting thus as an inter-community connection. Aside
from this scenario, we also test with all nodes in a single
large community, which increases the contact duration of any
two nodes while decreasing the overall number of contacts
(since the two devices spend more time together and move
apart rarer), thus potentially making the D2D-only case more
optimal.

4) MEASURED METRICS
For each scenario, we measure several metrics that we con-
sider to be important in deciding whether the solution we
propose is suitable. The first metric is computation duration,
which is the time passed between the moment a task is gen-
erated and the moment that its owner has the result (that was
either computed locally, on another mobile or fog node, or in
the cloud). This metric is closely related to a user’s quality
of experience, since the quicker a task is solved, the more
satisfied the user is. Then, the second metric is the cloud
usage time, which needs to be improved from the standpoint
of the entity that offers the mobile service. For example, if we
are talking about a mobile application where CPU-intensive
tasks are offloaded to the cloud, a large number of such
offloads leads to higher costs for the application developers.
Ideally, a good solution should be able to minimize both
the computation duration and the cloud usage time, thus
satisfying the users and application developers alike. We
also compute the usage time per device (i.e., when the node
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itself is performing computations), as well as the fog node
computation time, in order to see how often these nodes are
employed.

Another important metric when talking about networks
composed of mobile devices is the battery consumption. For
this reason, in our experiments we measure howmuch battery
is consumed overall by a mobile device (as a percentage of
the fully-charged battery), but also how much is consumed
for each of a device’s actions (i.e., exchanging data with
other devices, with the fog nodes, or with the cloud, and
computing tasks). In Section IV-A.5, we discuss the battery
model employed in our experiments.

5) BATTERY MODEL
Several battery models for embedded systems have been
proposed over the years, including kinetic, stochastic or
Markov process-based models [33]. However, MobEmu cur-
rently opts for a more simpler model, but one that we believe
is closer to reality if configured correctly. More precisely,
for each type of device that MobEmu is able to simulate,
we have used real-life data (generally collected from GSM
Arena6) to estimate the lifetime of a mobile device when used
normally (i.e., when no data transfers and task computations
are performed). Based on the current trace’s sample time,
the initial battery is set so that, at each clock tick, it decreases
linearly by one unit, and the time it takes for the battery level
to get from maximum value to zero is equal to the battery
lifetime as indicated by GSM Arena information.

Then, for each type of action that is bound to consumemore
battery (transferring data and computing tasks), we apply a
multiplier, so that, for example, while a task is being com-
puted, the battery will decrease by the value of the multi-
plier (instead of one unit) per time tick. If there are several
battery-consuming actions being performed simultaneously
at one point (for example, a device is sending some tasks
to the cloud, while at the same time computing other tasks),
the battery multipliers are added, so both actions contribute
to the consumption of battery.

In order to select the battery consumption multiplier val-
ues (which are presented in Table 3), we performed several
experiments on multiple mobile devices (a Samsung Galaxy
S7, an iPhone 5S and a Google Pixel) where we observed
how much lower a device’s lifetime is when transferring
data on Wi-Fi (for fog node communication), 4G (for cloud
communication) and onBluetooth (for D2D communication),
and also when running a task that keeps one core in 100%
usage. The values obtained for the three devices we tested
were relatively similar, so we approximated them as shown
in Table 3. We should mention that, when performing the
battery experiments that led to these values, we took into
account the fact that, when smartphones keep their CPUs
in high frequencies for longer periods of time, they tend to
overheat and end up consuming even more power, so we

6https://www.gsmarena.com.

TABLE 3. Battery consumption multipliers used for testing in MobEmu.

allowed for cool-down intervals between short periods of
running tasks or transferring data.

6) TASKS
In order to analyze our proposed solution in multiple sce-
narios, we also varied the kinds of tasks that a node needs
to execute. Consequently, there are three types of computa-
tional tasks in our experiments: small (1 Mcycle), medium
(1000 Mcycles) and large (10000 Mcycles). Every time a
node remains out of tasks to execute, it generates a new set.
Tasks are organized into task groups, which pertain to the
same application, actually representing one computation that
is split into multiple offloadable components. A task group
consists of between 1 and 20 tasks of each type. For all our
experiments (as presented in Section IV-A.3), we limit the
total number of tasks per scenario to 60000.

Each individual task from a task group has an expiration
time. If no result arrived for that task (from a mobile or a fog
node) before the expiration time, then the task is sent to the
cloud for computing, so that it does not delay the application
and affect the user’s experience. This is why, when offloading
a task to another node, the proposed offloading solution needs
to take into account the time left prior to the task’s expiration,
in order to correctly decide where it is worth to offload the
task or if it is not better to compute it in the cloud. For small
tasks, the expiration time is 1 millisecond, while for medium
and large tasks it is one second and ten seconds, respectively.

When tasks are executed in the cloud, we assume that there
is an unlimited number of single-core virtual machines that
have 3.3 GHz CPUs. When executing tasks on mobile nodes,
we only use one core for task computation, in order to not
affect the QoE of the owner of the mobile device. When
offloading a task, all its data need to be transferred. In our
experiments, we assume that all tasks (regardless of type)
have 5 MB.

7) MOBILE DEVICES
MobEmu is able to simulate several types of mobile devices
(smartphones, in this case), having support for LG G5, HTC
One M9, iPhone 5S, iPhone 6S, Samsung Galaxy S4, Sam-
sung Galaxy S5, Samsung Galaxy S6, and Samsung Galaxy
S7. A device is characterized by its battery lifetime and the
duration of computing a megacycle on one CPU (informa-
tion obtained from GSM Arena), as we assume that transfer
speeds are given by the protocols employed, and not neces-
sarily by the hardware.

For all our experiments in this article, we test with half
of the devices being iPhone 5S and the other half Samsung
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TABLE 4. Mobile and fog device characteristics.

Galaxy S7. We chose this combination because there is a
relatively significant advantage regarding CPU power for
the Samsung device, and we wanted to see what effect this
disparity has on our solution. The parameters for the two
types of devices, along with the fog nodes, can be observed
in Table 4. Regarding the fog nodes, we assumed that they
are static nodes always connected to a power outlet (thus no
battery limitations), which can perform task computations on
four cores simultaneously.

B. RESULTS
This section presents the results obtained when running
experiments on the scenarios described in Section IV-A.
We begin by analyzing the behavior of our solution on the
HCMM model when the nodes are grouped into four social
communities, then we only set one community for the same
environment, and finally we show the results obtained on the
UPB 2015 mobility trace. All tests in this section have been
performed 5 times each, with average values being shown in
the charts.

1) HCMM RESULTS (FOUR COMMUNITIES)
Figure 2 shows the computation duration and cloud usage
time for the case when the 40 nodes in the HCMM simu-
lation are split evenly into four communities. Firstly, it can
be observed that, for the D2D-only case, the computation
duration is much higher than for all the other three scenarios.
This is caused by the fact that nodes in this scenario do
not have access to a cloud backend, so all computations
must be performed by themselves or by the other devices in
range. This means that, when a task expires, there is no other
backup option as is the case for the other tests. Furthermore,
because this is an environment where nodes are split into
communities, only nodes from the same community can be
good offloaders for a task, because there is a low chance that
nodes from different communities encounter each other (so
the number of potential devices to offload to is a quarter of
the network). Moreover, the D2D case is the only situation
where less than the maximum number of tasks is not reached.
As we specified in Section IV-A.6, we limit the total number
of tasks per scenario to 60000, but in the case of D2D-only
offloading, only 45782 tasks end up being computed. This
shows that having a cloud backend can drastically improve
the computation, but this is done at the cost of renting cloud
resources by the application or service providers.

Figure 2 also shows that the solution we propose in
Section III is able to reduce both computation time (by at
least 19.42%) and cloud usage time (with more than 40.24%)
when compared to the classic mobile cloud computing case

FIGURE 2. Computation duration and cloud usage time for the HCMM
scenario with four communities.

(i.e., when nodes can only offload their computations to the
cloud or perform them themselves). This means that the users
are more satisfied (since their computations are performed
faster, leading to a better QoE), and the application providers
are able to lower their deployment costs in the cloud. It can
also be seen that adding two fog nodes further improves the
computation duration (by 1.11%) and cloud usage (by 7.8%)
when compared to the D2D and cloud scenario. It should also
be mentioned that, for all four situations, the mobile devices
were used continually (computing tasks for themselves or for
other nodes, or transferring data), while the fog nodes were
used for a total of 0.54 hours.

Figure 2 shows that adding two fog nodes improves both
metrics analyzed, but not by much, because there are not
many contacts with them, which leads to few opportunities to
employ them. Furthermore, even if a node encounters a fog
device quickly, it might not get a chance to encounter it again
and get the result of a task back before the task expires. For
this reason, we tested with more fog nodes, and the results are
shown in Figure 3. It can be seen that, while the computation
duration is indeed reduced, the benefits are not that high.
There is only an improvement of 0.7% when employing ten
fog nodes instead of four. This is most likely caused by the
fact that the mobile network in this scenario is extremely
dynamic, so mobile devices do not meet the static fog nodes
very often, and even then the contact durations are low, which
caps the amount of data that can be exchanged. In terms
of cloud usage time, the benefits are slightly better (3.8%),
but the values are still small, which leads us to draw the
conclusion that the number of specialized fog nodes does not
have to be too high when compared to the number of nodes in
the network, since other mobile devices themselves can take
some of the load. For this particular test case, 2 fog nodes (i.e.,
5% of the total number of network nodes) is sufficient for a
good QoE and reduced deployment costs. Furthermore, fog
nodes are also more expensive than simply using the regular
mobile nodes, so keeping a low number in this network is an
advantage.

For the four cases presented in Figure 2, we also mea-
sured the average battery consumption per mobile device
type, assuming that each node starts the experiments with a

VOLUME 7, 2019 104415



R.-I. Ciobanu et al.: Data and Task Off-Loading in Collaborative Mobile Fog-Based Networks

FIGURE 3. The influence of the number of fog computing nodes on
computation duration and cloud usage time for the HCMM scenario with
four communities.

FIGURE 4. Average battery consumption per mobile device type for the
HCMM scenario with four communities.

full charge. The results are shown in Figure 4, where it can
be observed that our proposed offloading solution (with or
without fog nodes) is able to reduce the battery consump-
tion when compared to the D2D-only and classic mobile
cloud computing cases. For the Samsung Galaxy S7 devices
(which in average consume about 25% less battery than the
iPhone 5S nodes), our proposed solution decreases battery
depletion by 5.4%, whereas for the iPhone 5S nodes our
solution brings a reduction of about 6.5%. The numbers may
not be that significant in and of themselves, but they should
be put into perspective. Namely, our offloading solution is
able to reduce computation time (i.e., improve user QoE) and
decrease cloud usage (i.e., lower the costs for the developers),
while at the same time consuming less battery for the mobile
devices, which is an important metric for smartphone users.7

As another interesting aspect to mention, Figure 4 shows
that a mobile device consumes the same amount of power
regardless whether there are fog nodes in the network or not.

Wewanted to delve deeper into battery consumption, so we
extracted the distribution of power consumption per activity
in each scenario for the two types of devices, as shown
in Figures 5 and 6. The four activities considered are D2D

7https://www.forbes.com/sites/antonyleather/2013/12/13/why-battery
-life-should-be-the-new-smartphone-battleground/.

FIGURE 5. Distribution of battery consumption per activity for the HCMM
scenario with four communities (iPhone 5S devices).

communication (over Bluetooth), device-to-cloud (D2C)
communication (using 4G), device-to-fog node (D2F) com-
munication (with Wi-Fi), and task computation. The two sets
of charts show that, for all scenarios excluding the cloud-only
case, the most battery is consumed by a mobile device when
computing tasks (either for its own benefit, or for other nodes
in the network). For the mobile cloud computing scenario
(shown in Figures 5b and 6b), a node only computes a task
until it expires and then sends it to the cloud. Thus, nodes that
tend to generate more tasks need to contact the cloud more
often (since they cannot deal with all the tasks themselves,
and there is no other entity that can help), leading to the
behavior shown in Figures 5b and 6b (for both types of
devices, 98.5% of the battery consumption belongs to cloud
communication).

For the D2D-only case, while devices compute continu-
ously as long as there are tasks available, the majority of
battery consumption is caused by computation on the nodes,
as shown in Figures 5a and 6a (94.75% for the iPhones
and 95.72% for the Samsung nodes). This happens because
nodes communicate in a probabilistic fashion in this scenario,
based on heuristics and context information, so the same task
needs to be sent on multiple paths in order to find a node
that is willing and capable of computing it, thus ending up
potentially being computed multiple times in the network.

When allowing mobile devices to use both the cloud
and other nodes (fog or mobile), the distribution of battery
consumption is skewed less towards computation, as seen
in Figures 5c, 5d, 6c, and 6d. This happens because the
nodes try to look for the better option for each task, which
might mean using other nodes or the cloud. For the D2D and
cloud case, iPhone 5S devices spend 10% of their battery
on D2D communication and 16.98% on data exchanges with
the cloud. When also adding fog nodes, although the data
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FIGURE 6. Distribution of battery consumption per activity for the HCMM
scenario with four communities (Samsung Galaxy S7 devices).

FIGURE 7. Computation duration and cloud usage time for the HCMM
scenario with one community.

exchanges with them only consume 0.05% for iPhone 5S
devices, their introduction in the network has other effects.
More specifically, Figure 5d shows that more battery is con-
sumed by D2D communication (17.49%), as the amount
of computations performed on a device decreases (with the
value being 65.54%). This happens because the results of
the tasks computed by the fog devices need to make their
way back to their owners, so the nodes need to work harder
in ensuring that they are spread optimally in order to reach
their owners. Figure 6d shows that similar behavior is also
exhibited by the Samsung Galaxy S7 devices, albeit with
less D2D usage (since the nodes are more powerful than the
iPhones and can compute their own tasks quicker).

2) HCMM RESULTS (ONE COMMUNITY)
We have seen in the previous section that the scenario where
nodes are only able to communicate using close-range proto-
cols has very high values for the total computation duration,

FIGURE 8. Average battery consumption per mobile device type for the
HCMM scenario with one community.

which is caused by the fact that nodes from different commu-
nities encounter each other rarer, so only nodes in the same
community can help each other. Furthermore, nodes in this
scenario tend to have lower contact durations, so a smaller
amount of tasks can be exchanged upon a contact. For this
reason, in this section we test our solution on a version of
this scenario where all nodes are part of the same community.
As shown in Table 2, this leads to a smaller number of
contacts (1624 as opposed to 25412), but their durations are
higher.

The first effect of having a single community can be
observed in Figure 7, namely that the total computation dura-
tion for the D2D case is drastically decreased in compari-
son to the scenario with four communities (from 152.15 to
54.88 hours). Furthermore, the number of tasks that can be
computed in this scenario is improved by 26%, ending up
very close to the maximum 60000 tasks per simulation. For
the other three test cases, the values obtained are similar to
the results achieved when testing with four communities: the
computation duration is decreased when offloading can be
performed in the cloud or on other nodes (fog or mobile),
while the cloud usage time is also reduced when compared to
the classic mobile cloud computing scenario. When compar-
ing Figure 7 with Figure 2, it can be seen that the computation
duration for the one-community scenario is slightly higher
than when running with four communities, while the cloud
usage time is decreased. This is most likely cause by the
fact that, because devices spend more time in contact with
each other, they have the tendency to help each other more
often, thus reducing the number of accesses to the cloud
(and in the process slightly increasing the overall computation
duration).

We measured average battery consumption per mobile
device type for this scenario as well, as shown in Figure 8.
The results show that allowing devices to offload tasks to each
other and to fog nodes helps decrease battery consumption by
as much as 6.5%. However, what is most important to note
when comparing Figure 4 to Figure 8 is that, when the mobile
nodes are in the same community and they only have D2D
connectivity, they not only compute 26%more tasks 2.7 times
faster, but they also consume less power in the process (for
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FIGURE 9. Distribution of battery consumption per activity for the HCMM
scenario with one community (iPhone 5S devices).

FIGURE 10. Distribution of battery consumption per activity for the
HCMM scenario with one community (Samsung Galaxy S7 devices).

iPhone 5S devices, the power reduction is 3.6%, whereas for
the Samsung Galaxy S7 nodes it is 2.3%).

We also computed the distribution of battery consumption
per activity, as shown in Figures 9 and 10. What stands out
from these charts at first glance is that, in the scenarios where
D2D communication is possible, the battery consumption is
barely affected by it. For the D2D-only case, only 0.1% of
the energy consumption is caused by close-range commu-
nication, for both iPhone and Samsung devices. When also
allowing cloud offloading, only 0.4% of the power consump-
tion of iPhone nodes and 0.2% of the energy consumption

FIGURE 11. Computation duration and cloud usage time for the UPB
2015 scenario.

of Samsung devices is prompted by D2D data exchanges.
Finally, less than 0.01% of battery drain is given by D2D
communication when also adding fog nodes (in this case,
data exchanges with the fog nodes also barely affect the
battery consumption). This highlights the fact that, if there
is a single large community, a node has an equal chance of
encountering any other node, which means the results of a
task computation offloaded to a given node make their way
much easier towards the task’s owner. Thus, instead of, for
example, a task result going through seven hops between the
device that computes the task and the owner, it might only
pass through one or two nodes, which drastically decreases
the number of D2D transfers in the network and consequently
the battery consumption caused by these transfers.

3) UPB 2015 RESULTS
For the next set of results, we ran our experiments on the
real-life UPB 2015 trace, collected in an office environment
from six participants. The results for computation duration
and cloud usage are shown in Figure 11, and it can be
observed that, similarly to the HCMM scenarios, our pro-
posed solution is able to reduce the computation duration
and cloud usage at the same time, when compared to the
mobile cloud computing and D2D-only cases. More specif-
ically, the D2D and cloud scenario brings an improvement
of 38.29% (i.e., 7.59 hours) in terms of computation time
over the D2D-only case, and of 21.35% (i.e., 3.32 hours) over
the classic mobile cloud computing scenario.Whenmeasured
against the latter scenario, our D2D and cloud solution is able
to also decrease the total cloud usage time by 7.2 hours, which
is the equivalent of a 40% improvement.When adding the two
fog nodes, the computation duration and cloud usage time
are also slightly improved. Unfortunately, in this scenario
we could not control the number of fog devices because we
used real data, but the conclusions obtained when analyzing
Figure 3 showed that one fog node per twenty mobile devices
was sufficient. In the UPB 2012 scenario, there are two fog
nodes for six nodes, so we consider this to be an appropriate
value, and the results to be valid.

Because the number of nodes and the simulation duration
are lower for the UPB 2015 scenario than for the HCMM
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TABLE 5. Total number of tasks computed in the mobile network for the
UPB 2015 scenario.

FIGURE 12. Average battery consumption per mobile device type for the
UPB 2015 scenario.

tests, the maximum number of tasks (set to 60000) cannot
be achieved by any test case. Table 5 shows how many
tasks can be computed by all the nodes in each scenario.
It can be observed that the D2D-only test case has by far
the worst behavior, managing to compute less than half of
the number of tasks that the other scenarios do. This is
caused by the low number of contacts and devices in this
trace, which do not offer many chances of offloading tasks
to nodes that are free to compute them. The three scenarios
that imply using the cloud all obtain similar values, with
the cloud-only implementation having the best results. How-
ever, the benefit of computing an extra 1216 tasks might
not counter-balance the additional 7.2 hours of cloud time,
but this is something that should be decided by the devel-
opers offering the mobile service, based on its purpose and
behavior.

We have seen in Table 5 that the cloud-based scenario sees
the most tasks computed during the experiment duration, but
Figure 12 shows that this has a very high negative effect
on battery consumption, regardless of the device type. For
iPhone 5S nodes, the energy consumption is increased by
27% when compared to the case when offloading can also be
performed on nodes, while for the Samsung Galaxy S7 nodes
28% more battery is consumed by the nodes. It can also be
observed that the battery consumption is approximately the
same for all the other three scenarios.

Finally, Figures 13 and 14 show that the distribution of
battery consumption per activity is similar to the one spe-
cific to the one-community HCMM scenario (as seen in Fig-
ures 9 and 10). Namely, close-range communication between
devices does not consume a lot of battery, while most of the
energy consumption is caused by task computations on the
device.

FIGURE 13. Distribution of battery consumption per activity for the UPB
2015 scenario (iPhone 5S devices).

FIGURE 14. Distribution of battery consumption per activity for the UPB
2015 scenario (Samsung Galaxy S7 devices).

4) COMPARISON
We also compare the proposed Drop Computing offloading
solution tomCloud [12] and present and analyze the results in
this section. We chose mCloud because it takes into account
all the types of offloading supported by Drop Computing and
can thus better highlight the advantages brought by our solu-
tion. For this reason, we implemented mCloud in MobEmu
based on its description in [12]. In short, mCloud uses a cost
model in order to be able to decide, at any step, which is the
most suitable interface for offloading a task (or if the task
should be computed locally). The general cost model is a
weighted function of the task execution time and the energy

VOLUME 7, 2019 104419



R.-I. Ciobanu et al.: Data and Task Off-Loading in Collaborative Mobile Fog-Based Networks

FIGURE 15. Computation duration and cloud usage time comparison
(UPB 2015).

consumption, with particular forms of the function depending
on the interface being analyzed. When multiple interfaces
are available at the same time, TOPSIS [34] (Technique for
Order of Preference by Similarity to Ideal Solution) is applied
to select the channel that the task will be offloaded on. The
weights that we employ for the cost function in our analysis
are the ones proposed in [12]. Furthermore, as presented in
Section III-B, we assume that nodes communicate with the
cloud using 4G, with the fog devices using Wi-Fi, and with
each other using Bluetooth.

The computation duration and cloud usage time of Drop
Computing and mCloud on the UPB 2015 trace (on the
same scenario described in Section IV-A) are presented
in Figure 15. It can be observed that the computation dura-
tion is 1.5 hours lower when employing Drop Comput-
ing, which amounts to an improvement of 10.9%. How-
ever, mCloud is able to reduce the overall cloud usage time
with more than 3 hours (i.e., a decrease of about 30%).
This happens because, based on the cost function proposed
in citeZhou2016, mCloud tends to favor offloading to fog or
mobile devices, as opposed to the cloud. However, the results
that we obtained also show that, while 32170 tasks are
solved during a Drop Computing run, mCloud only man-
ages 29929, which is a 7% decrease. Furthermore, we also
show the average battery consumption per mobile device type
in Figure 16 and it can be observed that less battery is used
byDropComputing on both iPhone and Samsung nodes (with
reductions of 0.3% and 3.3%, respectively).

C. DISCUSSION AND RECOMMENDATIONS
The results presented in this section show that the Drop Com-
puting paradigm can be employed to successfully improve
various metrics in a cloud-backed mobile network, ranging
from task computation speed to costs or battery consumption.
By intelligently offloading to neighboring mobile devices,
fog nodes, or the cloud, overall communication parameters
can be improved. Depending on the type of mobile net-
work that the multi-layered Drop Computing architecture is
deployed in, various metrics can be emphasized as opposed
to others. For example, if the application-level requirement

FIGURE 16. Average battery consumption per mobile device type
comparison (UPB 2015).

is that the task computation duration should be low, then the
cloud can be employedmore often, leading to lower execution
times but to a higher usage of the cloud backend. This in
turn leads to higher costs for the application developers or
maintainers, which is why these metrics should be balanced
properly. On the other hand, if the desire is that battery con-
sumption is reduced as much as possible without particular
regard to computation speed, then close-range offloading is
preferred due to a lower energy consumption. New technolo-
gies such as LoRa, NB-IoT or 5G will only improve Drop
Computing, because they can easily slot into one or multiple
layers (e.g., LoRa and NB-IoT are useful at the bottom levels,
whereas 5G will be able to participate in every layer).

These are all factors that generally need to be balanced by
the developers of applications on top of Drop Computing,
but in the future we envision a dynamic method of weighting
these metrics based on the shape and behavior of the network
at each step, through automatic adaptation. However, this is
not a trivial task, since there are a lot of types of applications
that can benefit from Drop Computing.

As shown in [35], both mobile and Internet of Things (IoT)
applications can easily be deployed on top of Drop Comput-
ing. On the mobile side, applications that are used in crowded
areas (like stadiums or concert halls) can greatly gain from
using Drop Computing, because it can take the load from
Wi-Fi access points or broadband cell towers and spread it
across nearby mobile devices at the bottom layer of the Drop
Computing architecture. Since such an environment has a
high concentration of nodes, the obtained latencies are able
to remain low. Furthermore, any kind of mobile application
that has large computations and can benefit from having them
split into smaller tasks is suitable for Drop Computing, since
our proposed solution implements the entire offloading logic.
Finally, in disaster situations where the fixed infrastructure
cannot be utilized, the opportunistic layer of Drop Computing
would be able to continue on ferrying data from one node
to another. When talking about IoT applications, an inter-
esting use case would be an ambient assisted living (AAL)
facility, where the patients and the staff have various kinds
of body sensors (even from their smartphones), which can
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interact with other sensors located in the facility (such as
cameras, motion sensors, thermometers, etc.), thus reducing
the need for connecting everything to a single infrastructure
and instead using Drop Computing to perform sensor-to-
sensor communication towards a server or a gateway.

V. CONCLUSION AND FUTURE WORK
In this paper, we tackled the problem of mobile data offload-
ing in Drop Computing, by proposing solutions for moving
data and computations from a mobile device to the cloud,
to fog nodes, or to other mobile devices. Through simulations
on real-life traces and synthetic scenarios, we showed that the
Drop Computing paradigm, which assumes a crowd comput-
ing layer below the fog nodes, is suitable for restricted mobile
networks. More specifically, we proved that our solution can
decrease total computation time (translated to user QoE),
cloud usage (i.e., the cost incurred by the service providers
or application developers), and battery consumption (which
is a very important metric in mobile networks). We also
discussed the potential of Drop Computing in various kinds
of scenarios, analyzing its suitability for a variety of use
cases.

We are currently working on an implementation of Drop
Computing on Android and iPhone, and in the future we
plan to perform similar experiments on actual mobile devices.
Until then, we also want to improve the behavior of our
solutions, especially when adding fog nodes.
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