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ABSTRACT A new and an enriched JPEG algorithm is provided for identifying redundancies in a sequence
of irregular noisy data points which also accommodates a reference-free criterion function. Our main
contribution is by formulating analytically (instead of approximating) the inverse of the transpose of
JPEG-wavelet transform without involving matrices which are computationally cumbersome. The algorithm
is suitable for the widely-spread situations where the original data distribution is unobservable such as in
cases where there is deficient representation of the entire population in the training data (in machine learning)
and thus the covariate shift assumption is violated. The proposed estimator corrects for both biases, the one
generated by endogenous truncation and the one generated by endogenous covariates. Results from utilizing
2 000 000 different distribution functions verify the applicability and high accuracy of our procedure to cases
in which the disturbances are neither jointly nor marginally normally distributed.

INDEX TERMS JPEG, semiparametric, biorthogonal wavelet, causality, proximal gradient-descent, lifting
scheme, denoising, covariate shift, training data, reference-free.

I. INTRODUCTION
Scientists routinely try to model and extract causal relations
among covariates, rather than merely their correlations.1 In
practice however, the presence of endogenous covariates in
the model challenges the causal inference due to comovement
of the random disturbance with these covariates. We distin-
guish between population induced comovement and training
data (as in machine learning) comovement without having
to rely on a covariate shift assumption since the behavioral
(causal) model embedded in the training data does not nec-
essarily describing the behavior in the entire population (see
discussion in [2]).

The common way to overcome the aforementioned, is to
generate a variation in the endogenous covariate without
introducing variation in the random disturbance. This idea is
achieved by employing a proper instrumental variable (IV).2

Application of a proper instrumental variable generates
variation in the endogenous covariate without introducing
variation in the random disturbance and hence is orthogonal

The associate editor coordinating the review of this manuscript and
approving it for publication was Ramakrishnan Srinivasan.

1For a specific form of causality due to treatment effect see [1] definition.
2Note that we deal with endogenously truncated sample selection model

to differentiate from censored sample selection models [3]–[5], where there
exists information pertaining to the non-participants.

to it. Thus, IV should contribute to exogeneity and therefore
has been extremely popular in empirical work.

Once we have analytically shown that the IV estimator is
no longer valid in an endogenously truncated environment,
we offer a truncation-proof estimator, which is a semipara-
metric wavelet-based JPEG-IV denoising algorithm.3 This
denoising algorithm decomposes the random disturbance into
a noise and a systemic bias part, enabling the elimination of
the truncation bias. The magnitude of the this bias is captured
by the size of the wavelet coefficients which quantify and
measure the degree of redundancy hidden in a sequence of
data points. Consequently, this algorithm nests the conven-
tional IV estimator as a special case due to the fact that in
the absence of systemic endogenous truncation, the wavelet
coefficients approach zero except for the intercept which
describe the coarse level of the function.4

Our main contribution to the biorthogonal wavelet esti-
mator is by formulating analytically (instead of approxi-

3A wavelet is a bandwidth-free estimator that is based on a multi-scale
representation of the data. It is a widely used denoising technique [6].

4Unlike Fourier transform, the wavelet estimator preservers not only the
data average (coarse) behavior but also its local behavior capturing devia-
tions (details) from the average. This fact renders our denoising suitable for
irregular-spaced data which largely depend on local behavior and play an
important role in the denoising.
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mating) the inverse of the transpose of wavelet transform
without involving matrices which are computationally cum-
bersome [7]5 as well as the management of irregular-spaced
data.6 Additionally, our proposed methodology enables the
combination of several penalty functions in the estimation
procedure which are resolution-dependent.7

Wavelets are useful in denoising data. Several image qual-
ity assessment (IQA) measures have been introduced to
choose the optimal level of denoising. These approaches
can be classified to full-reference (FR) in cases the original
image (noise-free) is observed; reduced-reference (RR) in
cases where there is a partial information about the reference;
reference-free (RF) in cases where the original image is not
accessible [10], [11]. As we deal with truncated distribu-
tions, the source (the complete non-truncated distribution)
is intrinsically unobservable and thus, we cannot assess the
success of the denoising by comparing it to the original non-
truncated distribution. Therefore, we select both the thresh-
olding (tuning) parameter as well as the penalty function
using a reference-free criterion function.

The proposed JPEG IV is biorthogonal, thus preserving
both the symmetry (the original shape of the data) and com-
pact support (small number of coefficients) properties of
the data.8 Importantly, the proposed methodology is easy to
compute by precluding the need to find an optimal bandwidth
as conventionally done.9 These properties make it suitable
for denoising by alleviating both the problem of coefficient
expansion as well as border discontinuities [15]. The pro-
posed algorithm corrects for both sources of bias: the endo-
geneity of covariates as well as the endogenous self-selection
biases.

We run Monte Carlo simulations to measure the magni-
tude of the potential bias in the parameters’ estimates under
endogenous truncation, obtained by employing a conven-
tional IV to eliminate the endogeneity bias. Our empirical
implementation shows that even under mild correlation
between the random disturbances, the resulting bias in the
estimated parameter of the endogenous covariate in the sub-
stantive equation can amount to almost tenfold the true
parameter value. Further, for sake of generality of the offered
estimator, we subject it to various distributions in which

5‘‘The implemented routine for the inverse transpose transform is approx-
imate.’’ [7], p.285.

6In the orthogonal wavelets design various interpolation methods are used
to alleviate these irregularities [8] and specific methodologies can be used to
extend the Haar wavelet transform to the unequally spaced case [9].

7It is known that soft thresholding provides smoother results relative to
the hard thresholding because it is continuous. The latter, however, provides
better edge preservation in comparison with the former.

8Our JPEG IV is a biorthogonal wavelet as it requires two sets of vectors,
which are the dual basis and the series expansion sets, to obtain a denoised
representation of the data. The elements in the former set are orthogonal to
the corresponding elements in the latter set. See [12] for a formal definition
of biorthogonality.

9Kernel estimation involves computational burden due to the necessity
of finding the optimal bandwidth [13]. Unlike the nonparametric case,
in the semiparametric context there is no ‘‘protocol’’ for finding the optimal
bandwidth, as the traditional bandwidth choice methods might lead to bias
estimates due to improper bandwidth choice [14].

the disturbances are neither jointly nor marginally normally
distributed. These disturbances are constructed as realizations
of non-symmetric and non-unimodal distribution functions.10

The rest of this paper is organized as follows. The method-
ology is presented is section II. Section III prepares the
ground for the biorthogonal wavelet. Section IV presents our
proposed JPEG algorithm. In section V we employ Monte
Carlo simulations to validate our estimator performance.
Section VI concludes.

II. METHODOLOGY
As discussed above, the IV is based on the following basic
requirements: it is correlated with the endogenous covariate,
as well as orthogonal to the randomdisturbance. Additionally,
it must satisfy the exclusion restriction, such that in the pres-
ence of the endogenous covariate, the IV must be excluded
from the regression. The IV is allowed to affect the dependent
variable only through its effect on the endogenous covariate.
However, the orthogonality condition is rarely satisfied in the
presence of endogenous truncation, which is very frequently
the nature of data used in empirical research, and there-
fore the IV will not provide a solution for the endogeneity
problem. In what follows, we demonstrate the shortcom-
ing of the conventional IV estimator, as well as potential
bias generated in an environment of endogenously truncated
data.

Suppose that there is a population random variable =

(z; x1, x−1;w) and that there is an independent and iden-
tically distributed sample

{
zi, x1i, x−1i ,wi

}N
i=1 drawn from

this population, referred to as the complete data set con-
sisting of N observations.11 The instrumental variable is z,
the endogenous variable is x1 and the exogenous random
variables are (x−1I w), and where w ∈ Rl is a covariate
vector.

Let ξ1i, ξ2i and vi be jointly dependent random distur-
bances with the respective marginal distribution functions
Fξ1 , Fξ2 and Fv. Their joint distribution function is Fξ1,ξ2,v.
The model is semiparametric, as neither the marginals nor the
joint distribution function are required to be specified by the
researcher.

The underlying model is composed of two parts. The first
part consists of a selection equation, while the second part
consists of the substantive (of interest) equation.

The population (non-truncated) selection equation is
defined as:

y∗2i = wTi γ + ξ2i (1)

where γ ∈ Rl and wi ∈ Rl are the selection equation’s
coefficients and covariates vector, respectively. The selection
equation’s random disturbance is denoted by ξ2i.

10Unlike the practice in some other studies applying only normally dis-
tributed disturbances.

11Capital letters indicate random variables; lower case letters indicate
realizations of these random variables.
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The substantive equation and the endogenous variable
equation are defined as a system of equations:[
y∗1i
x∗1i

]
=

[
xTi

[zTi , x
T
−1i

]

] [
β

δ

]
+

[
ξ1i
vi

]
the substantive equation
the endogenous variable equation

(2)

where β ∈ Rp1 and δ ∈ Rp2 are covariates vectors, x1i is
an endogenous variable included in vector xi ∈ Rp1 , and
the exogenous variables are denoted by xT

−1i
. The substantive

equation’s random disturbances are denoted by ξ1i and v1i.
However the variables y∗1i, y

∗

2i, x
∗

1i are latent in the truncated
environment and their respective observed realizations are
denoted by y1i, y2i, x1i, defined in (3) and (4) to follow.
The variable y∗2i is latent, while y2i is observed and defined

as:

y2i

=

{
1 if y∗2i ≥ 0
Unobserved if y∗2i < 0,

the selection equation (3)[
y1i
x1i

]

=


[
y∗1i
x∗1i

]
if y∗2i ≥ 0

Unobserved if y∗2i < 0,

the substantive equations

(4)

In the next section we reformulate the substantive equation
as a partially linear single index model.

A. SEMIPARAMETRIC SELECTIVITY BIAS CORRECTION
The key difference between censored and truncated sample
selection models is that in the former the entire covariate
set (including the non-participants) and the selection variable
are fully observed. In the latter, the entire data are truncated.
Nevertheless, in both cases, the substantive equation can
be represented as a partially linear regression, in which the
dependent variable is observed only for the participants, as we
are about to show. Following [16], the conditional expectation
of the substantive equation in semiparametric (censored)12

sample selection models is some generally unknown function
M1(.) (to be estimated) of the selection equation’s covariates
variables wi:

E
[
ξ1i|ξ2i > −wTi γ

]
=M1(wTi γ ) (5)

such that γ is the selection equation’s coefficient vector.
Since y1i is observed only if i is a participant, the substantive

12His approach is a generalization of the well-known inverse-mills
ratio estimator introduced by [3] for the substantive equation’s bias term
E
[
ξ1i|ξ2i > −wTi γ

]
in the case of a censored sample selection model. Note

the difference between censored data and truncated data, which is the case
we deal with.

equation’s dependent variable obtains the following func-
tional form:

y1i = xTi β +M1(wTi γ )︸ ︷︷ ︸
the bias term

+ ε̃1i︸︷︷︸
white noise

(6)

The regression equation in (6) is referred to as a semipara-
metric partially linear regression (SP-NLS), in which the non-
linear part is the bias term function. This regression can be
estimated semiparametrically in cases of a truncated sample
selection model using a non-linear least squares procedure as
suggested by [13].

Both [13] and [16] models involve a kernel function esti-
mation. However, kernel estimates’ accuracy is sensitive to
the bandwidth selected. This entails a potential problem of
finding the optimal bandwidth resulting in computational
complexity.13 Due to the lack of applicability of the tradi-
tional bandwidth selection methods in the semiparametric
context, informal methods are being used, that may lead
to a non-ignorable bias in the estimates [18].14 In order
to avoid the problems involved with kernel estimation, our
methodology relies on a (thresholding-propagated) nonlinear
wavelet-based JPEG IV estimator to approximate the bias
term (in (6)).

The substantive equation depicted in (6) deals with endoge-
nous truncation bias, assuming that the random disturbance
and the covariates are not jointly dependent. However,
in cases where this random disturbance is jointly dependent
with one (or more) of the covariates there will emerge two
bias terms: the first one is propagated by the endogenous
truncation and the second one is propagated by the endoge-
nous covariate. Next we present a decomposition Theorem 1,
which enables reformulating the substantive equations as a
partially linear single index model in the presence of an
endogenous covariate.

B. DECOMPOSITION OF THE SUBSTANTIVE EQUATIONS
Theorem 1: Let the underlying model be as depicted in

(3) and (4). Denote the random disturbances εi and ε1i
which are constructed as: εi = y∗1i − E[y∗1i|xi] and ε1i =
y1i−E[y∗1i|y2i = 1], respectively. The following requirements
must hold:

(i) E[y∗1i|y2i = 1] = E[xTi β | xi]+ E[ξ1i | xi]+ E[εi|y2i = 1]
∀i ∈ {1, ...,N };

(ii) y1i = xTi β + ε
∗

1i, E[ε1i
∣∣ y2i = 1] = 0,

ε∗1i ≡ ε1i + E[ξ1i | xi]+M(wiT γ ), ∀i ∈ {i|y2i = 1}.
Proof: By construction εi = y∗1i − E[y∗1i|xi], it follows

that

y∗1i = E[xTi β | xi]+ E[ξ1i | xi]+ εi (7)

13There is an open question whether there is a way to choose a bandwidth
sequence that is optimal for the estimation of the parameters [17].

14‘‘The well known bandwidth selection rules used in non-parametric
estimation, such as cross validation, are not generally applicable to semi-
parametric settings.’’ [18, p. 191]
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Using (7) we get:

E[y∗1i|y2i = 1]

= E[εi|y2i = 1]

+E
{
E[xTi β | xi]|y2i = 1

}
+ E {E[ξ1i | xi]|y2i = 1} (8)

which is simplified to:

E[y∗1i|y2i = 1] = E[xTi β | xi]+ E[ξ1i | xi]+ E[εi|y2i = 1]

(9)

In order to obtain the substantive equation in the truncated
environment, we construct ε1i = y1i − E[y∗1i|y2i = 1]
where E[y∗1i|y2i = 1] is obtained from (9).15 Following
[17], the conditional expectation of εi, given participation is
expressed by some unknown function M1(·) as E[εi|y2i =
1] =M1(wTi γ ). Thus, we obtain:

y1i = xTi β︸︷︷︸
substantive
covariates

+

ε∗1i︷ ︸︸ ︷
M1(wTi γ )︸ ︷︷ ︸
selection bias

term

+ E[ξ1i | xi]︸ ︷︷ ︸
endogeneity bias

term

+ ε1i︸︷︷︸
white noise

(10)

For sake of brevity we present equation (10), which is a
decomposition of the substantive equation into its compo-
nents, such as the substantive equation’s covariates, selection
bias term, endogeneity bias term and a stochastic white noise
term. It is easy to see that the conventional IV cannot be suf-
ficient in eliminating the endogeneity bias E[ξ1i | xi] in (10),
since under truncation the endogeneity bias term is actually
E[ξ1i | xi, y2i = 1].
Similarly, we construct ε2i = x1i − E[x∗1i|y2i = 1] where

E[x∗1i|y2i = 1] satisfies:

E[x∗1i|y2i = 1] = E[vi|y2i = 1]+ E[[zTi , x
T
−1i ]δ | y2i = 1]

(11)

to get:

ε2i = x1i − E[vi|y2i = 1]− E[[zTi , x
T
−1i ]δ | y2i = 1] (12)

We express E[vi|y2i = 1] in (12) as E[vi|y2i = 1] =
M2(wTi γ ) where M2(·) is some unknown function and
obtain (see Theorem 4 to follow):

x1i = [zTi , x
T
−1i ]δ︸ ︷︷ ︸

substantive
covariates

+

ε∗2i︷ ︸︸ ︷
M2(wTi γ )︸ ︷︷ ︸
selection bias

term

+ ε2i︸︷︷︸
white noise

(13)

It is easy to see the joint dependence of ε∗2i and ε
∗

1i through
the selection bias terms in (10) and (13).

15By construction of y1i, the equality E[y1i|y2i = 1] = E[y∗1i|y2i = 1]
must be satisfied. It implies that E[ε1i|y2i = 1] = E[y1i|y2i = 1] −
E
{
E[y∗1i|y2i = 1]|y2i = 1

}
= E[y1i|y2i = 1]− E[y∗1i|y2i = 1] = 0.

Next we formulate the relationship between the covariates
and dependent variables in the equations to be estimated,
in the presence of an endogenous covariate in the substantive
equation under truncation.

C. TRUNCATED SAMPLE SELECTION MODEL WITH AN
ENDOGENOUS COVARIATE
In cases where the substantive equation’s dependent variable
is a function of an endogenous covariate x1i, both x1i as well
as y1i (as in (4)) are truncated, we face a truncated sample
selection model with an endogenous covariate.

Thus, the semiparametric partially linear index model in
a truncated environment consists of the following system of
equations:

[
y1i
x1i

]
=


xTi β +M1(wTi γ )+

ε∗∗1i︷ ︸︸ ︷
E[ξ1i|xi]+ ε1i︸︷︷︸

white noise

[zTi , x
T
−1i ]δ +M2(wTi γ )+ ε2i︸︷︷︸

white noise

(14)

where ε∗∗1i and ε2i are two jointly dependent random distur-
bances,16 and by construction are independent of the random
variables vector w.17 The intrinsic endogeneity in the model
is captured by the joint dependence of ε∗∗1i and the covari-
ates.18 The presence of the function M2(.) implies that we
allow for a dependence between vi (the endogenous part of
xi) and the selection equation’s random disturbance ξ2i (in (1),
the complete, non-truncated, sample selection equation).

Our primary interest is to show that the instrumental vari-
able and the random disturbance might be correlated in a
truncated environment as will be depicted in Theorem 2 to
follow. By doing this, we denote a truncated environment
using the indicator (selection variable) s = I (ξ2i > −wT γ )
and postulate the following assumptions:
Assumption 1: The instrumental variable z is jointly dis-

tributed with all covariates in the data: E[z|w D w] = G(w)
where G(·) is some function of w.
Assumption 2: Conditioning the instrumental variable z

both on random variable w and a stochastic function of
w denoted by F(w, ε) (given that the stochastic compo-
nent ε is an i.i.d white noise which is independent of z),
would be the same as conditioning it only on w. Formally:
E[z|w D w,F(w, ε)] = E[z|w D w].
These two assumptions implies that the conditional expec-

tation of the instrumental variable, given the selection vari-
able, is a function of the random variable vector w, as the
following proposition argues:

16There is dependence of these two random disturbances due to the
dependence between vi and ξ1i (as in (2)) in the complete (non-truncated)
data.

17Not to be confused with its realization wi.
18The intrinsic model’s endogeneity is related to the joint dependence

of the random disturbance and the covariates in the population, unlike a
conditional joint dependence of the random disturbance and the covariates
given participation in the sample.
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Proposition 1: Given assumptions 1 and 2, the condi-
tional expectation of the instrumental variable given the
selection variable is a function of w, rather E[z|s = s] =∫
w G(w)fw|s=s(w|s = s)dw ∀s ∈ {0, 1}, where fw|s=1(w|s =
1) and fw|s=0(w|s = 0) are the conditional density func-
tions of vector w given participation and non-participation,
respectively.

Proof: It easy to see that w mediates between z and s
using the Tower property of conditional expectation [19]19:

E[z|s = s] = Ew [E[z|w, s]|s = s] , s ∈ {0, 1}

The indicator variable s is a stochastic function of w, thus,
it follows from assumption 2 that

Ew [E[z|w, s]|s = s] = Ew[E [z|w] |s = s], s ∈ {0, 1}

Following assumption 1 we get:

E[z|s = s] = Ew[E [z|w] |s = s]+ Ew[G|s = s]

=

∫
w
G(w)fw|s=s(w|s = s)dw, s ∈ {0, 1} . (15)

In Theorem 2 to follow we use proposition 1 and present
our primary argument: in truncated sample selection models,
the orthogonality condition of the instrumental variable with
respect to the random disturbance might be violated. This
violation stems from a dependency between the instrumental
variables and the selection equation’s covariates.
Theorem 2 (Lack of orthogonality): Let ξ1 and ξ2 be two

jointly distributed random disturbances, and let z be a valid
instrumental variable satisfying E[z · ξ1] = 0. Denote a
random variables vectorw ∈ Rl , a parameters vector γ ∈ Rl

and a truncated environment using the indicator variable
s = I (ξ2 > −w′γ ). Suppose that the following conditions
are satisfied:
(i) assumptions 1 and 2 hold;
(ii) E[ξ1|s = s,w D w] = M(wT γ ); (iii) z and ξ1 are
conditionally independent given w and s; (iv) G and M are
linearly dependent in the truncated environment (given s).20

Under conditions (i)-(iv) above, z is not orthogonal to the
random disturbance ξ1 given s.

Proof: Using the Tower property, the following must
hold:

E[zξ1|s = s]

= Ew [E[zξ1|w, s]|s = s]

= Ew
[
Ez[z|w, s]Eξ1 [ξ1|w, s]|s = s

]︸ ︷︷ ︸
by conditional independence of

z and ξ1 given w and s

= Ew[GM|s = s] =
∫
w
G(w)M(wT γ )fw|s=s(w|s = s)dw

19The Tower property is referred interchangeability to the law of iterated
expectations. For formal proof see [19].

20The conditional linear dependence between G and M given
the indicator (selection) variable implies that E [GM|s = s] 6=

E [G|s = s]E [M|s = s]. Since G and M are both functions of the random
variable w, this inequality implies that

∫
G(w)M(wT γ )fw|s=s(w)dw 6=∫

G(w)fw|s=s(w)dw
∫
M(wT γ )fw|s=s(w)dw.

Similarly (using proposition 1),

E[z|s = s] =
∫
w
G(w)fw|s=s(w|s = s)dw

and

E[ξ1|s = s]

= Ew [E[ξ1|w, s]|s = s]

= Ew[M|s = s] =
∫
w
M(wT γ )fw|s=s(w|s = s)dw (16)

As G and M are conditionally linearly dependent random
variables in the truncated environment (given s), implies:∫

G(w)M(wT γ )fw|s=s(w)dw

6=

∫
G(w)fw|s=s(w)dw

∫
M(wT γ )fw|s=s(w)dw

and consequently:

E[zξ1|s = s]
6= E[z|s = s]E[ξ1|s = s] => COV[z, ξ1|s = s] 6= 0 (17)

Therefore, z is not orthogonal to ξ1 given s (in the truncated
environment).

However, the orthogonality condition can be satisfied by
removing the contamination factor, which is the covariate
generating the comovement between the random disturbance
and the instrumental variable, as shown in the following
Theorem 3.
Theorem 3 (Bias removal): Let ξ1 and ξ2 be two jointly

distributed random disturbances, and let z be a valid instru-
mental variable satisfying E[z · ξ1] = 0. Denote a random
variables vector w ∈ Rl , a parameters vector γ ∈ Rl

and a truncated environment using the indicator variable
s = I (ξ2 > −w′γ ). Suppose that the following conditions
are satisfied: (i) assumptions 1 and 2 hold;
(ii) E[ξ1|s = s,w D w] =M(wT γ ).
Under conditions (i) and (ii) above, removing the contam-

ination factor (the bias term) from the residual in the trun-
cated environment leads to orthogonality of the instrumental
variable to the substantive equation’s disturbance, such that:
E[z

[
ξ1 −M(wTγ )

]
|s = s] = 0.

Proof: Express E[z
[
ξ1 −M(wTγ )

]
|s = s] as a differ-

ence of two conditional expectations:

E[z
[
ξ1 −M(wTγ )

]
|s = s]

= E[zξ1|s = s]− E[zM(wTγ )|s = s]

Using the Tower property, to get:

E[zM(wTγ )|s = s]

= Ew

[
E[zM(wTγ )|w, s]|s = s

]
= Ew

[
Ez[z|w, s]E[M(wTγ )|w, s]|s = s

]
︸ ︷︷ ︸

by conditional independence of
z andM(wT γ ) given w and s

= E[G(w)M(wTγ )|s = s]
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As E[zξ1|s = s] = E[G(w)M(wTγ )|s = s] (proof of The-
orem 2), which implies that E[z

[
ξ1 −M(wTγ )

]
|s = s] = 0.

Moreover,

COV
[
z, ξ1 −M(wT γ )|s = s

]
= E[z

[
ξ1 −M(wTγ )

]
|s = s]︸ ︷︷ ︸

0

−E[z|s = s]E[ξ1 −M(wTγ )|s = s]︸ ︷︷ ︸
0

= 0. (18)

Therefore, a valid instrumental variable z is orthogonal to
the truncated distribution (non-contaminated) disturbance ε∗∗1i
in (14), even though z and w are dependent.

The joint dependence of (ξ1, ξ2, v) implies the violation of
zero mean expectation (under truncation) in the x1i regression
equation (4), such that E[v|ξ2 > −w′γ ] = M2(wT γ ) 6=
E[v] = 0. That is, the conditional expectation of v given an
endogenous truncation is a function of the covariate vector
w, while in the population it does not depend on w and has
a zero mean expectation. This violation is a precondition
for the endogeneity of

{
x−1i, zi

}
with respect to vi given

participation in the regression of x1i.21 The following theorem
indicates that such violation is also obtained in cases where
the comovement of v and ξ2 is entirely related to a variation
in ξ1.
Theorem 4 (Conditional independence): Let ξ1 and ξ2 be

two jointly distributed random disturbances of the substantive
and selection equations, respectively. Let v be a random
variable which depends on ξ1 such that v and ξ2 are con-
ditionally independent given ξ1. Denote a random variables
vector w ∈ Rl independent of (ξ1, ξ2, v) with a realization w,
a parameters vector γ ∈ Rl and a truncated environment
using the indicator variable s = I (ξ2 > −w′γ ).
Assume the following conditions are satisfied: (i) the

conditional expectation of the random disturbance given
participation is E[ξ1|ξ2 > −w′γ ] = M1(wT γ ) [16];
(ii) E[v|ξ1, ξ2 > −w′γ ] = E[v|ξ1] = H(ξ1), (endogeneity);
(iii)H(.), a monotonic mapping R 7→ R.
Under conditions (i)-(iii) above, E[v|ξ2 > −w′γ ] 6= E[v]

regardless of the conditional independence of v and ξ2 given
ξ1.

Proof: Applying Tower property to E[v|s = 1]:

E[v|ξ2 > −w′γ ]
= E[v|s = 1] = Eξ1 {E[v|ξ1, s]|s = 1}

= E[H(ξ1)|s = 1] =M2(wT γ ) 6= E[v].

It can be shown that ξ1 mediates between v and s (par-
ticipation), in that it generates a comovement between the

21As been discussed in [3], the fact that the conditional disturbance (given
participation) in the substantive equation of x1i is a function of the selection
equation’s covariates, leads to a potential correlation between the disturbance
and the substantive equation’s covariates. This correlation implies the endo-
geneity of the substantive equation’s covariates

{
x−1i, zi

}
with respect to

its random disturbance vi given participation.

random variables v and s. The last equality relies on the fact
that the random variable H(ξ1) is a monotonic mapping of
ξ1, implying dependence on s due to the dependency between
ξ1 and s.

Next we show that the conventional IV estimator is incon-
sistent in the presence of a truncated environment in which
the expectation of the instrumental variable and the random
disturbance are functions of the selection equation’s covari-
ates vector w. The proof in section II-D to follow, relies on
a linear dependence assumption between these two functions
ofw. The rationale for the linear dependence is due to the fact
that the random disturbance’s (ξ1) conditional expectation
generally satisfies monotonicity with respect to the index
variable w′γ . Therefore, it is enough to assume that, on aver-
age, z is affected monotonically by the index variable w′γ to
generate a linear dependence between z and the conditional
expectation of ξ1 given participation.22

D. THE CONVENTIONAL IV ESTIMATOR’S
ASYMPTOTIC BIAS
The IV estimator’s asymptotic bias is:

β̂iv= (zT x)−1zT y1 = (zT x)−1zT (xβ+M1(wT γ )+ε∗∗1i )

β̂iv= (zT x)−1zT (xβ)+(zT x)−1zTM1(wT γ )+(zT x)−1zT ε∗∗1i
β̂iv= β + (zT x)−1zTM1(wT γ )+ (zT x)−1zT ε∗∗1i
plim
N→∞

[
β̂iv
]

= β + plim
N→∞

[
(N−1zT x)−1

]
plim
N→∞

[
N−1zTM1(wT γ )

]
︸ ︷︷ ︸

Asymptotic bias

(19)

Given any correlation between z and M1(wT γ ),
plim
N→∞

[
zTM1(wT γ )

]
6→ 0. Thus, the β̂iv estimator is an

inconsistent estimator for β.
Next we discuss the two types of joint dependence which

are present in our model. This is done is order to facilitate the
understanding of our proposed procedure, which is intended
to correct for the bias propagated by each type of joint
dependence.

III. PRELIMINARIES
The objective is to eliminate the selection bias term captured
byM1(·) in (14). As we don’t want to impose a specific dis-
tribution function on the random disturbances, the aforemen-
tioned elimination should be performed in a nonparametric
manner. This can be achieved using a semiparametric esti-
mation method, which is distribution-free. However, the bias
term might be a discontinuous function with different levels
of smoothness that must be considered. These issues can be
alleviated using multi-resolution analysis by employing the
wavelet estimator [20]. Wavelet is a bandwidth-free estima-
tor, that is based on the idea of multi-scale representation of

22Both functions are dependent through w by construction, generally
leading to some degree of linear dependence.

VOLUME 7, 2019 99607



N. Billfeld, M. Kim: Semiparametric Wavelet-Based JPEG IV Estimator for Endogenously Truncated Data

the data [21]23 and is used as a denoising technique by simple
thresholding, which is based on the concept of sparsity.24

The applicability of the classical wavelet estimator is prob-
lematic in several important aspects. First, it limits the sample
size to be represented as 2J , with J a non-negative integer, and
the observations to be equispaced, which challenges the esti-
mation in case of irregular-spaced data.25 Second, the clas-
sical wavelet estimator imposes the parametric assumption
that the disturbances are independent identically distributed
normal variables [23]. Lastly, there are the problems of coef-
ficient expansion and border discontinuities.26

In order to overcome these limitations, second generation
wavelets have been introduced [24] which define wavelets in
terms of lifting-steps instead of matrices to reduce computa-
tional complexity.27 An earlier attempt to deal with irregular-
spaced data using second generation wavelets is presented
in [21] by postulating a prior distribution function for the
wavelet coefficients.28 Alternative approaches extend Haar
wavelet transform to accommodate for irregular data [27].

Both first as well as second generation wavelet estimation
methods involve three steps: coefficient estimation (forward
transform); (ii) denoising by using element-wise thresholding
(coefficients selection) and (iii) reconstruction of the data
without the noise (inverse transform). It is important to notice
that the sequential nature of the estimation that relies on
element-wise thresholding is applicable for limited types of
wavelets, referred to as orthogonal wavelets which consist
of the above described limitations. The main shortcoming
of orthogonal wavelets is that the compact support and the
symmetry properties which are useful in denoising are con-
flicting.29 To preserve both these properties, the biorthogonal
wavelet-based JPEG is used [29], [30].30

In what follows we briefly explain the concept of biorthog-
onality. Denote a set of functions

{
ϕk (t)

}
which spans a vector

space F , referred to as the expansion set. By construction,
any function g(t) ∈ F can be expressed by using a series
expansion, such that g(t) =

∑
k ηkϕk (t), where ηk and

ϕk are the expansion coefficients and expansion functions,
respectively. The set

{
ϕk (t)

}
is biorthogonal to the set

{
ϕ̃k (t)

}
23Due to its multi-scale property, we can distinguish between the impor-

tant information, the function’s average behavior, from the noise. The coarse
scales (lower resolution-levels) usually convey important information, while
at fine scales there is usually more noise.

24Sparsity implies that the majority of wavelet coefficients are small, and
can be replaced by zero [22].

25The observations location in space or time must be of equal distance.
26The standard orthogonal wavelet transform has the shortcoming in that

it requires a large number of coefficients (coefficient expansion) to represent
the original data [15].

27The lifting-steps are consecutive operations of prediction (scaled-
moving average) and update (scaled-first difference) to obtain the wavelet
coefficients.

28 [21] adopt the parametric Bayesian denoising approach introduced by
[25], [26] to obtain the wavelet coefficients assuming the coefficients are
distributed according to a continuous mixture of a normal by a Beta density.

29Unlike biorthogonality, orthogonality and symmetry are conflicting
properties for design of compactly supported nontrivial wavelets (see Theo-
rem 8.1.4 in [28]).

30The JPEG algorithm used here is termed ‘wavelet CDF 9/7’.

if 〈ϕk , ϕ̃k′ 〉 = d(k − k ′) ∀k and k ′, with 〈·〉 being the L2
inner product and the function d(·) is the Kronecker delta.31

These two sets form a biorthogonal system, in which
{
ϕ̃k (t)

}
is referred to as the dual basis of

{
ϕk (t)

}
. Thus, we get the

following unique representation:

ηk = 〈g(t), ϕ̃k (t)〉 (20)

Substituting each ηk coefficient with its analytic expression
in (20), to obtain:

g(t) =
∑
k

〈g(t), ϕ̃k (t)〉ϕk (t) (21)

Obviously, in the present case of biorthogonality, the coef-
ficients in (20) are obtained by using the dual basis and the
function is reconstructed in (21) by using another basis which
is the expansion set. In cases where

{
ϕ̃k (t)

}
=
{
ϕk (t)

}
we

have an orthogonal basis
{
ϕk (t)

}
, which is referred to as

self-dual. Therefore, biorthogonality is a generalization of
orthogonality that allows for a larger class of expansions.

Recall that our objective is to estimate the bias term for
an unknown functional form, captured by M1(·) in (14), the
conditional expectation of εi, given participation defined as
E[εi|y2i = 1] =M1(wTi γ ).

32 In what follows, we attend to
the estimation ofM1(·) using the wavelet estimator.
We use the concept of a frame in (1) to define Riezs basis

in (2). Riezs basis is a building block in the definition of
biorthogonal wavelets in (3) to follow.

LetH be a separable Hilbert space with inner product 〈·, ·〉

and a norm
∥∥∥·∥∥∥2

2
. We denote a sequence F = {fk , k ∈ 3} ⊂

H, in which 3 ⊂ Z.
We use the following frame and Riesz basis defini-

tions [31]:
Definition 1 (Frame): F is called a frame if there are

constants 0 < A ≤ B such that ∀f ∈ H A
∥∥∥f ∥∥∥2

2
≤∑

k∈3 |〈f , fk 〉|
2
≤ B

∥∥∥f ∥∥∥2
2
.

Definition 2 (Riesz Basis): A sequence F is a Riesz basis
if and only if it is a frame having the additional property that
upon the removal of any element from the sequence, it ceases
to be a frame.

Let L2(R) be the space of square integrable and real-valued
functions on R. We use the following biorthogonal wavelet
definition [32]:
Definition 3 (Biorthogonal Wavelet): A pair of functions

ϕj,k , ϕ̃j,k ∈ L2(R) is a pair of biorthogonal wavelets if the sets{
ϕj,k |j, k ∈ Z

}
and

{
ϕ̃j,k |j, k ∈ Z

}
form the Riesz basis for

L2(R) and if any function g ∈ L2(R) has the representation:
g =

∑
j∈Z

∑
k∈Z〈g, ϕ̃j,k 〉ϕj,k .

It is worth noticing that both existence as well as unique-
ness of the series representation are satisfied in definition 3.

31d(k) =

{
1 if |k| = 0
0 if |k| > 0

. The set ϕk (t) is orthogonal if 〈ϕk , ϕk′ 〉 = 0

∀k 6= k ′.
32For brevity, we present M1(·) only. Identical treatment is applied to

M2(·).
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However, our proposed nonparametric estimator might be
unstable, rendering the estimation problem ill-posed, which
is one of the challenges in nonparametric estimation of
unknown functions.33 This ill-posed problem can be alle-
viated by employing regularization on the wavelet series
expansion coefficients [33], [34].

Let ui = y1i − xTi β be the i’th element in vector u of size
n× 1, which satisfies:

ui =M1(ti)+ ε1i (22)

where {ti}ni=1 is a sequence in which the i’th element satisfies
ti = wTi γ and ε1i is the white noise described in (14).34

We use 8I and 8F ≡ 8−1
I

to denote the inverse and
forward transformation matrices, respectively, each of size
n × n [35] in an orthogonal wavelet.35 We note that using
orthogonal wavelets one obtains the closed-form solution to
the wavelet coefficients as follows:

M̂1 = 8I ρλ (8Fu) (23)

where M̂1(·) is the estimate of the unknown functionM1(·),
and ρλ (·) represents the element-wise thresholding generated
by some penalty function, in which the tuning parameter is
represented by λ. The procedure in (23) to obtain M̂1(·) by
employing a thresholding operator is referred to as denoising.

We depart from the denoising procedure in (23) by employ-
ing biorthogonal wavelets, as we are interested in the appli-
cability of the general case where the penelization is not
an element-wise due to correlations among wavelet regres-
sors.36 In such cases, there is no such a closed-form solution,
which necessitates the regularized least squares optimization
method to follow.

Let 9 I and 9F ≡ (9T
I
9 I )
−19T

I
denote the inverse and

forward transformation matrices, respectively, each of size
n × n of the wavelet-based JPEG, which is a biorthogonal
wavelet.37,38

33An estimator violating at least one of the requirements: existence,
uniqueness and stability is referred to as ill-posed.

34A more general formulation solves the ill-posed problem by employing
regularization in cases where a linear transform of the unknown function
replaces the original function [33].

35The forward transform is referred to as the Discrete Wavelet Transform
(DWT).

36It has been shown that the performance of wavelet estimator can
be improved when the dependencies among coefficients were taken into
account [36].

37For a definition of biorthogonal wavelets see [24].
38 Unlike biorthogonality, orthogonality implies that the wavelet regres-

sors are mutually uncorrelated and that the inverse transform is the trans-
pose of the forward transform. This simplifies the computation as the
wavelet coefficients are obtained analytically (closed-form) using element-
wise thresholding operators (e.g., hard and soft thresholding operators).
However, we opted for the biorthogonality wavelet to exploit the correlation
structure of the regressors. Biorthogonal wavelets preserve the perfect recon-
struction property (by employing dual-filters) as well, but is more flexible
in that the inverse of X is not required to be its transpose. Consequently,
the thresholding is applied to the entire coefficient vector.

Let ρλ,γ (·) be the minimax concave penalty (MCP) func-
tion [37], defined as [38]39:

ρλ,γ (θ ) =


λθ −

θ2

2γ
if θ ≤ γ λ,

1
2
λ2γ if θ > γλ

(24)

where θ ∈ (−∞,∞) is the parameter to be penalized, λ > 0
and γ ∈ (1,∞).

We define resolution-dependent regularized least squares
at resolution levels 1, ..., J :

δ̂ = argmin
δ

1
2n

∥∥∥u−9 I δ

∥∥∥2
2
+

J∑
j=1

Pλj,γj (δj) (25)

where δ = [δT1 , δ
T
2 , ..., δ

T
J ]
T is the wavelet coefficient vector

of size n × 1 and δj is of size nj × 1. ‖·‖2 is the usual `2
(Euclidean) norm, defined as ‖b‖2 =

(∑n
i=1 |bi|

2)1/2. The
penalty function is Pλj,γj (δj) =

∑n
k=1 ρλj,γj (

∣∣δj,k ∣∣).
It is evident that when the δj → 0, the bias propagated

by the endogenous truncation approaches zero and thus, our
algorithm is reduced to the conventional IV estimator.
The univariate solution of a regularized least squares prob-

lem using the penalty function in (24) is denoted by Sα(·) and
defined as40:

Sα(δ̃; λ, γ )

=


1

1− 1/(αγ )
sign(δ̃)max(

∣∣∣δ̃∣∣∣− λ
α
) if

∣∣∣δ̃∣∣∣ ≤ γ λ,
δ̃ if

∣∣∣δ̃∣∣∣ > γλ

(26)

where α ∈ (0,∞). It is worth noting that if γ → ∞ the
solution is soft-thresholding introduced by [40]; in case that
αγ → 1+ the solution is hard-thresholding (see proof in the
Appendix VI-A).

To reduce computational complexity, the optimization
problem in (25) is reformulated as:

δ(iter+1) = argmin
δ

1
2n

((δ − δ(iter))T9T
I
(u−9 I δ

(iter)))

+α/2
∥∥∥δ − δ(iter)∥∥∥2

2
+

J∑
j=1

Pλj,γj (δj) (27)

where 9T
I
is the transpose of matrix 9I , αI is an approxima-

tion of the Hessian and I is the identity matrix of size n× n.
The number of iterations is denoted by the integer iter .

39The penalty function in (24) represents a family of penalty functions as
a generalization of the soft thresholding (if γ → ∞) and hard thresholding
(if γ → 1+) [38].

40In order to utilize the min-max concave (MCP) penalty function in (24),
we depart from the regularized least squares algorithm in [39], as it is limited
to its special case of the LASSO penalty function. We introduce α as an
approximation to the Hessian of the least squares problem in order to obtain
an element-wise thresholding. This amounts to a dimensional reduction
technique for reducing computational complexity. For the special case of
α = 1, see [38].
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For brevity, we divide the argument to be minimized by α

and complete the squares using the expressions in
∥∥∥·∥∥∥2

2
[39]

to get:

δ(iter+1)=argmin
δ

1
2

∥∥∥δ−δ(iter)+1/(αn)9T
I
(u−9 I δ

(iter))
∥∥∥2
2

+
1
α

J∑
j=1

Pλj,γj (δj) (28)

The iterative procedure performs MCP-thresholding on
a proximal gradient-descent update for k = 1, ..., n (see
Algorithm 5 in the Appendix):

δ
(iter+1)
j,k = Sα

(
δ
(iter)
j,k + 1/(αn)ψT

Ik
(u−9 I δ

(iter)); λj, γj
)
(29)

where δ(iter)j,k is the k’th coefficient in vector δ(iter)j and ψ
Ik
is

k’th column in 9 I (the inverse wavelet transform). The nota-
tion ψT

Ik
implies the transpose of ψ

Ik
. We use (29) to update

the wavelet coefficients iteratively until the update is negligi-
ble, such that the following convergence criterion is satisfied:∥∥∥δ(iter+1) − δ(iter)∥∥∥2

2
/

∥∥∥δ(iter)∥∥∥2
2
< τ (30)

where τ is the tolerance which is a positive real number that
we arbitrarily set to 10−16.

The optimization method in (29) involves matrices multi-
plication which is computationally infeasible for large data
sets. To alleviate this computational complexity we develop
a lifting scheme to be employed in order to perform simul-
taneously the transposed-inverse of the wavelet transform,
consisting of lifting steps (see Algorithms 1-4 to follow).
Conventionally, a lifting step can be either a prediction, that
is a procedure generating a smoothed version of the data
(the scaled coefficients), or an update that is the procedure
to generate the remainder (the detail coefficients) between
the data and its smoothed version. For the present case we
define a new operator because the existing lifting steps do not
provide an analytic representation of the transposed-inverse,
as discussed in [7].

In the next section we discuss the main idea behind lifting
steps, in order to obtain analytically the transposed-inverse
transform. First we describe the lifting steps in a regular-
spaced data given a sample size of 2J for a non-negative
integer J . Then in equations (1)-(IV-E) to follow, we alleviate
these two restrictions by formulating our proposed algorithm.

A. LIFTING STEPS TO OBTAIN THE WAVELET
COEFFICIENTS
Let w = (w1, ...wn) be a discrete sequence of data consisting
of n real numbers, such that the sequence is referred to as
dyatic iff n = 2J for some integer J ≥ 0. The sequence can
be expressed uniquely in terms of detail (difference) and sum-
mation coefficients denoted by

{
dJ−1,k

}n/2
k=1 and

{
cJ−1,k

}n/2
k=1,

respectively. The former capture the variation in the sequence
at different scales and locations and the latter are a smooth
representation of the original sequence.

The multi-scale representation of a function g ∈ L2(R) is
obtained as follows:

g(t) =
∑
k∈Z

c0,kφ0,k (t)+
∑
j∈Z

∑
k∈Z

dj,kϕj,k (t) (31)

The first set of terms, φ0,k , represents the average level
of function g and the second set of terms ϕj,k represents its
details by accumulating information at a set of scales j ∈ Z.

Let {0, ..., J − 1} denotes a set of scales (resolution levels).
We define dJ−1,k and cJ−1,k as follows [41]:

dJ−1,k = w2k − w2k−1, k = 1, ..., 2J−1.

cJ−1,k = w2k + w2k−1, k = 1, ..., 2J−1. (32)

The key idea is that a lower detail coefficient dJ−1,k implies
that w2k is very close to w2k−1 and vice versa, as such a
smoother function is represented by a small sequence of detail
coefficients.

In order to represent the sequence in a coarser-scale (using
a lower resolution), we define the coefficients:

dJ−2,k = cJ−1,2k − cJ−1,2k−1, k = 1, ..., 2J−2.

cJ−2,k = cJ−1,2k + cJ−1,2k−1, k = 1, ..., 2J−2. (33)

By repeating the procedure in (33) we obtain detailed and
smoothed coefficients for lower resolutions. The multiscale
algorithm stops when the c0,1 coefficient is produced.

Next we discuss how to select optimally the thresholding
(tuning) parameter in (25) for each resolution-level.

B. OPTIMAL THRESHOLDING BY A REFERENCE-FREE
CRITERION FUNCTION
Since we deal with truncated distributions, the source (the
complete non-truncated distribution) is intrinsically unob-
servable and thus, we cannot assess the success of denoising
by comparing it to the original non-truncated distribution.
Therefore, we utilize the ‘‘two-fold cross-validation’’ in [42]
which is a reference-free criterion function assesing the qual-
ity of the function estimated by denoising41:

λj,γj = argmin
λj,γj

{
1
2

∥∥∥̂f oλj,γj − uej ∥∥∥22 + 1
2

∥∥∥̂f eλj,γj − uoj ∥∥∥22
}

(34)

where λj,γj is the tuning (thresholding) parameter being used
in (29), in which γj is a specific penalty function. The odd
sample and even sample are denoted by uoj and uej , respec-
tively, and their corresponding estimates are f̂ oλj,m and f̂ eλj,m .
These estimates are obtained by employing the iterative pro-
cedure in (29).

As previously discussed, our proposed truncation-proof IV
estimator requires controlling for the bias terms M1(·) and
M2(·). For generality and applicability purposes of the pro-
posed estimator, we adopt a semiparametric approach which

41The methodology implemented in [42] chooses one threshold that is
applicable to all resolution levels in the wavelet transform. In the present
case, however, we select a threshold for each level in order to implement
multi-resolution analysis increasing our proposed estimator’s accuracy.

99610 VOLUME 7, 2019



N. Billfeld, M. Kim: Semiparametric Wavelet-Based JPEG IV Estimator for Endogenously Truncated Data

is not subjected to distributional assumptions and conse-
quently, does not require specifying the functional form of
these unknown functions.

The wavelet-based JPEG semiparametric estimator is cho-
sen for its many advantages. It enables a multi-resolution
representation of the noisy data points, implying that the data
points are characterized both globally as well as locally.42

Such a multi-resolution decomposition facilitates distin-
guishing between the noise and the systemic part. The
systemic part is the functional relationship between the
covariates and the dependent variables in the regression equa-
tions in (14).

An additional advantage of incorporating the
aforementioned newly introduced JPEG estimator is that it
accommodates for various data set forms of different types
of irregularities, such as non-equispaced design that will
be described in section IV-B to follow. These irregularities
are alleviated by introducing the locations in space of the
various data points as an additional covariate that is unique
for each resolution-level. An additional merit of our approach
is enabling a group-wise denoising rather than the traditional
element-wise JPEG denoising in the cases of image process-
ing. Group-wise denoising plays an important role in data
denoising, as it takes into account potential dependencies
among the various data points. Thus, our contribution to the
JPEG algorithm are controlling for irregularities, group-wise
thresholding on the entire data and utilizing a reference-free
criterion function to choose the optimal thresholding.

In next section we describe the JPEG algorithm which
is introduced to estimate each of the bias terms M1(·) and
M2(·). Although our proposed denoising procedure can be
applicable to both even as well as odd sample sizes (as
will be demonstrated in Algorithm 1 to follow), for ease of
presentation and without loss of generality, the denoising
procedure is formulated as a function of a data set consisting
of 2n observations.

IV. THE WAVELET-BASED JPEG DENOISING
Let {(ui, ti)}2ni=1 be a pairwise sequence of 2n data points as
described in (22), such that ti < tj ∀i < j. The sequence
{ui}2ni=1 indicates the noisy data points (or colors of pixels
in image processing) and their respective locations in space
are represented by {ti}2ni=1. The JPEG algorithm is a proce-
dure generating a multi-resolution denoised representation
of the sequence {ui}2ni=1, which is denoted by the sequence
{̂ui}2ni=1. The purpose of the present section is three-fold: first,
to describe the JPEG algorithm to be employed in order to
obtain a noise-free representation of the noisy data; second,
to extend the JPEG algorithm to be compatible with irregular-
ities in the data43; and thirdly, to incorporate a reference-free
criterion to evaluate the denoising procedure accuracy.

42Global representation is a weighed average (smoothing) of the data,
while local representation consists of more detailed information regarding
first differences between neighboring data points.

43We define 1i ≡ ti − ti−1 ∀ 2 ≤ i ≤ n, such that equispaced (regular)
data is a sequence of data points satisfying1i = 1j ∀i and j. Other cases are
referred to as non-equispaced (irregular) spaced data.

Applying the conventional JPEG algorithm on a vector of
data points is equivalent to employing three different pro-
cedures on the noisy data: (i) the JPEG forward transform
TF : R2n×2

→ R2n×1 to obtain the wavelet-based JPEG coef-
ficients (as will be shown in (45) to follow); (ii) coefficients
selection TS : R2n×2

→ R2n×1 by applying a thresholding
procedure (as will be shown in (49)) and (iii) the JPEG inverse
transform TI : R2n×2

→ R2n×1, which recovers the noise-
free data by utilizing the selected coefficients (as will be
shown in (46) to follow).

In the ensuing section we introduce auxiliary matrices to
be used in each of the JPEG transforms, which are essential
to construct the covariate matrix in the wavelet-based JPEG
regression (in (48) to follow).

A. AUXILIARY MATRICES FOR THE JPEG ALOGRITHM
The implementation of the JPEG algorithm necessitates the
construction of TF and TI operators. For this purpose, we con-
struct auxiliary matrices A2n , S2n ,

{
H(t)

2n,`

}4
`=1

which are the
shifting, rescaling and smoothing operator matrices, respec-
tively, each of size 2n× 2n.
Let S2n and S−1

2n
be the rescaling and inverse-rescaling

matrices, respectively each of size 2n × 2n. Its elements are
defined for m = 0, ..., n as:

(S2n )i,j =


1/ϕ if i = j = 2m
ϕ if i = j = 2m+ 1
0 if i 6= j,

(S−1
2n

)i,j =


ϕ if i = j = 2m
1/ϕ if i = j = 2m+ 1
0 if i 6= j

(35)

The rescaling operator ṽ = S2nv takes a vector v of size
2n×1 and return a rescaled vector ṽ of the same size, such that
even and odd elements of the original vector are multiplied by
the scalars 1/ϕ and ϕ, respectively.
Let A2n be a shifting operator matrix of size 2n × 2n, its

elements are defined for m = 0, ..., n as:

(A2n )i,j =

{
1 if (i > n, j = 2m) or (i ≤ n, j = 2m+ 1)
0 otherwise.

(36)

The ṽ = A2nv operator takes a vector v = [v1 , ..., v2n ]
T

of size 2n × 1 and return the vector ṽ = [vTodd, v
T
even]

T .
The vectors vodd = [v1 , ..., v2n−3 , v2n−1 ]

T and veven =
[v2 , ..., v2n−2 , v2n ]

T consist of the odd and even elements of
v, respectively.

Unlike the conventional JPEG, we allow for data irregulari-
ties by controlling for the data set location in space. For doing

so, we denote a sequence of matrices
{
H(t)

2n,`

}4
`=1

, such that

the elements of matrixH(t)
2n,` ∀` ∈ {1, 2, 3, 4} of size 2n× 2n
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are defined for m = 1, ..., n as:

(H(t)
2n,`

)i,j
`∈{1,3}

=


2π`ω

(t)
`,i−1 if i=2m and j=i−1

1 if j=i

2π`(1−ω
(t)
`,i−1 ) if i=2m and j=i+1

0 otherwise

(37)

(H(t)
2n,`

)i,j
`∈{2,4}

=


2π`ω

(t)
`,i−1 if i=2m+1 and j=i−1

1 if j=i

2π`(1−ω
(t)
`,i−1 ) if i=2m+1 and j=i+1

0 otherwise .

(38)

where each of sequences
{
ω
(t)
`,l

}
∀` ∈ {1, 2, 3, 4} are the

interpolation weights (defined in (39) to follow) to control
for the location in space of data points (enabling irregular
non-equispaced data to be used) and π1, π2, π3, π4 are scalar
constants described in [43], which are referred to as the filter
coefficients of the wavelet-based JPEG. In the special case
in which ω(t)`,l = 0.5 ∀l and ` ∈ {1, 2, 3, 4} the algorithm is
reduced to the regular-spaced wavelet-based JPEG.

We define the linear interpolation weights:

ω(t)
`,2i
=


t̃2i+1 − t̃2i
t̃2i+1 − t̃2i−1

if ` ∈ {1, 3}

t̃2i+2 − t̃2i+1
t̃2i+2 − t̃2i

if ` ∈ {2, 4}
(39)

t̃l =


t2 if l = 2m, l < 2
tl if 1 ≤ l ≤ 2n
t2n−1 if l = 2m+ 1, l > 2n− 1

(40)

For tractability, we formulate the JPEG coefficients
estimation problem as a linear regression estimation, which
necessitates obtaining a closed-form expressions of the JPEG
forward and inverse transforms. These closed-form expres-
sion are required to characterize the JPEG covariate matrix
to be used in the wavelet-based JPEG regression. In the
following section we express analytically each of the forward
and inverse transforms using matrix notation as a function of
the auxiliary matrices presented above.

B. THE VARIOUS JPEG TRANSFORMS IN MATRIX
NOTATION
Employing our proposed JPEG algorithm on a data set
involves representation of data set in multiple resolution
levels, a property which referred to as a multi-resolution
analysis. Let J be the highest resolution level, which requires
the same number of data points as in the noisy data set.
The data set representation in j’th resolution-level ∀j < J
is a transformation of the data set representation in the finer
(higher) resolution-level j+1. Consequently, the JPEG noise-
free representation ∀j < J can be formulated recursively.
However, the implication of this formulation is that the loca-
tion in space of the data points in any given resolution-level
is also determined recursively. This fact stems from depicting
the noisy data set u = [u1 , ..., u2n ]

T and its location in space

t = [t1 , ..., t2n ]
T as a pairwise sequence. For ease of notation

we construct the adjusted space location operator ∀j < J :

t j ≡

 J∏
h=j+1

Ãh

 t,

Ãj =

[
Am(j)×m(j) 0m(j)×(m(J )−m(j))

0(m(J )−m(j))×m(j) I (m(J )−m(j))×(m(J )−m(j))

]
(41)

where m(j) ≡ d2n/2
J−j
e, J = dlog2 (2n)e is the number of

resolution-levels and j is a specific resolution level.44

This recursive formulation takes the noisy data points loca-
tions in space as control variables, which are essential for
alleviating irregularities in the noisy data.

Using the adjusted space location sequence
{
t j
}
in (41),

we define matrix 9(t)
F

(to be used in (45) to follow) for J ∈{
1, ..., dlog2 (2n)e

}
resolution levels as:

9(t)
F
≡

J−1∏
j=1

8̃
(tj )
j

8(t)
m(J )×m(J ) (42)

8̃
(t)
j
=

[
8(t)

m(j)×m(j)
0m(j)×(m(J )−m(j))

0(m(J )−m(j))×m(j) I (m(J )−m(j))×(m(J )−m(j))

]
(43)

where 8(t)
m×m ≡ AmSmH

(t)
m,4H

(t)
m,3H

(t)
m,2H

(t)
m,1 and Im×m is the

identity matrix of size m× m. It worth noticing that8(t)
m×m is

a product of invertible matrices and consequently, its inverse
is characterized as:(
8
(t)
m×m

)−1
=

(
H(t)

m,1

)−1 (
H(t)

m,2

)−1 (
H(t)

m,3

)−1
×

(
H(t)

m,4

)−1
S−1
m

A−1
m

(44)

The multi-resolution JPEG forward transform operator
TF (u, t) is the linear transform:

δ = 9(t)
F
u, TF (u, t) = 9(t)

F
u (45)

where u, t and δ are the noisy data, the location in space and
the JPEG coefficient vectors, respectively, each of size 2n×1.
Similarly, the multi-resolution JPEG inverse transform

operator TI (δ, t) is the linear transform:

u = 9(t)
I
δ, TI (δ, t) = 9(t)

I
δ (46)

where u, t and δ are the noisy data, the location in space and
the JPEG coefficient vectors, respectively, each of size 2n×1.
Matrix 9(t)

I
in (46) is defined for J ∈

{
1, ..., dlog2 (2n)e

}
resolution levels as:

9(t)
I
≡

(
8

(t)
m(J )×m(J )

)−1 1∏
j=J−1

(
8̃

(tj )
j

)−1 (47)

where 9(t)
I

is the analytic inverse transform operator.
We introduce the wavelet-based JPEG nonparametric

regression given a non-equispaced irregular data set:

u(t) =
(
9(t)

I
δ
)
t
=

∑
k∈Z

c0,kφ0,k (t)+
∑
j∈Z

∑
k∈Z

dj,kϕj,k (t) (48)

44The operator’s notation d·e represents the ceiling of a real number.
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where δ consists of the sequences of coefficients
{
c0,k
}

and
{
dj,k
}
, which capture the function’s average behavior

and details, respectively. The matrix 9(t)
I

consists of the
sequences of covariates

{
φ0,k (t)

}
and

{
ϕj,k (t)

}
. Unlike the

present case which employs a group-wise denoising on the
entire data, in the conventional JPEG the coefficients selec-
tion operator, TS (δ, t), is constructed to be used element-wise
(for each resolution-level j), e.g, TS (δij, t) = Sα(δij; λj,γj , γj )
using Sα(·) in (26), where λj,γj and γj are defined in (34) using

α = 1, such that
{
δij
}m(j)
i=1 is a subset of vector δ consisting of

the j’th resolution-level coefficients.
In the following section, we discuss about the JPEG group-

wise coefficients selection to perform denoising.

1) JPEG GROUP-WISE COEFFICIENTS SELECTION FOR
IRREGULAR DATA DENOISING
Lastly, we formulate the transpose of the inverse wavelet
transform, in order to employ the group-wise denoising pro-
cedure depicted in (29):

ũ =
(
9

(t)
I

)T
u,

(
9

(t)
I

)T
≡

J−1∏
j=1

[(
8̃

(tj )
j

)−1]T

×

[(
8

(t)
m(J )×m(J )

)−1]T
(49)

where
[(
8
(t)
m×m

)−1]T
is constructed as:

[(
8
(t)
m×m

)−1]T
=

[
A−1

m

]T [
S−1
m

]T [(
H(t)

m,4

)−1]T
×

[(
H(t)

m,3

)−1]T [(
H(t)

m,2

)−1]T [(
H(t)

m,1

)−1]T
(50)

The JPEG estimator, denoted by δ̂, is obtained by minimiz-
ing the objective function in (28) using the iterative procedure
in (29) given the chosen thresholding level. The latter is deter-
mined by minimizing the reference-free criterion function
depicted in section III-B.

The construction of the wavelet-based JPEG transforms
matrix involves computational complexity, a problem which
can be alleviated by employing a faster algorithm, referred
to as ‘a lifting step’. In the succeeding section we dis-
cuss the algorithm to obtain a denoised representation of
non equispaced data design by using a procedure that does
not necessitate matrix operation to reduce computational
complexity.

C. THE IRREGULAR FORWARD TRANSFORM
The irregular forward transform in (45) is the procedure to
obtain the wavelet coefficients, δ, as follows:
The Filter function in algorithm 1 defined as follows:

Algorithm 1 The Wavelet-Based JPEG Forward Transform
1: procedure FORWARDTRANSFORM(u, Grid, Level)

Require: (i) Two real-number vectors u and Grid of size n×
1; (ii) Level∈

{
1, ..., log2(n)

}
;

Ensure: Output← a real-number coefficient vector δ of size
n× 1;

2: The JPEG filter coefficients:
3: π1←−1.5861343420693648;
4: π2←−0.0529801185718856;
5: π3←+0.8829110755411875;
6: π4←+0.4435068520511142
7: ϕ1←+1.1496043988602418
8: Start:
9: n← length of u
10: m← ceiling of (n/2)
11: Q← ceiling of (m/2)
12: d ← copy the odd elements of u
13: s← copy the even elements of u
14: top:
15: NewGrid← Grid
16: The parameter vector φδ is used to generate a zero

wavelet coefficient for the generated observation:
17: φδ[1] = −2× (π1 × π2 × π3)/(1+ 2× π2 × π3)
18: φδ[2] = 2× (π2 × π3)/(1+ 2× π2 × π3)
19: φδ[3] = 2× (π1+π3+ 3×π1×π2×π3)/(1+ 2×

π2 × π3)
20: if n is an odd number then
21: s[m] ← d[m − 1] ∗ φδ[1] + s[m − 1] ∗ φδ[2] +

d[m] ∗ φδ[3]
22: NewGrid[n+1] ← NewGrid[n] + NewGrid[n]-

NewGrid[n-1]
23: end if
24: OddGrid← copy the odd elements of NewGrid
25: EvenGrid← copy the even elements of NewGrid
26: s← s + Filter(d, 0, π1, NewGrid)
27: d ← d + Filter(s, 1, π2, NewGrid)
28: s← s + Filter(d, 0, π3, NewGrid)
29: d ← d + Filter(s, 1, π4, NewGrid)
30: u[1:m]← d[1:m]
31: u[(m+1):n]← s[1:(n-m)]
32: Grid[1:m]← OddGrid
33: Grid[(m+1):n]← EvenGrid
34: Scaling the wavelet coefficients:
35: d ← δ[1 : Q] ∗ ϕ
36: s← δ[(Q+ 1) : m]/ϕ
37: if Level > 1 then
38:

{
u[1:m]

Grid[1:m]

}
← ForwardTransform(u[1:m],

Grid[1:m], Level-1)
39: end if
40: return (u,Grid)
41: end procedure

D. THE IRREGULAR INVERSE TRANSFORM
The irregular inverse transform is the procedure to reconstruct
the vector u in (46), as follows:
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Algorithm 2 The Wavelet Forward and Inverse Filter
1: procedure FILTER(Series, Even, π , Grid)

Require: (i) Two real-number vectors: Series of size n × 1
and Grid of size 2n × 1; (ii) two scalars: Even ∈ {0, 1}
and π ∈ R.

Ensure: Output← Filter, a real-number vector of size n×1
consisting of the predicted series;

2: n← length of Series
3: O← copy the odd elements of Grid
4: E← copy the even elements of Grid
5: if Even = 0 then
6: Low← O[1:n-1]
7: High← O[2:n]
8: weights← (High-E[1:(n-1)])/(High-Low)
9: ωl ← [weights, 0.5]
10: ωh← 1− ωl
11: S← [Series[1], Series]
12: Filter← 2π ωl*S[1:n] + 2π ωh*S[2:(n+1)]
13: else
14: Low← E[1:(n-1)]
15: High← E[2:n]
16: weights← (High-O[2:n])/(High-Low)
17: ωl ← [0.5, weights]
18: ωh← 1− ωl
19: S← [Series, Series[n]]
20: Filter← 2π ωl*S[1:n] + 2π ωh*S[2:(n+1)]
21: end if
22: return (Filter)
23: end procedure

E. THE IRREGULAR TRANSPOSE OF THE INVERSE
TRANSFORM
The irregular transpose of the inverse transform in (49)
enables to obtain the vector ũ, as follows (see transposed-
inverse filter function, TransInvFilter, in algorithm 6):

In the ensuing section we describe the estimation proce-
dure of the parameter vector of interest, β, using the wavelet-
based JPEG estimate of M̂1(·) obtained from (29).

F. THE INSTRUMENT VARIABLE ESTIMATOR:
TRUNCATED SAMPLE
Denote the truncated data by a sequence of observations
{y1i, xi,wi, zi}ni=1, such that each observation is an indepen-
dent realization of the conditional joint distribution func-
tion of the random variables {y1, x,w, z} given that they are
selected into the sample (y2 = 1). The endogenous variable
is denoted by x1 and is included in vector x. There are two
types of joint dependence between the covariate vector and
the substantive equation’s random disturbance. The first type
is intrinsic in the model and is generated by a variation in v
(the endogenous part of x1) leading to a comovement between
x1 and ξ1. The second type is related to the sample selection
and is generated by a variation in w leading to a comovement
between the covariate vector x and ξ1. This implies that there
are two sources of endogeneity to be taken into consideration:

Algorithm 3 The Wavelet-Based JPEG Inverse Transform
1: procedure INVERSETRANSFORM(δ, Grid, Level)

Require: (i) Two real-number vectors δ and Grid of size n×
1; (ii) Level∈

{
1, ..., log2(n)

}
;

Ensure: Output← a real-number vector u of size n× 1;
2: The JPEG filter coefficients:
3: π1 ← −1.5861343420693648; π2 ←

−0.0529801185718856;
4: π3 ← +0.8829110755411875; π4 ←

+0.4435068520511142
5: ϕ1←+1.1496043988602418
6: Start:
7: n← length of δ
8: m← ceiling of n/2(Level−1)

9: Q← ceiling of m/2
10: Rescaling the wavelet coefficients:
11: d ← δ[1 : Q]/ϕ
12: s← δ[(Q+ 1) : m] ∗ ϕ
13: OldGrid← Grid
14: for i=1 To m do
15: index← (2(i−1)+1)∗(i ≤ Q)+2(i−Q)∗(i > Q)
16: Grid[index]← OldGrid[i]
17: end for
18: top:
19: NewGrid← Grid[1:m]
20: if m is an odd number then
21: s[Q]← 0
22: NewGrid[m+1] ← Grid[m] - Grid[m-1] +

Grid[m]
23: end if
24: d ← d − Filter(s, 1, π4, NewGrid)
25: s← s − Filter(d, 0, π3, NewGrid)
26: d ← d − Filter(s, 1, π2, NewGrid)
27: s← s − Filter(d, 0, π1, NewGrid)
28: for i=1 To m do
29: index← (2(i−1)+1)∗(i ≤ Q)+2(i−Q)∗(i > Q)
30: δ[index]← d[i]∗(i ≤ Q)+s[i-Q]∗(i > Q)
31: end for
32: u← δ

33: if Level > 1 then
34:

{
u

Grid

}
← InverseTransform(δ, Grid, Level-1)

35: end if
36: return (u,Grid)
37: end procedure

the first source is related to the endogenous covariate, while
the second source is due to the truncation environment of the
data.

Next we discuss the two-step estimation procedure to be
employed for the correction of both endogeneity and trunca-
tion bias propagated by truncation.

G. THE ESTIMATION PROCEDURE
In this section we introduce a two-step estimation procedure
to eliminate the two sources of bias discussed. To eliminate
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Algorithm 4 The Wavelet-Based JPEG Transposed-Inverse
Transform
1: procedure TRANSINVERSETRANSFORM(u, Grid, Level)

Require: (i) Two real-number vectors u and Grid of sizem×
1; (ii) Level∈

{
1, ..., log2(m)

}
Ensure: Output← 9T

I
u

2: The JPEG filter coefficients:
3: π1 ← −1.5861343420693648; π2 ←

−0.0529801185718856;
4: π3 ← +0.8829110755411875; π4 ←

+0.4435068520511142
5: ϕ1←+1.1496043988602418
6: Start:
7: Output← u
8: m← length of u
9: Q← ceiling of (m/2)
10: d ← copy the odd elements of u
11: s← copy the even elements of u
12: OddGrid← copy the odd elements of Grid
13: EvenGrid← copy the even elements of Grid
14: top:
15: NewGrid← Grid
16: if m is an odd number then
17: s[Q]← 0
18: NewGrid[m+1] ← NewGrid[m] +

NewGrid[m]-NewGrid[m-1]
19: end if
20: d ← d − TransInvFilter(s, 0, π1, NewGrid)
21: s← s − TransInvFilter(d , 1, π2, NewGrid)
22: d ← d − TransInvFilter(s, 0, π3, NewGrid)
23: s← s − TransInvFilter(d , 1, π4, NewGrid)
24: Rescaling the wavelet coefficients:
25: d ← d[1 : Q]/ϕ
26: s← s[(Q+ 1) : m] ∗ ϕ
27: Output[1:Q]← d[1:Q]
28: Output[(Q+1):m]← s[1:(m-Q)]
29: Grid[1:Q]← OddGrid
30: Grid[(Q+1):m]← EvenGrid
31: if Level > 1 then
32: Output[1:Q] ← TransInverseTrans-

form(Output[1:Q], Grid[1:Q], Level-1)
33: end if
34: return (Output,Grid)
35: end procedure

the endogeneity bias term we adapt a similar approach to the
two step procedure in [44] for a partially linear single index
model estimation, in which the first stage is a regression of
the endogenous covariate on all the exogenous covariates and
the instrumental variable. In the second stage, the endogenous
covariate is substituted with the fitted values obtained from
the first stage. However, the estimation approach in [44]
cannot be implemented in a truncated environment, because
it treats the first stage regression as a linear population
regression (as if the entire covariates distribution function
is observed). We alleviate this by modeling both the first as

well as the second stage equations as endogenously truncated
equations. In order to eliminate the endogenous truncation
bias, we control for this source of bias by including the trun-
cation bias term as an additional covariate in the substantive
equations, as depicted in (14). Thus, the partial linearity is
applied to both the first as well as the second stage equations.

In the first stage, we regress the endogenous covariate on
the instrumental and exogenous variables, by minimizing the
partially linear index model:

(̂δ, θ̂1f ) = argmin
(δ,θ1f )∈2×1K

1
n

n∑
i=1

×

(
x1i −

[
xT
−1i , z

T
i

]
δ − M̂2(wi; θ1f )

)2
(51)

In the second stage, the endogenous variable is replaced by
its predicted value obtained from the first stage in (51), and
we minimize the following function:

(β̂, θ̂2f )

= argmin
(β,θ2f )∈2×1K

1
n

n∑
i=1

(
y1i−

[
x̂1i, xT−1i

]
β−M̂1(wi; θ2f )

)2

(52)

As can be seen in (52) the two sources of endogeneity bias
we deal with are: (i) the bias propagated by the endogenous
covariate is alleviated by utilizing the covariate set

[
x̂1i, xT−1i

]
consisting entirely of exogenous covariates and (ii) the bias
propagated by the endogenous truncation is alleviated by
controlling for the selection bias term M̂1(·).

Next we present Monte Carlo simulation to examine our
semiparametric IV estimator’s performance in a truncated
environment.

V. SIMULATION
In this section, we generate multiple random data sets to be
used for the examination of our model’s performance, using
different sample sizes.

First, we discuss the procedure for the data generation
process (DGP).

A. DATA GENERATION PROCESS
Denote the sample size byN ∈

{
500, 2000, 3000, 5000, 8000,

10000
}
. In order to not restrict the data generation process

to the family of symmetric unimodal distribution functions,
a mixture of distribution functions is utilized to generate each
of the selection model’s disturbances that are jointly depen-
dent (as will be discussed in section V-A.1 to follow). In order
to verify that our proposed model performs well under dif-
ferent data generating processes (DGP), we construct a data
set consisting of 2,000,000 distribution functions,45 practi-
cally generating 100 millions realizations which are not i.i.d.
By construction, each observation is randomly drawn from a
unique mixture of distribution functions.

45The estimates obtained given the various data distribution functions will
be supplied upon request.
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1) THE DISTURBANCES’ JOINT DISTRIBUTION FUNCTION
Each triple of disturbances {ξ1i, ξ2i, vi} is randomly and inde-
pendently drawn from Fξ1,ξ2,v, which is the substantive and
participation equations’ disturbances joint distribution func-
tion. The aforementioned joint density function consists of
two components: a Copula function,46 which characterizes
the disturbances’ dependence structure, and three marginal
distribution functions Fξ1 , Fξ2 and Fv. In order to verify
our model’s performance in the presence of random distur-
bances’ distribution functions that are not restricted to the
family of symmetric and unimodal distribution functions,
each one of the sample selection model’s disturbances ξ1
and ξ2 is marginally-distributed according to a mixture of
three different distribution functions: (i) a normal distribution
function with expectation and standard deviation parame-
ters (µ, σa) denoted by N (µ, σ 2

a ); (ii) a normal distribution
function with expectation and standard deviation parameters
(−µ, σb) denoted by N (−µ, σ 2

b ); (iii) a gamma distribution
function with scale and shape parameters (µϕ, ϕ) denoted
by 0Gamma (µϕ, ϕ).47 This mixture distribution function is
defined as:

v ∼ N (0, σ 2
v )

ξj ∼ 0.4N (µ, σ 2
a )+ 0.5N (−µ, σ 2

b )
+ 0.10Gamma (µϕ, ϕ) , j = 1, 2.

(53)

where E
[
ξj
]
= 0 and E [v] = 0.

The parameters set (µ, σa, σb, ϕ, σv) = (4, 2.5, 1.5, 2, 1)
is arbitrarily chosen. Due to its simplicity, the Clayton Copula
(as will be discussed in section V-A.2 to follow) with a degree
of dependence parameter is set to equal 1, assuring a mild
correlation between the disturbances, is used for control-
ling the dependence structure. Choosing a mild correlation,
is important in order to be conservative by examining the
potential bias in the parameter estimates under conditions
which are not extreme.

Next we employ a function characterizing the dependence
properties of the Copula [46], referred to as a generator
function to construct the joint dependence of the random
disturbances in (53).

2) ARCHIMEDEAN COPULA FUNCTION
An Archimedean Copula is a Copula characterized by a
non-increasing, continuous generator function ψ : [0,∞]→
[0, 1], which satisfies ψ(0) = 1, ψ(∞) = 0 and is strictly
decreasing on [0, inf {t : ψ(t) = 0}]. In particular, we are
interested in the d dimensional Archemdean Copula family
(3 in the present case48) which has the simple algebraic

46Any continuous joint distribution function can be characterized by a
set of marginal distribution functions and a joint distribution function deter-
mining the dependence structure which is referred to as a Copula function
(Sklar’s Theorem [45]).

47The scale and shape parameters imply that the expectation and standard
deviation parameters are (µ,

√
µ/ϕ), respectively.

48d = 3 representing the three-dimensional vector of randomdisturbances
(vi, ξ1i, ξ2i).

form [46]49:

C(u1, .., ud ) = ψ(ψ−1(u1), ..., ψ−1(ud )),
(u1, ..., ud ) ∈ [0, 1]d (54)

where ψ is a specific function known as the generator of C.
To generate the disturbances, the Clayton Copula’s generator
ψ(t) = (1+ t)−1/θ is chosen.
The covariates vector of i’th observation is a realization

of the random variables [z, x2,w1,w2] which are jointly
distributed with their corresponding marginal distribution
functions

{
i
z,

i
x2 ,

i
w1
, i

w2

}
. The dependence structure

is modeled by utilizing a Gaussian Copula which is a con-
venient way to generate high dimensional data. By con-
struction, each datum is generated by utilizing a different
sequence of marginal distribution functions (constructed as a
finite mixture drawn from a menu of 2, 000, 000 continuous
distribution functions). These random variables expectation
vector µ = [0, 0, 0, 0]T and a covariance matrix 64×4. The
arbitrarily chosen covariance matrix is:

64×4 =


σ 2
z σz,x2 σz,w1 σz,w2

σz,x2 σ 2
x2 σx2,w1 σx2,w2

σz,w1 σx2,w1 σ 2
w1

σw1,w2

σz,w2 σx2,w2 σw1,w2 σ 2
w2



=


1 0.4 0.8 −0.6
0.4 1.264 0.36 −0.48
0.8 0.36 2 −0.4
−0.6 −0.48 −0.4 2


We generate the data y1i, y2i, x1i according to the following
data generation process (DGP) [49]:

DGP1 :


y∗1i = α1 + β1 x1i + β2 x2i + ξ1i
y∗2i = α2 + γ1 w1i + γ2 w2i + ξ2i

x∗1i = δ1 zi + δ2 x2i + vi

(55)

where each i element in the sequence {x2i, zi,w1i,w2i}
N
i=1

is an independent realization of the random variables
(x2, z,w1,w2). We choose the parameter setting [α1, α2, β1,
β2, δ1, δ2, γ1, γ2] = [2, 0.5, 1, 1.25, 0.5, 1, 2,−1].
The truncated data set is characterized by the following

equations:

[
y1i
x1i

]
=


[
α1 + β1 x1i + β2 x2i + ξ1i

δ1 zi + δ2 x2i + vi

]
if y∗2i ≥ 0

Unobserved if y∗2i < 0,

(56)

where x1i is an endogenous variable included in vector xi ∈
Rp, in which all the elements (except for xi) are exogenous
variables and β ∈ Rp is a covariates vector. The substantive
equation’s random disturbance is denoted by ξ1i.

49Knowing the distribution corresponding to a generatorψ , [47] presented
a sampling algorithm for exchangeable Archimedean copulas which does
not require the knowledge of the copula density. This algorithm is therefore
applicable to large dimensions [48].
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B. SIMULATIONS RESULT
We have randomly generated for each sample size N ∈

{500, 2000, 3000, 5000, 8000, 10000}, a total of 10, 000 data
sets using the data generation process elaborated on in V-
A. For a given number of observations N , different mod-
els are estimated: (i) an OLS estimator utilizing a sample
consisting of random realizations from the complete distri-
bution function, without correcting for the endogeneity of
x1i covariate; (ii) a conventional IV estimator, correcting for
the endogeneity of x1i covariate using the aforementioned
entire distribution function; (iii) both OLS as well as a con-
ventional IV estimators are applied to a truncated portion of
the data distribution function consisting of participants only
(without correcting for the self-selection bias); (iv) truncated
sample model’s estimates using the developed wavelet-based
JPEG IV estimator, correcting for both truncation as well as
endogeneity biases.50

Table 1 presents summary statistics of estimates for mod-
els (i) and (ii), while Table 2 presents summary statistics
of estimates for models (iii) and (iv). In Table 3, different
convergence measures of these estimates are presented.

TABLE 1. Monte Carlo Simulation - Non-truncated (complete) data set
with (without) IV correction.

Entries in Table 1 indicate that regardless of sample size,
the means of the OLS estimates are biased, such that e.g., for
a sample size of 3000 observations β1 = 2.6807 and β2 =
−0.6988, while the mean of the full sample IV’s estimates
are β1 = 1.0025 and β2 = 1.2457 for the same sample size.
For a sample size of 500 observations, the standard deviation
obtained for β1 (the endogenous covariate’s coefficient) using
the IV estimator is 2.73 times larger than in theOLS estimator
and decreases from 0.4397 to 0.1006, when the sample size
increases from 500 to 10, 000 observations.
In Table 2 to follow, the estimates obtained by using the

truncated data are presented. It is evident that the mean of
the truncated sample OLS estimates are β1 = 2.26 and
β2 = −0.3084 for a sample size of 500 observations, whereas
the true parameter values are β1 = 1 and β2 = 1.25,
respectively. This is a huge bias which is hardly improved as

50For sake of brevity, we delegate results of the first stage to
Appendix VI-B.

TABLE 2. Monte Carlo Simulation - Truncated data set with (without)
truncation bias correction.

the sample size increases. Further, applying a conventional IV
produces estimates which still represent a huge bias, particu-
larly β1 = 0.1084 and β2 = 2.0544 for the same sample size
(500 observations).

Entries in Table 2 indicate that regardless of sample size,
the means of the truncated sample IV’s estimates are biased
(ranges from one-tenth to one-fifth of the estimate that would
have emerged by employing the conventional IV method in
the absence of truncation).51 Note that estimates’ accuracy
hardly improved as sample size increases. This is due to the
presence of two sources of bias. The mean estimate of β1 (the
endogenous covariate’s parameter) which is obtained from
implementing our proposed methodology, basically mimics
the results obtained using a random sample from the entire
data distribution function for sample sizes, above 2, 000
observations. The standard deviations of this estimate for
sample sizes of 500 and 10, 000 observations are 0.7325 and
0.1577, respectively. For a sample size of 5, 000 observa-
tions (or above), the mean estimate of β2 (the exogenous
covariate’s parameter) approximates the estimate obtained by
employing the conventional IV, using a random sample from
the entire data distribution function. However, the estimate of
β2 obtained by employing the conventional IV in a truncated
sample is biased even for 10, 000 observations.

We conduct sensitivity test to measure the influence of an
increase in number of observations on the accuracy of the
truncated sample’s parameter estimates.

The first accuracy measure we use is the standardized
root mean square error, RMSEj, measuring the bias in the
truncated regression estimate relative to the true parameter
value that would have been obtained in an non truncated

51For sake of brevity, we have omitted the estimates of the nuisance
parameters which can be furnished upon request as well as the parameter
estimates of the first stage, which are delegated to Table 4 Appendix VI-B.
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distribution, defined as:

RMSEj (�) =

 1
�

�∑
i=1

(
β̂si,j − β

s
j

βsj

)2
1/2

, (57)

where β̂si,j and β
s
j stand for the substantive (s) equation’s j’th

coefficient estimated in the i’th sample and the coefficient in
the theoretical model that would have been obtained in the
entire population, respectively. � is the number of data sets
generated for the Monte Carlo simulations, which is 5000
data sets (each one consists of N observations).

Another measure is based on a formula similar to the one
described in (57), and is intended to find the relative accuracy
of the truncated sample’s estimates, in comparison to full
sample estimates, defined as:

Rj (�) =

 1
�

�∑
i=1

(
β̂ tsi,j − β̂

s
i,j

β̂si,j

)2
1/2

, (58)

where β̂ tsi,j and β̂
s
i,j stand for the substantive (s) equation’s j’th

coefficient estimated using the truncated (t) sample and the
full sample, respectively. This measure evaluates the relative
model’s performance in the truncated sample, with respect to
the conventional IV using the full sample.

The last estimates’ accuracy measure is the δ coefficient
used for the calculation of the estimators’ standard deviations
convergence rate nδ with respect to the sample size. It depicts
the speed of standard deviation’s shrinkage resulting from
increasing the sample size. This coefficient is calculated
based on the following ratio:

δ =
ln (σ1/σ2)
ln (n2/n1)

, (59)

where σ1 and σ2 are the estimate’s standard deviations that are
calculated for data sets with n1 and n2 number observations,
respectively (calculated for a given estimate).

Table 3 entries indicate that the root mean squares error
(RMSE) measure of the estimates obtained by employing the
conventional IV estimator, using a random sample from the
entire data distribution function, gets smaller as the sample
size increases, as can be expected. However, applying the
same procedure to the truncated data set leads to RMSEmea-
sures, which are in the range of 2 to 8-fold larger, given a sam-
ple size of 2, 000 to 10, 0000 observations, respectively. This
is indeed a huge bias generated by the conventional IV, which
is not immune to truncation bias. Additionally, the RMSE
measures show negligible improvements as a function of
number of observations for the conventional IV,whereas there
is a huge improvement of the RMSE, as a function of the
number of observations for the JPEG IV estimator provided
by our model. The proximity between the JPEG IV and
the full sample IV estimates increases with the sample size,
as reflected by the Rj proximity measure. Using the same
measure, we find that there is a much smaller improvement in
the proximity between the truncated sample conventional IV
and the full sample IV, relative to the improvement in the

TABLE 3. Monte Carlo Simulation - Convergence measures.

proximity between the JPEG IV and the full sample IV
estimates.

It is evident that JPEG IV is a
√
n consistent estimator,

as depicted by the δ consistency measure, which is about 0.5,
implying that multiplying the sample size by 2 shrinks the
estimators’ standard deviations by 2δ =

√
2. It is also evident

that the truncated data conventional IV is poorly functioning
in terms of consistency, as is shown by entries in Table 3.

VI. CONCLUSION
We provide an analytical proof showing that in an endoge-
nously truncated data the conventional IV estimator does not
perform the task it was intended to, but rather introduces an
additional unintended bias into the parameter estimates of the
substantive equation. The instrumental variable is endoge-
nous by itself in the context of endogenously truncated data
due to a comovement between the instrumental variable and
the substantive equation’s random disturbance, generated by
mediating covariates. We offer a truncation-proof JPEG IV,
shown to be a proper estimator under endogenous truncation.
Employing Monte Carlo simulations attests to the JPEG IV
estimator’s high accuracy and its

√
n consistency. These

results have been verified by utilizing 2,000,000 different dis-
tribution functions (not restricted to the unimodal symmetric
family), generating 100 million realizations to construct the
covariates’ data sets which are not imposed to be i.i.d. The
various distribution functions attest to a very high accuracy of
the model as depicted by the parameter estimates that closely
mimic the true parameters.
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TABLE 4. Monte Carlo Simulation - Truncated data set with truncation
bias correction.

APPENDIX
A. AN ELEMENT-WISE THRESHOLDING
In this appendix we show that for any γ ∈ (1,∞), Sα(·) in
(26) is the solution to the min-max concave penalty function
in (24) ∀α ∈ (1/γ,∞).

Proof: Let δ̃ ≡ δ(iter) − 1/(αn)9T
I
(u−9 I δ

(iter))

δ = argmin
δ

1
2

∥∥∥δ − δ̃∥∥∥2
2
+

1
α
Pλj,γj (δ) (60)

As Pλj,γj (δ) is a separable function of δ, the minimization
problem can be implemented in an element-wise fashion. Let
δk be the solution to the following univariate regularized least
squares problem:

δk =


argmin

δ

1
2

∥∥∥δ − δ̃k∥∥∥2
2
+ λ |δ| −

δ2

2γ
if |δk | ≤ λγ

argmin
δ

1
2

∥∥∥δ − δ̃k∥∥∥2
2
+

1
2
λ2γ if |δk | > λγ

(61)

We obtain the first order condition of (61) with respect to δ:

δk =


1

1− 1/(αγ )

[
δ̃k − sign(δk )

λ

α

]
if |δk | ≤ λγ

δ̃k if |δk | > λγ

(62)

Note that if
∣∣δ̃k ∣∣ > λγ and |δk | ≤ λγ it implies that either

sign(δk ) = −1 and −λγ ≤ δ̃k ≤ λγ − 2λ/α or sign(δk ) = 1
and −λγ + 2λ/α ≤ δ̃k ≤ λγ . Both cases contradict the
fact that

∣∣δ̃k ∣∣ > λγ . Similarly, if
∣∣δ̃k ∣∣ ≤ λγ and |δk | > λγ ,

it contradicts the fact that δk = δ̃k which follows directly from
(62). Consequently,

∣∣δ̃k ∣∣ > λγ ⇔ |δk | > λγ . We get:

δk =


δ̃k −

λ
α

1− 1/(αγ )
if 0 <

δ̃k −
λ
α

1− 1/(αγ )
≤ λγ

δ̃k +
λ
α

1− 1/(αγ )
if − λγ ≤

δ̃k +
λ
α

1− 1/(αγ )
< 0

(63)

and provided that ∀α ∈ (1/γ,∞) (63) is simplified to:

δk =


δ̃k −

λ
α

1− 1/(αγ )
if
λ

α
< δ̃k ≤ λγ

δ̃k +
λ
α

1− 1/(αγ )
if − λγ ≤ δ̃k < −

λ

α

(64)

Algorithm 5 TheWavelet-Based JPEG Penalized Regression
1: procedure PENALIZEDLINEARREGRESSION(u, Grid,

Level, λ, γ )
Require: (i) Two real-number vectors u and Grid of size n×

1; (ii) Level∈
{
1, ..., log2(n)

}
;

2: (iii) λ ∈ (0,∞) and γ ∈ (1,∞).
Ensure: Output← a real-number coefficient vector δ̂ of size

n× 1;
3: n← length of u
4: top:
5: δold← ForwardTransform(u, Grid, Level-1)
6: ûold← u
7: residualold← u - ûold
8: Objold ←

1
2n

∑n
i=1 residual2old[i] +

∑n
i=1

MCP.penalty(|δold[i]|,λ, α, γ ))
9: vold ← TransInverseTransform(residualold, Grid,

Level-1)
10: flag← TRUE
11: gap← infinite
12: tolerance← 10−9

13: maxiter← 1000
14: η← 1.2
15: while flag=TRUE and gap > tolerance do
16: α← 1
17: Iter← 1
18: repeat
19: Update← δold +

1
αn vold

20: δnew← Sα(Update, λ, α, γ )
21: ûnew← InverseTransform(δnew, Grid, Level-

1)
22: residualnew← u - ûnew
23: Objnew ← 1

2n

∑n
i=1 residual2new[i] +

∑n
i=1

MCP.penalty(|δnew[i]|,λ, α, γ ))
24: α← αη

25: flag← Objnew < Objold
26: until flag=TRUE or iter > maxiter
27: if flag = TRUE then
28: δold← δnew
29: Objold← Objnew
30: residualold← residualnew
31: vold ← TransInverseTransform(residualnew,

Grid, Level-1)
32: end if
33: gap←

∥∥∥δnew − δold∥∥∥2
2
/

∥∥∥δold∥∥∥2
2

34: Iter← Iter + 1
35: end while
36: return (δold)
37: end procedure

After some algebraic manipulation we obtain:

δk =


1

1−1/(αγ )
sign(δ̃k )(

∣∣∣δ̃k ∣∣∣−λ/α) if λ/α<
∣∣∣δ̃k ∣∣∣≤λγ

δ̃k if
∣∣∣δ̃k ∣∣∣ > λγ

(65)
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Algorithm 6 The Transposed-Inverse filter
1: procedure TRANSINVFILTER(Series, Even, π , Grid)

Require: (i) Two real-number vectors: Series of size n × 1
and Grid of size 2n × 1; (ii) two scalars: Even ∈ {0, 1}
and π ∈ R.

Ensure: Output← Filter, a real-number vector of size n×1
consisting of the predicted series;

2: n← length of Series
3: O← copy the odd elements of Grid
4: E← copy the even elements of Grid
5: if Even = 1 then
6: Low← O[1:n-1]
7: High← O[2:n]
8: weights← (High-E[1:(n-1)])/(High-Low)
9: $l ← [0, 1-weights]
10: $h←← [weights, 1]
11: S← [Series[1], Series]
12: Filter ← 2π $l ←*S[1:n] + 2π

$h←*S[2:(n+1)]
13: else
14: Low← E[1:(n-1)]
15: High← E[2:n]
16: weights← (High-O[2:n])/(High-Low)
17: $l ← [1, 1-weights]
18: $h← [weights, 0]
19: S← [Series, Series[n]]
20: Filter← 2π $l*S[1:n] + 2π $h*S[2:(n+1)]
21: end if
22: return (Filter)
23: end procedure

Next we show how to obtain an analytic representation
of the transpose of the wavelet inverse transform. For doing
so, we based our arguments on the equivalence between the
matrices-product and the lifting scheme representations of the
wavelet transform. Then using this equivalence, we generate
a filter to render the costly matrices building useless. Our
objective is to reduce computational complexity.

Next we present the first stage estimates.

B. FIRST STAGE ESTIMATES
See Table 4 and Algorithm 5.

C. ALGORITHMS
See Algorithm 6.
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