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ABSTRACT The butterfly neural beamformer (NB-Butterfly) is a new adaptive multiple-antenna spatial
neural filter inspired on the neural butterfly equalizer (NE-Butterfly), a filter intended to equalize any channel
that has real or complex taps, whether linear or nonlinear. Due to the broad use cases of the NE-Butterfly,
the objective in this paper is to introduce this novel beamforming filter, the NB-Butterfly and analyze its
performance by comparing to other neural and linear beamformers, while also presenting an enhanced
training strategy that wasn’t present in the butterfly neural architecture before, which is called butterfly neural
beamformer with joint error (NB-Butterfly-JE). The proposals are evaluated and compared for different types
of channels in order to validate their performance in different use cases.

INDEX TERMS Butterfly beamformer, adaptive beamforming, artificial neural networks, neural
beamformer.

I. INTRODUCTION
Spatial filters with adaptive multiple-antenna processing are
known to dramatically enhance wireless communication sys-
tems, being able to identify signals transmitted on the same
carrier frequency that are sufficiently separated in the spatial
domain [1], [2]. In these systems, one of the main problems
that cause signal degradation, besides the white Gaussian
noise, is the Inter Symbol Interference (ISI), that happens
due to band limitation as well as multi-path effects, which
causes superposition of symbols of the same transmitter in a
receiver [3].

The technique most commonly used in the processing of
adaptive antennas is known as beamforming, where the gen-
eral algorithm creates a linear combination of the received
signals at different elements in an antenna array. Tradi-
tionally, these algorithms use the minimum mean square
error (MMSE) principle to achieve the desired output through
the use of a known reference signal and the output of the filter,
however when considering space-division multiple access
(SDMA), where channel configuration and spatial separation
in angles of arrival (AOA) of the signal and other sources
dictates the performance of the communication, what hap-
pens when the conditions aren’t favorable is that the indi-
vidual sources become linearly inseparable [4]–[7]. In order
to be able to reconstruct the desired signal, a nonlinear
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beamforming system is necessary, which can be achieved
with the use of artificial neural networks (ANN), among other
strategies [8]–[11].

The use of ANN-based solutions to beamforming has
been quite explored in literature, where [12]–[14] present
implementations and strategies on where each ANN archi-
tecture is best used in order to solve the problem. More
studies on this area present different ways to solve this prob-
lem, such as in [15], where a comparison between different
complex-valued radial basis function (RBF) ANNs are made.
In [16] a RBF ANN was used in order to implement beam-
forming in one or two dimensional antenna arrays, which
had very good results in comparison to the Wiener solu-
tion and [17] applies neural adaptive beamforming (NAB)
to speech recognition, where it is used to re-estimate spatial
filter coefficients, managing to effectively lower the compu-
tational cost compared to what was previously in place.

In this work, a new NAB strategy, called Butterfly Neural
Beamformer (NB-Butterfly), is implemented, inspired by the
neural equalizer structure in [18], the Butterfly Neural Equal-
izer (NE-Butterfly), which is composed by four multilayer
perceptron (MLP) neural networks trainedwith the backprop-
agation algorithm and has the purpose of equalizing channels
of any kind, be it with real or complex taps, be it linear
or nonlinear, where it performed better than other neural
equalizers for different channel conditions. There is also a
new training strategy created for the NB-Butterfly, which
is based on the joint error strategy presented in [19], being
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FIGURE 1. Baseband discrete communication system modeled.

named the NB-Butterfly with Joint Error (NB-Butterfly-JE),
that aims to speed up the convergence of the backpropagation
algorithm present in each individual network. The objective
then is to analyze the performance of the NB-Butterfly and
the NB-Butterfly-JE when compared to other NABs and lin-
ear beamformers and evaluate if it validates a new case of use
for the MLP Butterfly Neural Network architecture.

The results are presented using BER and mean square
error (MSE) curves for the backpropagation training. In order
to validate the NB-Butterfly and NB-Butterfly-JE, they were
analyzed and compared with another neural beamform-
ing strategy called the Bi-dimensional Neural Beamformer
with Joint Error (BNB-JE), which is an implementation
based on the Multi Layer Perceptron Bi-dimensional Neural
Equalizer with Backpropagation (BNE-MLP-BP) presented
in [18]–[22] and a least mean square (LMS) adaptive beam-
former presented in [23]. The digital communication system
where the beamformers were tested uses 4-QAM (quadrature
amplitude modulation), which was simulated for four differ-
ent channels that have varying levels of multi pathing and
AOA between the source signal and its reflections, leading
to linear and nonlinear configurations.

II. COMMUNICATION SYSTEM MODEL
Since one of the main problems that affect communication
systems, ISI, happens due to the superposition of symbols of
the same transmitter in a receiver, which is caused due to band
limitation and multi-path effects, The multi-path phenomena
are caused due to signal reflexions that occur during its
transmission, creating a spreading of the signal in space and
time, which is what originates the ISI [1], [3].

Figure 1 shows the baseband discrete communication sys-
tem modeled where the n-th binary word, o(n), composed
of b bits, is mapped in a n-th complex symbol a(n) =
aI (n)+ jaQ(n) by a M -ary digital modulator scheme such as
BPSK, QPSK,M -QAM or similars.M represents the number
of symbols associated with a digital modulation scheme.
The symbols are transmitted through the multi-path channel
expressed as

h(n) =
L−1∑
k=0

αkδ(n− τk ) (1)

where L is the number of the paths of the channel, h(n), αk is
complex gain of the k-th path and τk is an integer value
associated with the delay of the k-th path.

The receiver has the linearly equally-spaced (LES) array
composed with P antenna elements arranged along the y-axis,
with spacing of 1y. Each p-th antenna element receives the
complex signal rp(n) expressed as

rp(n) = r Ip(n)+ jr
Q
p (n)

=

L−1∑
k=0

αka(n− τk )e−j
2πp
λ
1ycos(θk ) + ηp (2)

where λ is the wavelength, θp is p-th AOA of the p-th channel
path and ηp is the additive white noise associated with each
p-th antenna element. The received signals in all P antenna
elements are processed by an adaptive spatial filter with
beamforming, also called adaptive beamforming.

The use of adaptive beamforming aims to reduce
multi-path effect in current communication systems and the
main objective is to control the directionality of the reception
or transmission of a signal on an antenna array, in a way
so that the it adds the phases of the signals in the desired
direction and nulls the unwanted ones. For channels where ISI
can be very dynamic, it is necessary to make a beamforming
strategy using adaptive algorithms at the receiver. These algo-
rithms conveniently manipulate the gains of the spatial filter,
aiming to keep track of a transmitter, optimizing the quality
of the received signal [1].

The conventional adaptive beamforming is presented
in Figure 2 and the output ã(n) can be expressed as

ã(n) =
P−1∑
p=0

fp(n)rp(n) (3)

where the fp(n) = f Ip (n) + jf
Q
p (n) is p-th complex gain asso-

ciated with the p-th antenna element. In each n-th sample the
adaptive beamforming updates the P gains using the adaptive
algorithm and the error signal e(n) expressed by

e(n) = aref (n)− ã(n) (4)

where aref (n) is called the reference signal [1].
As presented in [1], [2], [11], the conventional beamform-

ing is a linear spatial filter, (See Equation 3) and for a LES
array with P antennas, the beamforming can insert nulls in
P − 1 AOAs, in other words, the beamforming scheme can
eliminate the ISI for a channel with P− 1 interference paths.
For the cases where L > P the linear beamforming (LB) tries
to minimize the ISI, however the LB performance is deeply
dependent of the channel parameters (α, τ and θ ).
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FIGURE 2. Adaptive beamforming scheme.

FIGURE 3. BER curve for the channels presented in Table 1. Results were
obtained for a communication system (see Figure 1) using BPSK
modulation with P = 2, P = 3, and P = 4 antenna elements.

Figure 3 shows the BER curve to the channels presented
in Table 1. The curves were obtained for a communication
system (see Figure 1) using BPSK (M = 2) modulation with
P = 2, P = 3, and P = 4 antennas elements. The results
show that for channel 1 (see Figure 3), the LB can reduce the
BER for all values of P and for channel 2 (see Figure 3) the
LB cannot reduce the BER for P = 2. The radiation pattern
for channel 1 and channel 2 are presented in Figures 4 and 5,
respectively.

TABLE 1. Simulated channels used to show the linear classification
problem associated with LB.

FIGURE 4. LB radiation pattern for channel 1. BPSK system with P = 2,
and P = 3 antennas elements.

FIGURE 5. LB radiation pattern for channel 2. BPSK system with P = 2,
P = 3, and P = 3 antennas elements.

The low performance of the LB to the channel 2 for P = 2,
it can be explained with a linear classification problem, that
is, Equation 2 can be rewrite in terms of channels 1 and 2
(L = 4 and 1y = λ/2) as

rp(n) =
3∑

k=0

αka(n− τk )e−j2πpcos(θk ) + ηp

= α0a(n− τ0)e−jπpcos(θ0)

+α1a(n− τ1)e−jπpcos(θ1)

+α2a(n− τ2)e−jπpcos(θ2)

+α3a(n− τ3)e−jπpcos(θ3) + ηp (5)

using Table 1 values and making ηp = 0, rp(n) can be
expressed as

rp(n) = α0a(n)e−jπp + α1a(n− 3)e−jπp×0.866

+α2a(n− 6)e−jπp×0

+α3a(n− 9)e−jπp×−0.5. (6)

For P = 2 the LB output can be expressed as

ã(n) = f0(n)r0(n)+ f1(n)r1(n) (7)
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TABLE 2. All possible values for r I
0(n), r I

1(n) and rQ
1 (n) associated with channel 1 and channel 2.

where

r0(n) = r I0(n) = f0(n) (α0a(n)+ α1a(n− 3)

+α2a(n− 6)+ α3a(n− 9)) (8)

and

r1(n) = r I1(n)+ jr
Q
1 (n)

= f1(n)
(
α0a(n)e−jπ + α1a(n− 3)e−jπ×0.866

+α2a(n− 6)+ α3a(n− 9)e−jπ×−0.5
)
. (9)

As ã(n) is a BPSK signal, the Equation 7 can be rewrite as

ã(n) = <{f0(n)r0(n)} + < {f1(n)r1(n)}

= f I0 (n)r
I
0(n)+ f

I
1 (n)r

I
1(n)− f

Q
1 (n)rQ1 (n) (10)

where < {·} returns the real part of the complex number. For
BPSK system, there are two classes: ã(n) < 0 and ã(n) >
0 and based on Equation 10, it is possible to observer that
the hyperplane that classifier the classes (ã(n) = 0) can be
expressed as

rQ1 (n) =
f I0 (n)

f Q1 (n)
r I0(n)+

f I1 (n)

f Q1 (n)
r I1(n). (11)

Table 2 shows all possible values for r I0(n), r
I
1(n) and

rQ1 (n), and Figures 6 and 7 plot the values and the hyperplane
found by LB (see Equation 11). For channel 1, the LB with
P = 2 can create a linear classification between two classes,

FIGURE 6. Hyperplane rQ
1 (n) = 5.2r I

0(n)− 5.1r I
1(n) found by LB for

channel 1.

Figure 6; however, for channel 2, it is not possible to create
a linear classification with P = 2, Figure 7 and this deems
the utilization of the LB unfeasible. In order to minimize
this problem, this work proposes a non-linear classifier called
Butterfly Neural Beamformer (NB-Butterfly).

III. BUTTERFLY NEURAL BEAMFORMER
The use of butterfly equalization structures in optical equaliz-
ers were the inspiration for the creation of the NE-Butterfly,
with this architecture bringing advantages to equalizers,
the next step was to investigate whether this is also a
viable strategy to filter channel degradation and distortion
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FIGURE 7. Hyperplane rQ
1 (n) = 16.3r I

0(n)− 15.8r I
1(n) found by LB for

channel 2.

when applied as an adaptive algorithm for smart antennas.
In order to do that, the NB-Butterfly was created, which
implements the same neural network structure present in the
NE-Butterfly, but with the focus on spatial signal processing,
instead of time-based.

A. ARCHITECTURE
The structure of the NB-Butterfly uses the similar structure
presented in [18], illustrated in Figure 8, which presents an
architecture composed of four MLP neural networks. Within
that, two networks contribute to the processing of the signal
in phase rI (n), the MLP-II and MLP-IQ, whereas the others
handle the processing of the signal in quadrature rQ(n), being
the MLP-QI and MLP-QQ. The signal rI (n) is expressed as

rI (n) =



r I0(n)
...

r Ip(n)
...

r IP−1(n)

 (12)

and the signal rQ(n) as

rQ(n) =



rQ0 (n)
...

rQp (n)
...

rQP−1(n)


. (13)

These groups operate independently and in parallel from each
other, as do the individual networks inside each group. The
main objective of this arranging is so that each pair has input
information from the real and complex part of the signal, with
each MLP network combining them in a different manner
leading to a better information acquisition from the various
effects that may affect the channel, such as distortion, ISI and
multi pathing.

The detailed architecture of theMLP-II, MLP-IQ,MLP-QI
and MLP-QQ networks is similar to the structure presented
in Figure 9. In each network, the hidden layer activation
function ϕ(·) is the hyperbolic tangent function and the output
layer function φ(·) is the linear function.
Thus, the estimated phase signal in the output for each of

the respective neural network group in the NB-Butterfly can
be written as

ãI (n) = ãII (n)+ ãIQ(n) (14)

where

ãII (n)=
K−1∑
i=0

(
w1
i (n)

)II
tanh

P−1∑
p=0

(
w0
ip(n)

)II
r Ip(n)

 , (15)

ãIQ(n)=
K−1∑
i=0

(
w1
i (n)

)IQ
tanh

P−1∑
p=0

(
w0
ip(n)

)IQ
rQp (n)

 (16)

and the estimated quadrature signal in the output for its neural
network group is

ãQ(n) = ãQI (n)+ ãQQ(n) (17)

FIGURE 8. NB-Butterfly model.
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FIGURE 9. Neural beamformer architecture.

FIGURE 10. NE-butterfly training scheme.

where

ãQI (n) =
K−1∑
i=0

(
w1
i (n)

)QI
tanh

P−1∑
p=0

(
w0
ip(n)

)QI
r Ip(n)

 ,
(18)

ãQQ(n) =
K−1∑
i=0

(
w1
i (n)

)QQ
tanh

P−1∑
p=0

(
w0
ip(n)

)QQ
rQp (n)


(19)

where ãI (n) and ãQ(n) are the signals estimates aI (n) and
aQ(n) respectively.
With the objective of respecting the hidden layer hyper-

bolic tangent activation function, the signals aI (n) and aQ(n)
are normalized, where the symbols must obey a minimum

distance dmin such that

dmin =
2

√
M − 1

. (20)

B. TRAINING SCHEME
The first training scheme proposed for the NB-Butterfly is
shown in Figure 10. It has two modes of training, supervised
and non supervised. In the supervised mode, the error signal
in phase and quadrature are given by

eI (n) = aIref (n)− ã
I (n) (21)

and

eQ(n) = aQref (n)− ã
Q(n), (22)

where aIref (n) and a
Q
ref (n) are the known training sequence.

In the non supervisedmode, the decision directed algorithm is
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FIGURE 11. NE-butterfly-JE training scheme.

used, with signals in error and quadrature being respectively

eI (n) = âI (n)− ãI (n) (23)

and

eQ(n) = âQ(n)− ãQ(n). (24)

where âI (n) and âQ(n) are decision estimates of the received
signal.

In order to achieve faster convergence of the NB-Butterfly,
the new training scheme shown in Figure 11, named
NB-Butterfly with joint errors (NB-Butterfly-JE), has com-
bined errors fed back to the neural networks, which are
described by

eIJE (n) = eI (n)+ sgn(eI (n)) ∗ |e(n)|2 (25)

and

eQJE (n) = eQ(n)+ sgn(eQ(n)) ∗ |e(n)|2, (26)

where, in the non supervised mode, the decision directed
algorithm is used, with the error e(n) being given by

e(n) = â(n)− ã(n) (27)

FIGURE 12. Non-linear classification found by NB-butterfly for channel 1.

while in the supervised mode it is given by

e(n) = aref (n)− ã(n) (28)

where

aref (n) = aIref (n)+ ja
Q
ref (n). (29)

Figures 12 and 13 shows the non-linear classification asso-
ciated with NB-Butterfly for channel 1 and channel 2 with
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FIGURE 13. Non-linear classification found by NB-butterfly for channel 2.

FIGURE 14. BER curve for the channels presented in Table 1. Results were
obtained for a communication system (see Figure 1) using BPSK
modulation with 2 antenna elements.

FIGURE 15. NB-butterfly radiation pattern for channel 1. BPSK system
with P = 2 antennas elements.

P = 2 and M = 2 (BPSK system). The BER curves for this
case are shown in Figure 14 and the radiation pattern curves
are presented in Figures 15 and 16.

The Butterfly Neural Beamformer (NB-Butterfly) has
distinct differences from the Neural Butterfly Equalizer

FIGURE 16. NB-butterfly radiation pattern for channel 2. BPSK system
with P = 2 antennas elements.

FIGURE 17. Performance curve of BER as a function of Eb/N0 for the
4-QAM system (without channel coding) using the channel model for
channel 3.

FIGURE 18. MSE curve for the 4-QAM system (without channel encoding)
using the channel model for channel 3, with Eb/N0 = 20dB.

(NE-Butterfly). In the equalization problem prese-
nted in [18], the nonlinearities are associated with the optical
channel system and the neural butterfly equalizer proposed
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FIGURE 19. Constellations for channel 3 with Eb/N0 = 20dB.

minimizes the problem regards to the complex taps channels.
Already, this work shows that the beamforming nonlinearities
appear when the number of antennas (P) is lower than the
number of taps channels (L) (P < L) and differently optical
channel with NE-Butterfly, the received signals always

are multiplied by complex components (see Equation 2).
Another difference is associated with the neural filter struc-
ture. The NE-Butterfly proposed in [18] focuses on process-
ing a stream of N delayed signals while the NB-Butterfly
works with a real-time stream of P signals from multi-
ple antennas that arrive at different angles. Finally, another
stark difference is that the NB-Butterfly-JE implements a
new training method that significantly improves its per-
formance, which is not implemented in the NE-Butterfly
in [18].

IV. SIMULATIONS AND RESULTS
The first objective of the simulations is to analyze the per-
formance of both the NB-Butterfly and NB-Butterfly-JE by
evaluating their capacity to successfully perform the beam-
forming process on different channels. The second is to

FIGURE 20. NB-butterfly-JE radiation pattern for channel 3.

compare its performance with other proposals, where a LMS
beamformer and a beamforming adapted BNB-JE were used
to have both a linear and a neural beamformer to serve as
a comparison basis. In order to evaluate the simulations, bit
error rate (BER) curves in function of Eb/N0 were traced,
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FIGURE 21. Performance curve of BER as a function of Eb/N0 for the
4-QAM system (without channel coding) using the channel model for
channel 4.

which denominates the relation between bit energy and power
spectral density. The mean square error (MSE) curves of
the backpropagation training for a Eb/N0 of 20 dB were

FIGURE 22. MSE curve for the 4-QAM system (without channel encoding)
using the channel model for channel 4, with Eb/N0 = 20dB.

also acquired in order analyze the difference in performance
between the beamformers regarding the converging time in
function of the quantity of frames transmitted, where each

FIGURE 23. Constellations for channel 4 with Eb/N0 = 20dB.
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FIGURE 24. NB-butterfly-JE radiation pattern for channel 4.

frame contains 4096 symbols. Simulations were made for a
4-QAM digital communication system (M = 4), with two
antennas.

Regarding channel 3, its BER curves are presented
in Figure 17, its MSE curves are presented in Figure 18,
the constellations for Eb/N0 = 20dB are presented
in Figure 19 and the radiation pattern for the NB-Butterfly-
JE can be seen in Figure 20. This channel presents a linearly
separable configuration and it is possible to infer that by look-
ing at the LMS BER performance, as it is a fast and reliable
beamformer for these cases, where from 4 dB onward, its
speed of convergence cannot be matched by the NABs,
however, when looking at the MSE curves and constellation
points, it is clear that it is outperformed in that aspect, with
the NABs managing to achieve lower MSE values and with
a better clustering of the points, being on par in performance
between them, with a small edge achieved by the BNB-JE in
those regards.

For channel 4, its BER curves are presented in Figure 21,
its MSE curves are presented in Figure 22, the constella-
tions for Eb/N0 = 20dB are presented in Figure 23 and
the radiation pattern for the NB-Butterfly-JE can be seen
in Figure 24. This channel’s objective is to simulate a slightly
non linearly separable configuration for two antennas, where,
with the added complexity given by the complex gains,
makes it also very hard for most neural networks to handle.
By inspecting the BER curves, the NB-Butterfly-JE holds
a great performance advantage over even the NB-Butterfly,
implying that the new training method improves the search
for the global minimum drastically, with its 12 dB perfor-
mance never being outmatched by the other beamformers.
Through an analysis of the MSE curves however, we see
that the values between the NABs are quite close, but the
convergence rate of the NB-Butterfly-JE is so fast in com-
parison to the others that it definitely helps in the lower BER
numbers overall. Just like in channel 3, the constellations of
the NABs are very similar, however in this case, the LMS
wasn’t able to properly achieve the correct point clustering for
the 4-QAM.

FIGURE 25. Performance curve of BER as a function of Eb/N0 for the
4-QAM system (without channel coding) using the channel model for
channel 5.

FIGURE 26. MSE curve for the 4-QAM system (without channel encoding)
using the channel model for channel 5, with Eb/N0 = 20dB.

The BER curves for channel 5 are presented in Figure 25,
its MSE curves are presented in Figure 26, the constella-
tions for Eb/N0 = 20dB are presented in Figure 27 and
the radiation pattern for the NB-Butterfly-JE can be seen
in Figure 28. This channel simulates a highly non linearly
separable channel, also having complex gains makes it hard
to handle for most neural networks that don’t have a complex
activation function or some strategy to deal with it. By look-
ing at the BER curves, the NB-Butterfly-JE once again shows
the best performance, from around 13 dB onwards its per-
formance isn’t reached by any other beamformers in this
comparison, with the other neural networks barely making
any progress at 20 dB. The analysis of the MSE curves
and constellation points also supports the BER curves data,
where the NB-Butterfly-JE has the best gradient descent,
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FIGURE 27. Constellations for channel 5 with Eb/N0 = 20dB.

followed by the NB-Butterfly, once again supporting the
benefits that camewith the new training strategy. On the other
hand, due to the complex nature of the channel, the BNB-JE
wasn’t able to achieve a good performance, being marginally
better than the LMS on this case, but without managing
to result in a clear clustering of the 4-QAM points on the
constellation.

Figure 29 contains the BER curves for channel 6, Figure 30
presents its MSE curves, the constellations for Eb/N0 =

20dB are presented in Figure 31 and the radiation pattern for
the NB-Butterfly-JE can be seen in Figure 32. This channel
simulates a non linearly separable channel with no complex
gains, the objective is to show that a complex gain isn’t
needed in order to generate this kind of channel when looking
at a beamformer working with a pair of antennas. In the
analysis of the BER curves, by not reaching a low enough per-
formance with 20 dB it becomes clear that the beamforming
of this channel is difficult for all evaluated beamformers, with
the NB-Butterfly-JE having the overall best performance,
followed closely by the other NABs, with the LMS not
managing to handle the nonlinearities. The MSE curves and
constellation points also corroborate with these results, with

FIGURE 28. NB-butterfly-JE radiation pattern for channel 5.

the NABs all having similar curves and constellation points,
while the LMS isn’t able to reach the same error values
nor make the correct clustering of the 4-QAM constellation
points.

The results obtained in this work indicate that the
NB-Butterfly is a viable option as a NAB architecture,

96466 VOLUME 7, 2019



T. F. B. de Sousa, M. A. C. Fernandes: Butterfly Neural Filter Applied to Beamforming

FIGURE 29. Performance curve of BER as a function of Eb/N0 for the
4-QAM system (without channel coding) using the channel model for
channel 6.

even more so when using the NB-Butterfly-JE’s training
method, that greatly speeds the convergence of the back-
propagation algorithm, leading to a better performance,

FIGURE 30. MSE curve for the 4-QAM system (without channel encoding)
using the channel model for channel 6, with Eb/N0 = 20dB.

specially in the more complex situations, proving to be
at least as viable as the other compared beamformers
otherwise.

FIGURE 31. Constellations for channel 6 with Eb/N0 = 20dB.
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TABLE 3. Simulated channels with 4-QAM modulator.

FIGURE 32. NB-butterfly-JE radiation pattern for channel 6.

TABLE 4. Parameters used in the simulated adaptive beamformers.

V. CONCLUSIONS
This paper presented a new strategy based in ANN for
the implementation of an adaptive beamformer, called
NB-Butterfly, inspired on an adaptive equalizer structure,
the NE-Butterfly, there was also a new training strategy
proposed for this NAB, being the NB-Butterfly-JE. As the
name implies, four MLP neural networks are used, MLP-II,
MLP-IQ, MLP-QQ and MLP-QQ, connected in an architec-
ture that is similar to a butterfly with its open wings, thus
the name. The objective of this beamformer is to perform
the beamforming in phase and quadrature of a modulated
signal that runs through a channel that has real or complex
gains. In its training scheme, the error is calculated indepen-
dently for each MLP pair and can be supervised or not for
the NB-Butterfly, and for the NB-Butterfly-JE a heuristic is
added where the individual errors from the four networks are
combined with the error from the main signal generated by
these networks in order to speed up the gradient descent of the
backpropagation training function, thus leading to the name
Joint Error.

The NB-Butterfly was used in a simulated channel which
has the main problems found in wireless communication
channels, which are the nonlinearities, different AOA and
possible complex gains. Through simulations it was possible
to test the beamformers using different values of Eb/N0 and
to compare them with other previously tested beamform-
ers, such as the LMS and the BNB-JE, which was adapted
from the BNE-MLP-BP-JE, where the NB-Butterfly proved
effective in beamforming the majority of the channels that
were evaluated, making it a valid proposal to use in adaptive
beamforming.
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