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ABSTRACT Over the last decade, Passive Optical Networks (PONs) have emerged as an ideal candidate
for next-generation broadband access networks. Meanwhile, machine learning and more specifically deep
learning has been regarded as a star technology for solving complex classification and prediction problems.
Recent advances in hardware and cloud technologies offer all the necessary capabilities for employing deep
learning to enhance Next-Generation Ethernet PON’s (NG-EPON) performance. In NG-EPON systems,
control messages are exchanged in every cycle between the optical line terminal and optical network units
to enable dynamic bandwidth allocation (DBA) in the upstream direction. In this paper, we propose a novel
DBA approach that employs deep learning to predict the bandwidth demand of end-users so that the control
overhead due to the request-grant mechanism in NG-EPON is reduced, thereby increasing the bandwidth
utilization. The extensive simulations highlight the merits of the new DBA approach and offer insights for
this new line of research.

INDEX TERMS Deep learning, dynamic bandwidth allocation, machine learning, NG-EPON, optimization,
PON, simulations.

I. INTRODUCTION
According to Cisco’s Visual Networking Index forecast,
the global Internet traffic, which amounted to approximately
27 Tbps in year 2016, will reach a whopping 106 Tbps by
year 2021 [1]. This unprecedented growth in Internet traffic
combined with the advancement in the backbone network,
have accentuated the bottleneck in the first/last mile. Over the
last decade, Passive Optical Network (PON) has been viewed
as the most promising solution to the access bottleneck prob-
lem. More notably, the Ethernet PON family (i.e., 1G-EPON,
10G-EPON, and 100G-EPON) has been considered the most
promising PON variant, due to its cost effectiveness, high
bandwidth capacity, and ability to efficiently support quality-
of-service (QoS) [2].

Next-Generation EPONs (NG-EPON) are expected to sup-
port an increasing number of users, provide much higher
data rates, and support stringent QoS requirements for new
and diverse range of applications (e.g., Tactile Internet).
Accommodating all these requirements would increase the
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complexity of NG-EPON systems; thus, ‘‘efficiently cus-
tomized’’ NG-EPONs can become the new trend. That is,
traditional ‘‘one-size-fits-all’’ approaches will not work, and
optimizing the different aspects of data transmission in
NG-EPONs to provide better services to larger number of
users while being energy and bandwidth-efficient is not an
easy task. One of the most powerful tools that could help
address the foregoing challenges and which has recently
begun to be adopted in optical networks in general [3]–[7]
and PONs in specific is machine learning [8]–[15]. In partic-
ular, deep learning has been gaining popularity as a stellar
approach for solving complex classification and prediction
problems. Given sufficiently-large training data, deep neural
networks can be trained to optimize some objective function
by exploiting hidden or implicit patterns in the training data.
The huge amount of data that can be collected by monitoring
different parameters in NG-EPON make machine learning a
great candidate for network performance optimization.More-
over, recent advances in GPU technology and Cloud Comput-
ing provide the processing and storing capabilities needed for
training computationally-expensive machine learning models
such as the deep learning ones [16].
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FIGURE 1. Typical NG-EPON architecture [17].

As illustrated in Fig. 1, a typical NG-EPON has a tree
topology that comprises an Optical Line Terminal (OLT)
residing at the Internet Service Provider (ISP)’s central
office (CO), and connecting via a passive optical splitter a
set of Optical Network Units (ONUs) located at the end-
users’ premises. The transmission in the downstream direc-
tion is typically performed by the OLT via broadcasting
data to the ONUs using time division multiplexing (TDM);
whereas in the upstream direction, TDM and/or wavelength
divisionmultiplexing (WDM) can be employed, coupledwith
a dynamic bandwidth allocation (DBA) scheme. The com-
munication between the OLT and the ONUs is conducted via
the Multi-Point Control Protocol (MPCP), which enables the
ONU to send a REPORT message to the OLT, informing it
about its upstream bandwidth demands. In return, the OLT
would respond with a GATE message granting the ONU a
time slot. This exchange happens in a cyclic manner, which
causes a control bandwidth overhead that may be large when
the network is provisioned with a large number of ONUs and
long EPON distances [18]. The overhead may vary depend-
ing on the employed DBA scheme. For instance, with online
schedulers (i.e., where the OLT schedules grants ‘‘on-the-
fly’’ without waiting until all the REPORT messages are
received; e.g., IPACT [2]), the idle time and subsequently the
packet delay are reduced. However, ensuring fairness among
ONUs and supporting QoS is not easily attainable as the
OLT would lack a holistic view of all the ONU demands.
This problem is resolved using offline schedulers, where the
OLT waits until all the REPORT messages are received,
and then preforms DBA and schedules grants accordingly.
This enables the OLT to support QoS and enables fairness
among ONUs, at the expense of decreased channel uti-
lization due to the control overhead between transmission
cycles [18], [19].

In this paper, we propose a novel DBA scheme that
employs deep learning (thus-called Deep-DBA) with the
offline scheduler to improve the network bandwidth uti-
lization so as to provision more users and/or push more
services into the network. More specifically, we build
a Long-Short Term Memory (LSTM) Recurrent Neural

Network (RNN) [20] and train it to predict the bandwidth
requests of ONUs for a certain number of future cycles based
on past cycles. This gives the OLT a holistic view of the
requests of all the ONUs for the predicted future cycles, and
allows it to schedule future time slots without requiring the
ONUs and the OLT to exchange REPORT/GATEmessages in
every cycle. Extensive simulation results highlight the merits
of the new approach and show how Deep-DBA is able to
preserve the advantages of offline DBAs, while achieving
higher bandwidth utilization compared to online schemes.
More specifically, the main contribution of Deep-DBA is
reducing the bandwidth overhead. This bandwidth gain can
be used to provision more users and/or services in the
network. The other contribution is that Deep-DBA is an
offline scheme but at the same time exhibits a similar per-
formance to online schemes in terms of throughput and
delay.

The rest of the paper is organized as follows. In Section II,
we present a survey of the related state-of-the-art works.
Section III presents the proposed Deep-DBA scheme. Exten-
sive simulation and experimental results are presented in
Section IV. Finally, we conclude the paper and discuss future
extensions in Section V.

II. RELATED WORK
In this section, we review the state-of-the-art works that
employ machine learning to enhance the operation and per-
formance of bandwidth allocation in PONs.

To offer better QoS support to PON subscribers, the authors
of [8] presented a service level agreement (SLA)-based
proportional-integral-derivative (PID) controller. The PID is
enhanced with an online neural network to tune the param-
eters of the PID controller. The input layer of the machine
learning model has three neurons representing the past three
error-readings of the PID. Similarly, the output layer has three
neurons representing the three parameters used to tune the
PID controller.

To optimize the upstream bandwidth allocation in PONs,
the authors of [9] proposed to dynamically (re)allocate the
SLA parameters, which are represented by the Committed
Information Rate (CIR, which is the guaranteed bandwidth
provided to the user), the Excess Information Rate (EIR,
which is some additional bandwidth that may be provided to
the user), and the Peak Information Rate (PIR, which is the
maximum bandwidth that can be assigned to a user), based
on the user profile. Namely, using K-means clustering, users
are classified into three different groups: heavy, light, and
flexible for specific periods of the day. Subsequently, excess
bandwidth is allocated to the EIR of heavy users to improve
their QoS. The limitation of this scheme is that the majority of
users were classified as flexible. This work is then extended
in [10], such that user groups are further classified based
on the bandwidth usage during weekdays and weekends.
Furthermore, a ‘‘Grey Forecasting Model’’ is employed to
predict the future bandwidth demand trend of users in the
flexible group, that is, whether they will shift or not to the
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heavy or light groups to have a more balanced distribution of
the excess bandwidth.

To predict the additional packets that may arrive during
the polling period, the authors of [11] proposed a data min-
ing forecasting DBA, so-called DAMA, which employs an
enhanced k-nearest neighbor (k-NN) algorithm. Results show
that predicting the additional bandwidth improves the net-
work performance in terms of latency and jitter.

In [12], the authors proposed an artificial neural net-
work (ANN) decision-makingmodel to predict the bandwidth
demand of an ONU. The ANN model is trained to predict
uplink latency under different network scenarios so as to
dynamically allocate bandwidth to meet low latency require-
ments.

To support Tactile services, the authors of [13] employed a
Bayesian estimation to approximate the packet inter-arrival
time for Poisson-distributed Tactile traffic in a WDM-
PON. For Pareto-distributed traffic, the authors used a
maximum-likelihood sequence estimation to approximate the
On and Off durations. The estimations are performed at the
ONU, and are then sent to the OLT using a REPORT mes-
sage. Consequently, the OLT evaluates the average bandwidth
demand of each ONU and maintains the low latency con-
straint by dynamically varying the number of active wave-
length channels.

Finally, the authors of [14] proposed a machine learning
based DBA (MLP-DBA), where an ANN model is deployed
at theOLT to identify theOn andOff periods of bursty Internet
traffic for the next polling cycle of every ONU. Based on
this prediction, the bandwidth demand during the waiting
time is evaluated. Consequently, if the sum of the requested
bandwidth plus the predicted bandwidth is greater than the
maximum bandwidth allowed for each ONU, an extra cycle
is introduced by generating additional GATE messages for
these ONUs at the beginning of the next polling cycle. This
would offer lower latency and enable the support of Tactile
services.

As can be seen, none of the above reviewed works
addressed the challenge of improving the bandwidth utiliza-
tion in PONs. In our work, we tackle this problem by making
use of deep learning (more specifically using a Long-Short
Term Memory Recurrent Neural Network) with the offline
scheduler to predict the user demands (i.e., the bandwidth
requested using REPORT messages) so as to reduce the
amount of exchanged control messages between the OLT and
ONUs, and eliminate the idle time of the offline scheduler
between predicted cycles. This would in turn reduce the
network latency and allow for provisioning more services
and/or users in the network.

III. DEEP LEARNING-BASED DBA (DEEP-DBA)
A. SYSTEM MODEL
In NG-EPON systems, in every polling cycle, each ONU
sends to the OLT a REPORT message depicting its buffering
queues’ occupancies, which reflects the end-users’ band-
width demands. Consequently, the ONUs are granted time

FIGURE 2. Proposed machine-learning based system model.

slots by the OLT in the next cycle using GATE messages;
these time slots are sized depending on the DBA discipline.

As illustrated in Fig. 2, to reduce the control messaging
overhead (which can be significant depending on the num-
ber of connected ONUs, the distance between the OLT and
ONUs, and the channel speed), we propose to employ a
machine learning model to predict the bandwidth demand of
an ONU for the nextQ cycles based on its demands in the past
P cycles. Here, bandwidth demands can be collected in three
forms: 1) incoming traffic flows/streams at the end-user side;
2) REPORT messages in every polling cycle, which depict
the bandwidth demands; and 3) GATE messages issued by
the OLT in every polling cycle, which indirectly reflect the
bandwidth demands of the ONUs. The latter two depend on
the employed DBA algorithm and the network architecture
and settings, as these affect the behavior of the network and
thus the bandwidth included in the REPORT and GATE mes-
sages. Consequently, the machine learning model is trained
on the collected data, and the obtained model is saved and
embedded as a module in the DBA so as to perform predictive
bandwidth allocation.

B. BANDWIDTH DEMAND PREDICTION USING DEEP
LEARNING
Internet traffic in NG-EPON can be seen as time series,
which corresponds to the bandwidth demand in every cycle.
To predict Internet traffic, several linear prediction techniques
based on statistical learning have been proposed [21]–[23].
Although these methods can learn the linear correlation
structure of the time series, they fail to learn nonlinear
patterns [24]. Recently, non-linear prediction has been per-
formed using neural networks, which have been widely used
due to their ability to approximate any linear or non-linear
patterns in an accurate manner even when the underlying data
relationships are unknown. Results in [25]–[27] show that by
using neural networks, better prediction outcome in terms of
accuracy can be obtained compared to previous methods such
as AutoRegressive Moving Average (ARMA), AutoRegres-
sive Integrated Moving Average (ARIMA), AutoRegressive
AutoRegressive (ARAR) and HoltWinter algorithm.

While Feed-Forward Neural Networks are able to pro-
vide accurate prediction and fast response time, they fail
to handle sequence data, and they are only limited to
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FIGURE 3. Employed LSTM RNN model.

data within a fixed-size window. In contrast, RNNs take
into consideration past-seen input to make predictions in
the current time step making it a good candidate for
sequence-to-sequence predictions. However, conventional
RNN models suffer from vanishing and/or exploding gradi-
ent problems, which limits the RNN’s capability to model
long-term dependencies [28]. Consequently, LSTMnetworks
have been designed to address these foregoing issues [20],
and they were demonstrated to outperform neural networks
and traditional RNNs for many applications [27]–[30]. More-
over, recent studies suggest that Convolutional Neural Net-
works can be used for time series forecasting as shown
in [31], [32].

We note that any of the aforementioned models that can
handle sequence-to-sequence time series predictions can be
used to perform predictive DBA. In this work, based on
similar findings in related problems [28]–[30] and extensive
experimental results on our dataset, we choose to employ an
RNN LSTM model. Note that only one model is needed by
the proposed scheme and it is employed at the OLT. Fig. 3
depicts the general LSTM architecture that we employ to
predict future sequences from previous ones. As illustrated,
the LSTMnetwork is fed a sequence ofP cycles as input, such
that each cycle p ∈ P includes the ONU’s reported queue
size. The output of the model would be the next sequence of
Q cycles, where each cycle q ∈ Q includes the predicted total
queue size for this ONU in this cycle. This is an improvement
over previous works [30], [33] since not only we are predict-
ing the traffic in the next time step t + 1 (next cycle), but we
are also predicting the bandwidth demands for the upcoming
t + Q time steps.

C. OPERATION OF DEEP-DBA
The key principle behind Deep-DBA is to make use of the
predictions made by a machine learning model using the
past P REPORTs, so as to allocate bandwidth for the next
Q cycles without requiring any further REPORT messages
within those cycles. Thus, a Deep-DBA cycle would typically

comprise two sets of cycles; namely the reporting cycles
{p1 , p2 , · · · , pP} and the prediction cycles {q1 , q2 , · · · , qQ}.
For simplicity and without loss of generality, we illustrate

in Fig. 4 the operation of the proposed Deep-DBA for P = 2,
and Q = 8. As observed, during the reporting cycles, every
ONU sends a REPORT message requesting bandwidth based
on its queue size (just like with regular DBA approaches).
Consequently, the OLT runs the DBA algorithm (i.e., TDBA)
and responds with a GATE message that includes a grant for
the next cycle only, based on the employed scheduling dis-
cipline (i.e., Limited, Gated, etc.). However, the OLT keeps
record of the foregoing request to be used for prediction.
As such, during the last reporting cycle pP , as soon as the OLT
receives the Pth REPORT message from an ONU, it uses the
P saved requests of this ONU as input to the deep learning
model, so as to predict its request sizes for the next Q cycles;
thereby marking the start of DBA prediction time TDeep−DBA.

When predictions are obtained by the deep learning model
and the OLT has the predicted request sizes for all ONUs,
these predicted request sizes are considered as if they are
REPORT messages received from the ONUs for cycles
{q1 , q2 , · · · , qQ}. After the prediction, the OLT will apply the
same DBA scheme used to grant transmission windows for
each ONU for cycles {q2 , · · · , qQ , p1} without requiring any
further REPORT messages. This reduces the effective cycle
time, and increases the network utilization. Subsequently,
the OLT informs the ONUs of their transmission windows for
cycles {q2 , · · · , qQ , p1} usingGATEmessages sent during the
first prediction cycle q1 . This can be accomplished in three
different ways:

1) The OLT sendsQ×N GATEmessages in a contiguous
manner, where N is the number of ONUs.

2) The OLT incorporates 4 grants in one GATE message
(which adheres to the default GATE message struc-
ture), so that Q×N

4 GATEs are sent in a contiguous
manner.

3) The format of the GATE message is modified so that it
can includeQ grants, which enables the OLT to send N
GATEs in a contiguous manner.

As observed in Fig. 4, the GATE message based on the
predicted REPORT for the first ONU to start upstream trans-
mission should arrive before the start of the second prediction
cycle q2 . Hence, there is sufficient time to do the machine
learning prediction which starts in the beginning of the last
reporting cycle pP , when the REPORT of the 1st ONU arrives,
and continues through the first prediction cycle q1 . Therefore,
the time from the start of TDeep−DBA until the latest moment
for the first GATE to reach its corresponding ONU is almost
equal to the duration of 2 cycles, which is more than sufficient
given the instantaneous output that is normally produced by
a trained deep learning model [16].

In the next Deep-DBA cycle, during the first reporting
cycle p1 , the ONUs start data transmission immediately;
however, they also send REPORT messages at the end of
their transmission window marking the start of the reporting
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FIGURE 4. Operation of the proposed deep-DBA scheme.

TABLE 1. Summary of notations.

cycles. The total number of cycles in one Deep-DBA cycleK ,
can be obtained as:

K = P+ Q. (1)

To highlight the merits of the offline Deep-DBA, we cal-
culate its gain compared to regular offline and online DBA
schemes. For the reader’s convenience, we summarize the
notations used in Table 1.

The total delay caused by a GATE message destined for
ONU j in cycle i is computed as follows:

TGji
= (2× T procG )+ T transG + T propj . (2)

Similarly, the total delay caused by a REPORTmessage from
ONU j in cycle i is computed as follows:

TRji
= (2× T procR )+ T transR + T propj . (3)

As illustrated in Fig. 4, the reporting cycles with Deep-DBA
are similar to the offline cycles of a legacy DBA (that is,
an ONU sends a request message in cycle i− 1, and receives
a grant from the OLT for cycle i). However with Deep-DBA,
two salient overhead periods that occur in these cycles are
eliminated in the prediction cycles, namely the end of the
cycle idle time, T endi , and the REPORT messages transmis-
sion time. The overhead T endi comprises the time taken by

the N th REPORT message to be transmitted and processed,
the time taken to compute the DBA, TDBA, and the time taken
by the first GATE message to be transmitted and processed.
Thus, T endi can be computed as follows:

T endi =

{
TRNi + TDBA + TG1

i
i ∈ {p1 , p2 , . . . , pP}

0 i ∈ {q1 , q2 , . . . , qQ}
(4)

As such, the total overhead caused by REPORT messages
during a Deep-DBA cycle i, Ri, would be obtained by:

Ri =

{
(N − 1)× T transR i ∈ {p1 , p2 , . . . , pP}
0 i ∈ {q1 , q2 , . . . , qQ}

(5)

Here, the transmission delay of the N th ONU is accounted
for in (4). Thus, the control overhead would only be incurred
in the reporting cycles. Therefore, the total overhead using
Deep-DBA can be computed as follows:

ODeep−DBA =
P∑
i=1

(T endi + Ri). (6)

Conversely, in a regular NG-EPONmodel, the total overhead
using offline scheduling would be computed as follows:

OREG =
K∑
i=1

(T endi + Ri). (7)

Consequently, the total gain G obtained via Deep-DBA can
be estimated as follows:

G = OREG − ODeep−DBA =
Q∑
i=1

(T endi + Ri). (8)

For example, for N = 128 ONUs, a maximum cycle time
of 2 ms, and an upstream speed of 10 Gbps, the REPORT
overhead would amount to a data rate of 43 Mbps [34].
In contrast, for P = 2 and Q = 6, Deep-DBA would lower
this value to 11Mbps. This is a gain of 32Mbps in throughput,
which allows to provision more users and/or more services in
the network.Moreover, increasingQ and/or decreasingPmay
further decrease the control overhead; however, this may be
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TABLE 2. Simulation parameters.

at the expense of the model prediction accuracy, which might
affect the overall network performance as we show in the next
section.

IV. PERFORMANCE EVALUATION
To validate the effectiveness of the proposed approach,
we generate training data and conduct extensive simula-
tions using OMNET++ [35]. The simulation parameters,
as in [36], are shown in Table 2. The 95% confidence inter-
val of the simulation results gave ≈ 2% variation, which
is statistically insignificant; hence it is not shown in the
figures.

A. DATASET
Without loss of generality, to validate the feasibility of the
proposed Deep-DBA scheme, in this work, we generate traf-
fic for the Gated and Limited scheduling disciplines, which
are the most widely used legacy disciplines for predictive
DBA schemes [19]. Namely, we implement a traffic gen-
erator at each ONU, which generates Poisson-distributed
and Pareto-distributed traffics; the latter has 2000 alternating
(i.e., ON/OFF periods) sources to emulate the long-range
dependence and self-similarity of bursty Internet traffic [37].
Our proposed scheme does not depend on a particular traffic
distribution; rather, it is designed to predict the user demands
independent of the traffic arrival distribution. The selection of
Poisson and Self-Similar traffics is for simulations purposes,
as these are the most commonly adopted distributions in the
literature. We note that conducting performance evaluation
using real captured datasets may be more persuasive and
insightful. However, as detailed in [27], [29], [30], LSTM
models (which we also employ in our work) are shown to
be efficient and have highly accurate predictions when real
traffic traces are used. Thus, evaluating Deep-DBA using
LSTMmodels with a real captured dataset, albeit being more
insightful, may not provide different results, and thus may
not change the conclusions made in this work. Furthermore,
different from previous works [14], we only make use of the
request sizes, which are already included in the REPORT
messages sent from the ONUs to the OLT, and no extra
features are used to train the LSTM model so as not to
add additional information in the REPORT messages. This
also experimentally proved to be sufficient for predicting

FIGURE 5. Dataset preparation.

requested bandwidth without any added value for extra fea-
tures.

Overall, our dataset consists of 8 million REPORT mes-
sages collected at all the different network loads, which is
large enough to build robust LSTM models that general-
ize well. For different P-to-Q values, different datasets are
prepared as shown in Fig. 5 to train, validate and test the
corresponding P-to-Q LSTMmodel. For example, if a 2-to-2
model is employed, two REPORTmessages are used as input,
and the next two REPORT messages are used as output, and
so on. As is custom in such settings, 80% of the dataset is
used for training, 10% for validation, and 10% for testing.

B. TRAINING THE LSTM MODEL
The proposed scheme employs one LSTM model at the
OLT to predict the bandwidth demands of all ONUs at all
network loads. The dataset is normalized by dividing each
request value by the maximum queue size, and the LSTM
model is trained on the entire dataset which consists of the
bandwidth demands collected from REPORT messages at
all the different network loads. Since our model is trained
to predict Internet traffic for all network loads, it does not
matter when the peak hour happens and how the traffic
volume is changing during the day [38] because the model
would be able predict the traffic accordingly. As the loss-
function, we use the Mean-Squared Error (MSE) between the
predicted queue sizes and the actual queue sizes. The opti-
mizer used to train our models is ‘‘AdaGrad’’ with a learning
rate 0.01. For different values of P and Q, a defined DBA
scheme (i.e., Gated, Limited, etc.), NG-EPON architecture,
and traffic distribution, the hyper-parameters of the LSTM
network are tuned accordingly. The LSTM models had 2 to
3 hidden layers and training each model took between 10
to 50 epochs. We have also considered both the Pareto and
Poisson traffic distributions. However, since the results were
very similar for both traffic types, we only report the ones
for the Pareto distribution as it captures the bursty nature of
Internet traffic [37]. We use the Tensorflow backend to build
and train our LSTMmodels [39]. The training was performed
on a machine with Intel XEON processor, Nvidia Quadro
P2000 GPU card, and 64 GB of RAM. Training each LSTM
model took on average about 4 to 8 hours.
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FIGURE 6. Comparison of different P-to-Q LSTM models: a) Throughput, b) Average delay, c) REPORT overhead, d) Total overhead.

C. SETTING P-TO-Q
To achieve the highest gain using Deep-DBA, P must be
set as small as possible, and Q must be set as large as
possible. However, the selection of these values must not
be at the expense of high prediction error and poor network
performance (in terms of packet latency and network through-
put). Thus, we built different LSTM models for different P
and Q values and compared the obtained MSE by running
the models on the test set. For P = 1 (i.e., the smallest
possible value for P), the LSTM models had significantly
high errors; whereas for P ≥ 2, the errors were adequate.
Consequently, we varied the values of P and Q and measured
the performance of each built model. As shown in Table 3a,
we first built LSTM models with equal values of P and Q
starting from 2. Results show that when P andQ are smallest,
the lowest MSE is obtained. Next, to check the impact of
increasing P, we built LSTMmodels withQ = 2 for different
values of P. Results in Table 3b show that increasing P does
not yield lower MSE and therefore will not have a positive
impact on the performance. Finally, as shown in Table 3c,
we set P = 2 and increaseQ. As expected, theMSE increases
as the value of Q increases.

Given these findings, we set P = 2, since increasing P
would not offer lower MSE values. In addition, increasing
P would entail increasing Q to even higher values, which in
turn will cause higher prediction errors. For example, setting
P = 2 and Q = 8 means for every K = 10 cycles, 8 cycles
are prediction cycles, which sums up into 80% of all cycles
being prediction cycles. Thus, to obtain the same percentage
when P = 4, Q must be set to 16.

To choose the best value of Q, we compare the network
performance under Deep-DBA with the Limited discipline
for different values of Q. As shown in Fig. 6a, the through-
put on high loads increases with increasing Q values, since
increasing the number of prediction cycles will decrease
both the REPORT and T endi overheads, leaving the gained
bandwidth to be used by the ONUs. Fig. 6b shows small
difference in delay for different models. However, the lowest
delay is obtained for Q ≤ 6, whereas the delay increases for
higher values of Q. This is caused by the mis-predictions of
these models; this behavior is related to the obtained MSE
errors corresponding to each of these models. Fig. 6c and
Fig. 6d highlight how both the REPORT and total over-
head (i.e., T endi + Ri) decrease as the value of Q increases.
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TABLE 3. Mean square error with: (a) P = Q, (b) P ≥ Q, (c) P ≤ Q.

However, for high values of Q, the low REPORT and total
overhead bandwidth are due to the long cycle times caused
by over-predicting ONU bandwidth demands by the LSTM
model. These over-predictions cause the OLT to grant larger
transmission windows compared to what is actually needed
by the ONUs, which results in wasted bandwidth. Thus,
choosing the bestQ value would be equivalent to maximizing
the throughput, meanwhile minimizing the average delay
and total wasted bandwidth (which comprises both the total
overhead and prediction error wasted bandwidth). This is
equivalent to maximizing the following objective function:

f (P,Q) =
throughput(P,Q)

delay(P,Q)× waste(P,Q)
. (9)

Therefore, to choose the best P-to-Q ratio, we normalize the
different parameters, which are obtained from simulations,
and plot f (P,Q) in Fig. 7. Results show that the best P-to-
Q under the Limited discipline is 2-to-6, with an MSE of
8.1×10−6. In contrast, the best P-to-Q value under the Gated
scheme is 2-to-2, with an MSE of 1.7 × 10−4. Yet, it can be
observed that the 2-to-4 model could also achieve a ‘‘good-
enough’’ trade-off between an ‘‘acceptable’’ f (P,Q) value
and higher network utilization. We note that the MSE under
the Gated scheme is higher compared to the Limited scheme
due to the high fluctuations of queue sizes, especially at
higher loads, making training of such models more difficult.

We validate the performance of the best P-to-Q models
under the Limited and Gated schemes in Fig. 8 (i.e., with

FIGURE 7. Choosing P-to-Q for: a) Limited scheme, b) Gated scheme.

the 2-to-6, and 2-to-2 models, respectively), by comparing
the predicted Internet traffic versus the actual Internet traffic.
Here, ‘‘Link Load’’ corresponds to the load on the access link
(i.e., between the user and theONU).We observe that with the
Limited scheme, the predicted traffic misses some very short
bursts; however, it closely tracks the actual traffic overall. On
the other hand, as expected, for the Gated scheme, the margin
of mis-predicted queue size and incoming bursts is slightly
larger (except at Load 1.0, which makes the system no longer
in steady state). Moreover, we deduce that as Q increases and
P decreases, the accuracy of the predictions decreases, and
vice versa. Hence, there is a trade-off between the number of
predicted cycles and the accuracy of predictions.

D. COMPARISON WITH OTHER SCHEMES
Fig. 9 compares the performance of the proposed Deep-DBA
scheme under the Limited discipline (i.e., using the
2-to-6 LSTM network) with the prediction-based IPACTwith
Grant Estimation (IPACT-GE) scheme that predicts the size
of incoming requests between two successive cycles [40],
the legacy offline Limited (i.e., Lim-Offline) DBA scheme,
the legacy online Limited (i.e., Lim-Online), and the
most recent machine learning based predictive DBA (i.e.,
MLP-DBA) [14]. High loads beyond 0.8 are included in the
figures because stress-testing the PON performance at high
loads is common practice in the literature, and is usually
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FIGURE 8. Predicted vs. actual bandwidth demand: a) Limited scheme (with 2-to-6), b) Gated scheme (with 2-to-2).

FIGURE 9. Comparison of schemes under the limited discipline: a) Throughput, b) Average Delay, c) REPORT Overhead, d) Total Overhead.

conducted to capture a comprehensive performance mea-
surement, which aids at performing network engineering
and user provisioning (which typically accounts for peak
utilization).

As shown in Fig. 9a, Lim-Offline exhibits the low-
est throughput due to the control and T endi overheads.

Lim-Online, MLP-DBA, and IPACT-GE exhibit higher
throughput since they are online schemes and thus do
not incur the T endi overhead. Deep-DBA exhibits increased
throughput similar to the online schemes even though it is an
offline scheme. This improvement is due to the reduction of
the control and the T endi overheads.
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FIGURE 10. Comparison of schemes under the gated discipline: a) Throughput, b) Average Delay, c) REPORT Overhead, d) Total Overhead.

As shown in Fig. 9b, the online schemes exhibit the low-
est delay, which is expected since they have no T endi over-
head, which reduces the idle and cycle times.MLP-DBA and
IPACT-GE show slightly better results compared to the legacy
Lim-Online since they use bandwidth prediction with the
specific aim of decreasing the packet delay. The Lim-Offline
scheme exhibits higher delays due to the overhead TREG
calculated in (7). On the other hand, even though Deep-DBA
is an offline scheme, its performance is much better than
the Lim-Offline scheme and is closer to the online schemes.
This is due to the gain achieved as per (8). However, as pre-
viously mentioned, lower packet delays could be attained
using Deep-DBA for different P-to-Q ratios. Nevertheless,
these may either affect the prediction accuracy and/or may
not achieve the most optimal bandwidth utilization.

The control overhead due to REPORT messages can be
observed in Fig. 9c. The online schemes have a higher
REPORT overhead than the offline scheme. This is because
the online schemes do not have the T endi overhead, which
results in a shorter cycle time compared to the offline
schemes. Typically, at lower loads, the cycle time is shorter,
which causes more control messages to be exchanged in
short periods of time; as such the control overhead decreases
as the load increases. However, we notice that Deep-DBA

achieves the lowest control overhead over all loads (e.g.,
around 42 Mbps with Deep-DBA, compared to 60 Mbps for
the Lim-Offline scheme, and around 75 Mbps for the online
schemes). At higher loads, the cycle time is equal to the
maximum cycle time; hence, the control overhead reaches its
lowest value for all schemes (e.g., 5.5 Mbps with IPACT-GE,
offline Limited, and offline Limited-GE), whereas it is equal
to 1.5 Mbps with Deep-DBA. This highlights the advan-
tages of Deep-DBA, which enables the OLT and ONUs to
only exchange control messages in reporting cycles every K
cycles, as opposed to every cycle.

Fig. 9d shows the total overhead observed in the network
(which is the control messaging overhead plus the cycle idle
time) under all schemes. As noticed, even though online
schemes are optimized to reduce the idle time, Deep-DBA is
still able to achieve the lowest total overhead. This bandwidth
gain can be used so that more users can be provisioned in the
network, and better QoS support can be attained. This again
highlights the merits of Deep-DBA over existing approaches.

In Fig. 10, we compare the performance of Deep-DBA
under the Gated discipline (i.e., using the 2-to-2 and
2-to-4 LSTM models) with the offline Gated DBA scheme
(Gated-Offline). Due to their nature, the prediction of
IPACT-GE in [40] and MLP-DBA in [14] cannot be directly
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applied to an offline Gated scheme. As shown in Fig. 10a,
the 2-to-2 Deep-DBA provides the same throughput as the
offline Gated discipline, whereas the 2-to-4 provides lower
throughput, which is captured by f (P,Q) in (9).
In Fig. 10b, the average delay with Deep-DBA is a bit

higher than with Gated-Offline. This is due to the ‘‘mis-
predictions’’ of the LSTM model, which will make the ONU
buffer more packets (thus, request more bandwidth), thereby
making the OLT grant the ONUs larger transmission win-
dows even at low loads. This effect is caused by the nature
of the Gated discipline, which unlike the Limited disci-
pline, does not bound the bandwidth demand by a maximum
value; thus, the mis-prediction would have a snowballing
effect.

Finally, Fig. 10c and Fig. 10d show howDeep-DBA exhibit
lower REPORT and total overheads thanGated-Offline. More
importantly, the results here show how the chosen model (i.e.,
2-to-2 or 2-to-4) presents a tradeoff between higher band-
width utilization (that is, higher bandwidth gain) and down-
graded network performance (i.e., throughput and delay).

All these foregoing experiments highlight the merits of
Deep-DBA in combining the advantages of offline and online
schemes. They also demonstrate its ability to be adaptive
to any network configuration and settings. In other words,
as long as the dataset (whether it is real traces or gener-
ated via simulations) is available, the right machine learning
model can be built, and consequently an efficient Deep-DBA
scheme can be employed. More importantly, the results pro-
vide insights into the design of future machine learning-based
NG-EPONs.

V. CONCLUSION
In this paper we proposed Deep-DBA, a novel DBA scheme
for NG-EPONs, which employs deep learning to predict the
future bandwidth demands of ONUs by peep-holing only a
few previous ONU demands, so as to reduce the overhead due
to the request-grant mechanism. Results demonstrate how
Deep-DBA is able to combine the advantages of both the
online and offline schemes, thereby improving the network
utilization achieved with online schemes, and at the same
time maintaining the properties of fairness and QoS support
that offline schemes enable, without impairing the network’s
performance. The fast progress in the field of machine learn-
ing promises new and better architectures and techniques
that will be able to increase the number of prediction cycles
and decrease the prediction error. The proposed method has
the flexibility to employ any current or future sequence-
to-sequence machine learning model. Moreover, Deep-DBA
can operate with any scheduling scheme; thus, future works
can employ more schemes to further improve the network
performance. In our future extensions of this work, we will
use real traffic traces and/or traffic emulators to provide a
more comprehensive study.
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