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ABSTRACT The problems of stochastic stability and stabilization for a class of Markovian jump distributed
parameter systems with time delay are researched in this paper. First, taking advantage of a combination
of Poincare inequality and Green formula, a stochastic stability criterion is presented by a linear matrix
inequality (LMI) approach. Then, a state feedback controller is designed. Based on the proposed results,
the sufficient conditions of the close-loop systems’ stochastic stability are given in terms of a set of LMIs by
constructing the appropriate Lyapunov functionals, calculating the weak infinitesimal generator, and using
the Schur complement lemma. The sufficient conditions could be solved directly and applied to engineering
practice conveniently. The obtained results generalize and enrich the theory of distributed parameter systems
with time delay. The model of Markovian jump distributed parameter systems is more fitting the actual
systems’ requirements and has wider application scope. Finally, numerical examples are used to demonstrate
the validity of the method.

INDEX TERMS Markovian jump, distributed parameter systems, stochastic stability, linear matrix
inequality.

I. INTRODUCTION
The research of control system has a long history, and a lot of
results have been achieved, including system stability [1], [2],
optimization [3]–[7], dynamic behavior analysis [8], [9] and
so on. In reality, the state space of most systems is infinite
dimensional [10], [11], and the phenomenon of time delay
is everywhere. In mathematical theory, distributed param-
eter systems are infinite dimensional dynamical systems
described by partial differential equations (PDE) [12]–[17],
functional differential equations or differential equations in
abstract space [18]. In the real world, for example, elastic
aircraft with mass distribution, chemical reaction process,
population dynamics and many other fields [19]–[22],
the mathematical model is a differential dynamic sys-
tem described by distributed parameter system. Distributed
parameter systems with time delays have become an
important research direction of modern control theory.

The associate editor coordinating the review of this manuscript and
approving it for publication was Ailong Wu.

Many researchers have paid more attention to the time-delay
distributed parameter systems [23]–[27]. The main research
methods of time-delay distributed parameter systems are
semi-group theory [28], matrix norm theory [29], [30] and
linear matrix inequality theory (LMI) [31]–[34]. Semi-group
method is to transform a concrete practical system into an
abstract equation of development, use the properties of semi-
groups to get conclusions, and then convert the results back
to the original system. It is difficult to ensure the system
has good dynamic quality and performance index through the
deviation formed by two transformations. The results derived
from using matrix norm theory are generally not easy to test,
and the application in practical problems is not good. With
the rapid development of computer application technology,
the conclusions obtained by linear matrix inequality method
are simple to be applied in engineering practice.

Based on linear matrix inequality method, the problems
of exponential stability [31], exponential stabilization [32]
and robust control [33] of distributed parameter systems
with time-delay are discussed by constructing appropriate
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Lyapunov functional. Using linear matrix inequality
approach, the feedback control of distributed parameter sys-
tems with continuous distributed delays is investigated [34].
Some scholars have paid attention to the distributed parame-
ters switched systems [35], [36]. The problems of exponen-
tial stability, feedback stabilization and robust fault-tolerant
control of distributed parameters switched systems with time-
delay are studied, and the results are described by a group of
linear matrix inequalities (LMIs).

At the same time, there are a large number of dynamic sys-
tems in reality. The jump of the system is caused by random
mutation phenomena, such as abrupt change of working envi-
ronment conditions, parameter changes and so on. Through a
lot of research work, it is found that these random changes
usually follow the law of Markovian jump process. Up to
present, many results of Markovian jump systems with time-
delay have emerged [37]–[53], such as finite-time stability
and stabilization [37], Finite-timeH∞filtering [38], Stability
and stabilization [39], Exponential stability [40], and stochas-
tic stability [41]. Due to singular Markovian jump time-
delay systems [42] and neutral Markovian jump systems with
time-varying delays [43], some scholars have discussed the
Exponential stability. In order to deal with getting less conser-
vatism, delay-dependent H∞ control [44], [45] of Markovian
jump systems with time-delay has been proposed. Under
delay-dependent circumstance, robust stability [46], [47] and
Exponential stability [48] of time-delayMarkovian jump sys-
tems have been studied. Aswe know, it is not easy to obtain all
the accurate transition rate in practical application due to huge
cost and lack of technology. In [49]–[53], Markovian jump
systemswith general unknown transition probability matrices
have been reported.

In summary, the results of time-delay distributed parameter
systems and Markovian jump systems have been carried out
from different aspects, and the research contents and meth-
ods are also various. For the study of distributed parameter
systems with time delays, although some literatures involve
stochastic factors, such as Itô type, they basically do not
involve Markovian jump. The stochastic stability analysis
and control of distributed parameter systems with Markovian
jump have a lot of work to be solved and improved.

In this paper, we are considering the problems of stochastic
stability and stabilization for a class of Markovian jumping
time-delay distributed parameter systems. By constructing
appropriate stochastic Lyapunov functional, based on lin-
ear matrix inequality method, using Green’s formula and
Poincare inequality, sufficient conditions for the stochastic
stability ofMarkovian jumping distributed parameter systems
are given in group of linear matrix inequalities.

II. PROBLEM FORMULATION AND PRELIMINARIES
Consider a class of Markovian jump distributed parameter
systems with time delay of the following form

∂

∂t
W (x, t) = D(rt )1W (x, t)+ A(rt )W (x, t)

+A1(rt )W (x, t − τ )+ B(rt )u(x, t) (1)

where

(x, t) ∈ �× R+, � = {x, ‖x| < l <∞} ∈ Rm

is the bounded domain with smooth boundary ∂� and
mes� > 0.

∇ =

(
∂

∂x1
,
∂

∂x2
, . . . ,

∂

∂xm

)
is the gradient operator and

1 =

m∑
k=1

∂2

∂x2k

is the Laplace operator on �. State function

W (x, t) = col (w1 (x, t) ,w2 (x, t) , . . . ,wn (x, t)) ∈ Rn

∇W (x, t) = col (∇w1 (x, t) ,∇w2 (x, t) , . . . ,∇wn (x, t)).

The initial value and boundary value conditions satisfy

W (x, t) = 0, (x, t) ∈ ∂�× [−τ,+∞) (2)

W (x, t) = ϕ (x, t) , (x, t) ∈ �× [−τ, 0] (3)
∂W (x, t)
∂n

= 0, (x, t) ∈ ∂�× [−τ,+∞) (4)

where n is the unit outward normal vector of ∂� and ϕ (x, t)
is the suitable smooth function. D (rt) > 0 and τ > 0 are
constants, A (rt) and A1 (rt) are constant matrices.

Let {rt , t ≥ 0} be a right-continuous Markov process and
take values in S = {1, 2, . . . ,N } with the transition probabil-
ities matrix π =

(
πij
)
N×N given by

Pr (rt+δ = j |rt = i ) =

{
πijδ + o (δ) , i 6= j
1+ πiiδ + o (δ) , i = j

where δ > 0 and

lim
δ→0

o (δ)
δ
= 0, πij ≥ 0, i 6= j

is the transition rate frommode i to mode j in the time interval
δ with

πii = −

N∑
j=1,j 6=i

πij, i = j

For each rt = i ∈ S,
Let

A (rt) = Ai, A1 (rt) = A1i, D (rt) = Di

and

B (rt) = Bi.

Then, the system (1) can be rewritten as

∂

∂t
W (x, t) = Di1W (x, t)+ AiW (x, t)

+A1iW (x, t − τ)+ Biu (x, t) (5)

We design state feedback controller for system (5) and it is
described as

u (x, t) = KiW (x, t) (6)
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For convinces, we study the Markovian jump distributed
parameter systems without control firstly.
∂

∂t
W (x, t) = Di1W (x, t)+ AiW (x, t)+ A1iW (x, t − τ)

(7)

In order to obtain the main results, the following lemmas
are introduced.
Lemma 1 [54] (Green Formula): Let � ⊂ Rn be the

bounded domain with smooth boundary ∂�, n is the unit out-
ward normal vector of ∂�, G ⊂ � is the smooth subdomain.
If u, v ∈ C2

(
G
)
, then∫

G
u1vdx =

∫
∂�

u
∂v
∂n

ds-
∫
�

∇u∇vdx

where ∇ is Hamilton operator, ds is the area elements over
the boundary region.
Lemma 2 [54][56] (Poincare’s Inequality): Let

w ∈ C1
0 (�) and � be included in closed region �1 :

0 ≤ xi ≤ l (i = 1, 2, . . . , n), then∫
�

w2 (x) dx ≤
∫
�

n∑
i=1

(
∂w
∂x

)2

dx = c
∫
�

|∇w|2dx

where c = l2/n.
Remark 1: This is a very useful lemma, it is also called

Friedrichs inequality.
Lemma 3 [55]: Let V1,V2,V3 be real matrices, and

V3 = V T
3 > 0, then for an arbitrary given scalar α > 0,

the following inequality holds.

V T
2 V1 + V

T
1 V2 ≤ α

−1V T
1 V
−1
3 V1 + αV T

2 V3V2.

III. MAIN RESULTS
Theorem 1: For an arbitrary Markovian jump mode

i ∈ S, if exist positive symmetric matrices Q, Pi, such
that the following linear matrix inequalities (LMIs) hold,
then Markovian jump distributed parameter systems (7) is
stochastic stable.ATi Pi + PiAi + Q+

N∑
j=1
πijPj A1i

AT1i −Q

 < 0 (8)

Proof: Choose the following stochastic Lyapunov
functionals for system (7)

Vi (t,W (x, t)) =
∫
�

WT (x, θ)PiW (x, θ) dx

+

∫
�

∫ t

t−τ
WT (x, θ)QW (x, θ) dθdx (9)

Let L be the weak infinitesimal generator, then we calculate

LV (x, t, i) = Vt +
N∑
j=1

πijV (x, t, j)

So, it is obtained that

LVi (t,W (x, t))

=

∫
�

ẆT (x, t)PiW (x, t) dx

+

∫
�

WT (x, t)PiẆ (x, t) dx

+

∫
�

WT (x, t)QW (x, t) dx

−

∫
�

WT (x, t − τ)QW (x, t − τ) dx

+

∫
�

WT (x, t)

 N∑
j=1

πijPj

W (x, t) dx

= 2Di

∫
�

WT (x, t)Pi1W (x, t) dx

+

∫
�

WT (x, t)
(
ATi Pi + PiAi

)
W (x, t) dx

+

∫
�

WT (x, t)PiA1iW (x, t − τ) dx

+

∫
�

WT (x, t − τ)AT1iPiW (x, t) dx

+

∫
�

WT (x, t)QW (x, t) dx

−

∫
�

WT (x, t − τ)QW (x, t − τ) dx

+

∫
�

WT (x, t)

 N∑
j=1

πijPj

W (x, t) dx (10)

Applying Lemma 1 and Lemma 2,∫
�

WT (x, t)Pl1W (x, t)dx

=

n∑
i=1

n∑
j=1

Plij

[∫
∂�

wi (x, t)
∂wj (x, t)
∂n

ds

−

∫
�

∇wi (x, t)∇wj (x, t) dx
]

= −

n∑
i=1

n∑
j=1

Plij

∫
�

∇wi (x, t)∇wj (x, t) dx

= −

∫
�

∇WT (x, t)Pl
(
∇WT (x, t)

)T
dx (11)

Then

LVi (t,W (x, t))

≤

∫
�

WT (x, t)

ATi Pi + PiAi + Q+ N∑
j=1

πijPj


×W (x, t) dx −

∫
�

WT (x, t − τ)QW (x, t − τ) dx

+

∫
�

WT (x, t)PiA1iW (x, t − τ) dx

+

∫
�

WT (x, t − τ)AT1iPiW (x, t) dx

≤

∫
�

ξT (x, t)3ξ (x, t) dx < 0, (12)
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where

ξT (x, t) =
[
WT (x, t) ,WT (x, t − τ)

]
,

3 =

ATi Pi + PiAi + Q+ N∑
j=1
πijPj PiA1i

AT1iPi −Q

 < 0.

The proof is end.
Using the feedback controller (6), the systems (5) is con-

verted into
∂

∂t
W (x, t) = Di1W (x, t)+ (Ai + BiKi)W (x, t)

+A1iW (x, t − τ). (13)

Taking advantage of the conclusion of theorem 1,we obtain
the theorem 2 immediately.
Theorem 2: For any Markovian jump modei ∈ S and

given matrices Ai,A1i,Bi, The controller systems of Marko-
vian jump distributed systems with time-delay Delay (5) is
stochastic stability. If there exist a matrix Ki and positive
symmetric matricesQ, Pi, such that the following LMIs hold. (Ai+BiKi)T Pi+Pi (Ai+BiKi)+Q+ N∑

j=1
πijPj PiA1i

AT1iPi −Q

<0

(14)

When the system is single mode, that is, there is no mode
switching. Taking Pi = I , a sufficient condition for asymp-
totic stability of time-delay distributed parameter system is
obtained by Theorem 2.(

A+ AT + BK + BTKT
+ Q A1

AT1 −Q

)
< 0

Remark 2: The above results is consistent with the con-
clusion of Theorem 1 in reference [33], when we take
β = 1. So Theorem 2 of this paper is more representative.The
expansion and extension of [33] is more suitable for the needs
of practical systems.
Theorem 3: Given a scalar β > 0 and matrices Ai, A1i,

and Bi, the system (5) is stochastic stability under the con-
troller (6). If there exist a matrixKiand positive symmetric
matrices Q, Pi, such that

ATi Pi + PiAi + βQ+
N∑
j=1
πijPj + Pi KT

i B
T
i PiA1i

BiKi −P−1i 0
AT1iPi 0 −βQ

 < 0

(15)

Proof: Choose the following stochastic Lyapunov
functionals

Vi (t,W (x, t)) =
∫
�

WT (x, θ)PiW (x, θ) dx

+β

∫
�

∫ t

t−τ
WT (x, θ)QW (x, θ) dθdx

(16)

Through calculating the weak infinitesimal generator,
it follows that

LVi (t,W (x, t))

= 2Di

∫
�

WT (x, t)Pi1W (x, t) dx

+

∫
�

WT (x, t)
(
ATi Pi + PiAi

)
W (x, t) dx

+

∫
�

WT (x, t)PiA1iW (x, t − τ) dx

+

∫
�

WT (x, t − τ)AT1iPiW (x, t) dx

+β

∫
�

WT (x, t)QW (x, t) dx

−β

∫
�

WT (x, t − τ)QW (x, t − τ) dx

+

∫
�

[
WT (x, t)PiBiu (x, t)+ uT (x, t)BTi PiW (x, t)

]
dx

+

∫
�

WT (x, t)

 N∑
j=1

πijPj

W (x, t) dx (17)

With the help of Lemma 3, we get∫
�

WT (x, t)PiA1iW (x, t − τ) dx

+

∫
�

WT (x, t − τ)AT1iPiW (x, t) dx

≤ β−1
∫
�

WT (x, t)PiA1iQ−1AT1iPiW (x, t) dx

+β

∫
�

WT (x, t − τ)QW (x, t − τ) dx. (18)

And∫
�

[
WT (x, t)PiBiu (x, t)+ uT (x, t)BTi PiW (x, t)

]
dx

=

∫
�

−

[
P

1
2
i Biu (x, t)− P

1
2
i W (x, t)

]T
×

[
P

1
2
i Biu (x, t)− P

1
2
i W (x, t)

]
dx

+

∫
�

uT (x, t)BTi PiPiBiu (x, t) dx

+

∫
�

WT (x, t)PiW (x, t)dx

≤

∫
�

uT (x, t)BTi PiPiBiu (x, t) dx

+

∫
�

WT (x, t)PiW (x, t)dx

≤

∫
�

WT (x, t)KT
i B

T
i PiPiBiKiW (x, t) dx

+

∫
�

WT (x, t)PiW (x, t)dx (19)
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Based on (17), (18) and (19), by the Schur complement
lemma, we have

LVi (t,W (x, t))

≤

∫
�

WT (x, t)

ATi Pi + PiAi + βQ+ Pi + KT
i B

T
i PiBiKi

+β−1PiA1iQ−1AT1iPi +
N∑
j=1

πijPj

W (x, t) dx

≤

∫
�

WT (x, t)3W (x, t) dx

< 0

where

3=


ATi Pi + PiAi + βQ+

N∑
j=1
πijPj + Pi KT

i B
T
i PiA1i

BiKi −P−1i 0
AT1iPi 0 −βQ

.
�

Remark 3: When the system is single mode, that is, there
is no mode switching. The following conclusion is consistent
with the results of Theorem 3 in [33], whenwe chooseQ = P.ATP+ PA+ βQ+ P KTBT PA1

BK −P−1 0
AT1P 0 −βQ

 < 0.

Remark 4: There exists a term of P−1i in theorem 3, which
can not be solved directly by LMI toolbox inMatlab.We need
to set Qi = P−1i > 0, and then it can be transformed into(

Qi I
I Pi

)
> 0.

IV. EXAMPLES
In 1994,Michael and Ryszard studied the cellular replication.
The process of cellular replication just satisfied the time-
delay distributed parameter systems [57] as follow:

∂M
∂t
+
∂ (v (m)M)

∂m
= c (t)

[
−M (t,m)+ k ′ (m)M (t − τ, k (m))

]
Hidden Markov models are often used to biology applica-
tion [58], the combination of the two models is described as
Markovian jump distributed parameter systems in mathemat-
ical theory. So we give the following numerical examples to
illustrate the effectiveness of the method. For simple, a dis-
tributed parameter system with two Markovian jump modes
is considered.
Example 1: For Theorem 1, the transition rate matrix is

given by

5 =

(
−0.2 0.2
0.3 −0.3

)
,

when rt = i = 1, we consider system (7) with the following
parameters:

A1 =
(
−25 2
1 −20

)
, A11 =

(
−11 0
−9 11

)
.

when rt = i = 2, we choose

A2 =
(
−10 20
−5 −9

)
, A12 =

(
4 3
−9 0

)
.

By Theorem 1, using LMI toolbox to solve linear matrix
inequalities (8), the following parameters are computed to be

P1 =
(
17.3237 1.3197
1.3197 21.9271

)
,

P2 =
(
35.0493 15.3697
15.3697 80.9490

)
,

Q =
(
430.0000 0.0000
0.0000 430.0000

)
.

It is easy to verify that P1,P2,Q is positive matrix.
Example 2: For theorem 3, we select K = −I , B = I ,

β = 1. A1,A2,A11,A12 and 5 are chosen as same as
Example 1. Based on LMs (15), we obtain the following
parameters

P1 =
(
20.5164 −1.4879
−1.4879 15.9545

)
,

P2 =
(
37.0899 4.2179
4.2179 70.8944

)
Q =

(
566.7060 −95.2762
−95.2762 233.9144

)
Q1 =

(
295.3539 −5.2792
−5.2792 306.3389

)
Q2 =

(
302.8284 16.7124
16.7124 267.1047

)
The results is easy to verify that conform to the require-

ment.

V. CONCLUSION
In this paper, we give some criteria for stochastic stability
of Markovian jumping distributed parameter system in the
form of a set of linear matrix inequalities. by constructing
Lyapunov stochastic functional, using boundary conditions,
Schur complement lemma and matrix inequality knowledge,
The results generalize and extend the conclusions in [33],
and have a wider scope of application. The other more
complicated mathematical concerns about neutral distributed
parameter system with Markovian jump will discussed in the
further study.
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