IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received June 7, 2019, accepted July 5, 2019, date of publication July 17, 2019, date of current version August 7, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2929410

An Iterated Three-Phase Search Approach for
Solving the Cyclic Bandwidth Problem

JINTONG REN', JIN-KAO HAO"'"2, AND EDUARDO RODRIGUEZ-TELLO 3, (Membesr, IEEE)

'LERIA, Université d’Angers, 49045 Angers, France
2Institut Universitaire de France, 75231 Paris, France
3CINVESTAV—Tamaulipas, Ciudad Victoria 87130, Mexico

Corresponding authors: Jin-Kao Hao (jin-kao.hao@univ-angers.fr) and Eduardo Rodriguez-Tello (ertello@tamps.cinvestav.mx)

The work of J. Ren was supported by the China Scholarship Council (2016-2020) under Grant 201608070103. The work of E.
Rodriguez-Tello was supported by the Mexican Secretariat of Public Education through SEP-CINVESTAV (2019-2020)

under Grant 00114.

ABSTRACT The cyclic bandwidth problem (CBP) was initially introduced in the context of designing ring
interconnection networks and has a number of other relevant applications, such as the design of computer
networks and minimization of wire lengths in VLSI layout. However, the problem is computationally
challenging since it belongs to the class of NP-hard problems. Existing studies on the CBP mainly focus
on theoretical issues, and there are still very few practical methods devoted to this important problem. This
paper fills the gap by introducing an iterated three-phase search approach for solving the CBP effectively. The
proposed algorithm relies on three complementary search components to ensure a suitable balance of search
intensification and diversification, guided by an enriched evaluation function. Computational assessments on
atest-suite of 113 popular benchmark instances in the literature demonstrate the effectiveness of the proposed
algorithm. In particular, it improves on 19 best-known computational results of the current best-performing
algorithm for the problem and discovers 12 new record results (updated upper bounds). The key components
of the proposed algorithm are investigated to shed light on their influences over the performance of the
algorithm.

INDEX TERMS Combinatorial optimization, cyclic bandwidth minimization, multiple neighborhood
search, threshold-based search, extended evaluation function.

I. INTRODUCTION
The Cyclic Bandwidth Problem (CBP) is a general and use-
ful model able to formulate a number of practical applica-
tions. Initially introduced in the context of designing ring
interconnection networks [1], the CBP involves finding an
arrangement on a cycle for a set V of computers with a known
communication pattern, given by the graph G(V, E) to ensure
that every message could be sent to its destination in at most
k steps. The decision problem of the CBP is known to be
N'P-complete [2]. Also, it has some other important appli-
cations in VLSI design [3], data structure representations [4],
code designs [5] and parallel computer systems [6].

Let G(V, E) be a finite undirected graph of order n and C,,
acycle graph. Given a bijection ¢ : V — V which represents
an embedding (also called a labeling) of G in C,, the cyclic

The associate editor coordinating the review of this manuscript and
approving it for publication was Huaqing Li.

98436

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/

bandwidth (the cost) for G with respect to ¢ is defined as:
Cb(G, ¢) = max {lpu) — eV)|x}, ()
(u,v)eE

where |x|, = min{|x|, n — |x|}, with |x|] € (0, n), is called
the cyclic distance, and ¢(u) denotes the label associated
to vertex u. The cyclic bandwidth Cb(u, ¢) for a particular
vertex u, with set of adjacent vertices |A(u)| = deg(u), under
the embedding ¢ can be computed as follows:

Cb(u,) = vt;%){lw(u) — oW)a}.)

The main objective of the CBP is thus to find an embedding
@™ such that Cb(G, ¢*) is minimized:
¢* = argmin {Cb(G, p)}, 3)
e

where 2 represents the set of all possible embeddings. The
embedding ¢* satisfying this condition is called an opti-
mal or exact embedding of the given graph.

VOLUME 7, 2019

https://orcid.org/0000-0001-8813-4377
https://orcid.org/0000-0002-0333-0633

J. Ren et al.: Iterated Three-Phase Search Approach for Solving the CBP

IEEE Access

TABLE 1. Table of cyclic distances for all the edges of graph G depicted in Fig. 1.

r=(uwv)eE (@,0) (a,e) (af) (ah) (bd) (bg) (ce) (ci) () (e9) (f,9) (1) (hi)
] = |o(u) — o(v)] 4 3 2 1 8 1 4 1 7 8 7 4 4
|z|n = min(|z],n — |z|) 4 3 2 1 2 1 4 1 3 2 3 4 4

FIGURE 1. An illustrative example of graph G of order n = 10 where the
vertices are named from a to j and a labeling is represented by the red
numbers from 1 to 10.

FIGURE 2. The graph G of Fig. 1 with its vertices a to j reordered
clockwise on a cycle according to the label numbers 1 to 10 (in red).

Fig. 1 shows a graph with ten vertices (n = 10) named
from a to j with an embedding or vertex labeling indicated
in red from 1 to 10. In Fig. 2, the vertices of G are reordered
clockwise on a cycle according to the label numbers (in red).
So for each edge (u, v) € E, it is easy to calculate the labels
¢(u) and @(v) to get the absolute distance |x| and the cyclic
distance |x|, (see Table 1). For instance, the edge x = (f, g)
(in blue) has an absolute distance |x| = 7 (i.e., the number
of vertices from f to reach g in a clockwise direction in the
cycle) while its cyclic distance | x|, equals 3 (min{7, 10 — 7},
which is also the number of vertices from f to reach g in
a counterclockwise direction). According to (1), the cyclic
bandwidth Cb(G, ¢) of this graph is the maximum value
among all the |x]|,, i.e., Cb(G, ¢) = 4 which concerns the
edge x = (a, b) of Fig. 2 indicated in red.

Until now, the majority of the existing studies concern
either special graphs whose exact cyclic bandwidths can

VOLUME 7, 2019

be determined theoretically or propositions to define lower
and upper bounds of a general graph. For instance, in [7],
it was shown that for every unit interval graph, there exists
a simultaneously optimal labeling for several labeling prob-
lems including the CBP. The study of [6] established the
relationships between the bandwidth Bp(G) and the cyclic
bandwidth Cb(G): Bp(G) > Cb(G) > %BP(G).

Following this result, studies of [8]—[10] identified the cri-
terion conditions for two extreme cases Bp(G) = Cb(G) and
%BP(G) = Cb(G), and further obtained some exact values for
special graphs including trees, planar graphs, triangulation
meshes, grids with specific characteristics and some other
graphs with particular conditions.

In [11], a systematic method was proposed to achieve a
number of lower bounds for the bandwidth of a graph, which
is then used to obtain lower bounds for the CBP in terms of
some distance- and degree-related parameters.

The work of [12] was devoted to the upper bound of the
cyclic bandwidth of a general graph with an edge added.
By exploring the property that the cyclic distance between
any pair of adjacent vertices will not be affected by shifting
all vertices in the cyclic order the same distance, a sharp upper
bound was obtained.

The study of [13] used the semi-definite programming
(SDP) relaxations of the quadratic assignment problem to
propose two new lower bounds on the bandwidth and cyclic
bandwidth, which are shown to be better than two other
previous SDP bounds.

In addition to these theoretical results, little effort has been
made to develop practical solution methods for the CBP.
To our knowledge, there are only three published algorithms
on solving the CBP. In [14], a branch and bound algorithm
was proposed that can solve some standard instances (like
path, mesh and cycle) of small sizes limited to 40 vertices.
To handle larger instances, a heuristic algorithm based on
the tabu search metaheuristic (named TScb) was presented
in [15]. The authors also adapted a highly effective simulated
annealing designed for the related Bandwidth Minimization
Problem (BMP) [16] to the cyclic bandwidth problem. Their
experimental assessment on a set of benchmark instances
demonstrated the superiority of TScb over the simulated
annealing algorithm. As a result, TScb can be considered as
the state-of-the-art algorithm for the CBP and will serve as
the main reference for our computational study.

Our literature review indicates that contrary to the BMP,
for which various solution methods have been proposed
(e.g., [17]-[20]), effective algorithms dedicated to the
CBP remains scarce. To enrich the practical solution arsenal

98437

IEEE Access

J. Ren et al.: Ilterated Three-Phase Search Approach for Solving the CBP

for this important optimization problem, we introduce in
this work an iterated three-phase search algorithm (ITPS)
for solving the CBP. The algorithm is characterized by the
following features. First, the algorithm is composed of three
key search components: a double neighbor decent phase to
find a local optimal solution, a responsive threshold-based
search phase to explore the nearby regions for the purpose of
discovering better solutions and a special perturbation phase
to displace the search to a new and distant region. The algo-
rithm also integrates an extended evaluation function which
enriches the optimization objective by additional information.
This function is used to discriminate many solutions with
the same cyclic bandwidth and provides a relevant means for
guiding the search process.

We assess the proposed algorithm on a set of 113 well-
known benchmark instances taken from the literature. This
set of instances includes 85 standard graphs (e.g., paths,
cycles, caterpillars, etc) and 28 Harwell-Boeing graphs which
arise from diverse engineering and scientific real-world prob-
lems. The comparisons with the results produced by the
state-of-the-art reference method show the competitiveness
of our algorithm. For the set of 85 standard graphs, our
algorithm improves on 19 best computational (upper) bounds
and matches 60 best-known computational results from the
literature. For the set of 28 Harwell-Boeing graphs, our algo-
rithm discovers new record results (updated upper bounds)
for 12 graphs and matches the best-known results for 15 other
graphs.

The remainder of this manuscript is organized as fol-
lows: Section II first introduces the main scheme of the
proposed algorithm. Then, the implementation details of the
neighbor-based decent procedure as well as the responsive
threshold-based search method are presented. In Section III
a set of computational experiments is presented. They are
devoted to determine the best input parameter values for
the ITPS algorithm and to compare its performance with
respect to the reference algorithm in the literature, TScb [15].
Section IV experimentally investigates the extent to which
key components of the ITPS algorithm can influence its
global performance. Finally, the main conclusions drawn
from this work, and some future work ideas are discussed
in Section V.

Il. ITERATED THREE-PHASE SEARCH FOR THE CBP

A. MAIN SCHEME

The proposed ITPS algorithm was inspired by the three-
phase approach presented in [21]. Even if the work of [21]
concerns a particular optimization problem (i.e., the quadratic
minimum spanning tree problem), the approach is of general
interest and has been applied to other problems such as
clique partitioning [22]. In this work, we adapted this three-
phase approach to the CBP by reusing its general framework
and making dedicated adaptations to deal with the particular
features of our considered problem.

98438

Let G = (V,E) be a graph of order |V| = n and a
cycle graph C, = (V’, E’), the search space Q2 considered
by our ITPS algorithm is composed of all candidate embed-
dings (labellings or solutions) of G in Cy, ¢ : V. — V',
In our implementation, an embedding ¢ is represented by
a permutation of {1,2,...,n} such that the i-th element
denotes the label assigned to vertex i € V. To effectively
explore the space €2, ITPS combines a double neighborhood
descent search, a responsive threshold-based search as well
as a specific perturbation. To cope with the difficulty of dis-
criminating many equal-cost candidate solutions, ITPS inte-
grates an extended evaluation function using graph structure
information.

Algorithm 1 ITPS Algorithm for the CBP
1: Input: Finite undirected graph G(V, E), neighborhoods
N1 and NV,, extended evaluation function f,, search depth
6 and cutoff time limit 7,
Output: The best solution found ¢*
¢ < InitialSolution()
pF <9
while the cutoff time limit 7,y is not reached do
Nonlmp < 0
while Nonlmp < § do
(¢, 9*) < DNDS(¢, 9*, N1, N2)
(¢, 9*) < RTBS(¢, ¢*, N1, N2)
Nonlmp < Nonlmp + 1
end while
@ < Purturbation(yp)
: end while
return ¢*

// Section II-C
// Section II-D

R A A A T

_ = =
M2 e

// Section 1I-E

—_ -
= o

The pseudo-code of the ITPS algorithm is presented in
Algorithm 1. It starts with a randomly generated solution ¢.
Then the algorithm enters the main ‘while’ loop (lines 5-13),
Alg. 1) to explore solutions of increasing quality in terms
of the extended evaluation function f,. At each iteration,
the descent search (first phase, Section II-C) is first run to
find a local optimal solution using two neighborhoods N and
N; (line 8, Alg. 1). This phase is followed by the respon-
sive threshold-based search (second phase, Section II-D)
to discover additional local optima of better quality from
the incumbent solution (line 9, Alg. 1). These two phases
are repeated & times. At this point, the search is judged to
be trapped in a deep local optimum. To overcome the trap,
the perturbation procedure (third phase, Section II-E) is trig-
gered to strongly transform the incumbent solution (line 12,
Alg. 1). The search then goes back to the first phase with
the perturbed solution as its new starting solution. During
the search, each time a solution better than the previous best
recorded solution is found, ¢* is updated. The whole search
process stops when a given cutoff time limit (7},) is reached.
As the output of the algorithm, the best recorded solution ¢*
is returned.

VOLUME 7, 2019

J. Ren et al.: Iterated Three-Phase Search Approach for Solving the CBP

IEEE Access

B. EXTENDED EVALUATION FUNCTION
A notable feature of the CBP is that many solutions may
have the same objective value. This is because there are
(n — 1)!/2 possible solutions while there are only |[n/2]
different possible objective values, see equation (1). From
the local optimization perspective, it is critical to discriminate
the solutions with the same objective value. For this purpose,
we devise an extended evaluation function f, as follows.

Let ¢ € €2 be a candidate solution with cyclic bandwidth
cost Cb(G, ¢). Let NumE (Cb(G, ¢)) represent the number of
edges whose cyclic bandwidth equals Cb(G, ¢):

NumE(Cb(G, @) = Y Xu,)

(u,v)eE
where X, = 1 if |(u) — ()|, = Cb(G, ¢); otherwise
X = 0. Then, the extended evaluation function f, is

given by:
NumE(Cb(G, ¢))
E| '

As we show below, this evaluation function is able to
distinguish the solutions that under the conventional evalu-
ation function presented in (1) have the same objective value.
An analysis of the influence of the new evaluation function
fe is provided in Section IV-A.

Figure 3 shows an example of the extend evaluation func-
tion f, applied to two solutions with the same objective
value Cb(G, ¢) = 4. According to the extended evaluation
function, f.(¢1) = 4 + 1/13 = 4.0769, while f,(¢2) =
4 4+ 4/13 = 4.3076. The embedding ¢; is considered to be
“better”’ than the embedding ¢,. This is reasonable, because
one notices, from Fig. 3(a), that for reducing the cost value
Cb(G, @) of the embedding ¢ it is necessary to deal with only
one edge (marked in red), while for embedding ¢,, depicted
in Fig. 3(b), there are four edges (marked in red) that should
be considered. Thus, it is easier to operate with ¢ than with
@2 to reduce the cyclic bandwidth of G.

Je(p) = Cb(G, ¢) + &)

C. FIRST PHASE - DOUBLE NEIGHBORHOOD
DESCENT SEARCH

To explore the given search space, we first apply the dou-
ble neighborhood decent search procedure (DNDS) whose
general scheme is shown in Algorithm 2. Basically, DNDS
explores the two neighborhoods Nj and N, defined below
and iteratively replaces the incumbent solution by a neighbor
solution selected from a set of candidate neighbors. At each
iteration, DNDS uses either N or N to create the candidate
list (CLst) by identifying the solutions no worse than the
incumbent solution in terms of the evaluation function f,
(lines 6-16, Alg. 2). A priority is always given to Nj and N;
is examined only if the neighbor solutions in N; are all worse
than the incumbent solution. If the candidate list is not empty
(i.e., it contains at least one improving or non-worsening
neighbor solution), either one best neighbor solution, or a
random neighbor solution is chosen from CLst to become
the new current solution according to probability ppess

VOLUME 7, 2019

(b)

FIGURE 3. An illustration of the extended evaluation function fe applied
to two different embeddings. (a) ¢;. (b) ¢,. Both embeddings have the
same cost (cyclic bandwidth) under the conventional evaluation
function (1). However, the new function fe discriminates these
embeddings by assigning to them two different values

fe(p1) = 4+ 1/13 = 4.0769 and fe(p3) = 4 + 3/13 = 4.2307.

(lines 18-22, Alg. 2). Notice that given the criterion used to
build CLst, the selected neighbor solution is always at least
as good as the replaced solution. In case CLst contains no
candidate solution, DNDS moves to the next iteration without
performing a solution transition (the number of consecutive
non-improving iterations is indicated by NonImpCounter,
line 31, Alg. 2). During the search, the best-found solution ¢*
is updated each time a better solution is attained. The DNDS
process terminates if the best-found solution ¢* cannot be
updated during L, consecutive iterations. In this case, DNDS
has attained a local optimum and the ITPS algorithm switches
to the responsive threshold-based search method for escaping
this local optimum trap and to continue looking for new better
quality solutions.

1) NEIGHBORHOODS

The two neighborhoods N; and N, explored by DNDS are
defined by the general swap operator. Let ¢ be the incum-
bent solution, then a neighbor solution ¢’ can be gener-
ated by exchanging the labels of vertices u and v with the

98439

IEEE Access

J. Ren et al.: Ilterated Three-Phase Search Approach for Solving the CBP

Algorithm 2 Double Neighborhood Descent Search
1: Input: input solution ¢, best optimum found ¢*, neigh-
borhoods Ny and N;, evaluation function f,, maximum
non-improving limit L;, and best neighbor move strategy
probability ppest

2: Output:last local optimum ¢, best optimum found ¢*
3: NonlmpCounter <— 0
4: Improving <— True
5. while NonImpCounter < Ly do
6: if Improving then
7: N < N;
8: else
9: N < N>
10: endif
11: CLst <0
12 for each ¢’ € N(¢p) do
13: if f,(¢') < fo(¢) then
14: CLst < CLst U {¢'}
15: end if
16: end for
17: if CLst #) then
18: if rand(0, 1) < ppes; then
19: @ < BestSol(CLst) // With probability ppes:
20: else
21: @ < RandomSol(CLst)
22: end if
23: Improving < True
24: else
25: Improving < False
26: end if
27 if fe(¢) < fe(¢™) then
28: NonlmpCounter < 0
29: p*f <~
30: else
31: NonlmpCounter <— NonlmpCounter + 1
32: end if

33: end while
34: return @, p*

operation swap(u, v). Without any restriction, the swap oper-
ator leads to a neighborhood of size of order O(n?), which is
too large to be explored efficiently. Following the idea of [15],
we use two constrained neighborhoods by imposing specific
conditions on the vertices that take part in a swap operation.

The first neighborhood Ni(¢) is given by the set of neigh-
bor solutions obtained by swapping a critical vertex u € C(¢)
and a specific vertex v € S(u) adjacent to u:

Ni(p) = {¢' = ¢ @ swap(u, v) : u € C(p),
v e Su), swap(u,v) ¢ TL}, (6)

where ¢’ = ¢ @ swap(u, v) denotes the neighbor solution
obtained by applying swap(u, v) to transform ¢, TL is the
so-called tabu list that records the swaps that were recently
performed (see Section II-C.2). The set C(¢) contains

98440

a group of critical vertices w € V having a cyclic bandwidth
Cb(w, ¢) = Cb(G, ¢), while S(u) C V is the set containing
those vertices z currently labeled with values closer to mid (u)
than to ¢(u) (i.e., |mid(u) — ¢(2)|, < |mid(u) — p(u)|,). The
value mid(u) stands for the middle point of the shortest path
in the cycle C,, containing all the vertices adjacent to u [15].

The descent procedure uses this strongly constrained
neighborhood Nj(¢) to make an intensified exploration of
candidate solutions.

FIGURE 4. A simple illustration of the neighborhood N; (). The
embedding ¢ containing a critical vertex ¢ € C(¢) (marked in red), as well
as the set S(c) = {a, h, f} of suitable vertices eligible to be swapped with
vertex c (highlighted in blue) are depicted.

Figure 4 depicts an illustrative example of the neighbor-
hood Ni(¢). It presents an embedding ¢ containing a crit-
ical vertex ¢ € C(¢) (marked in red), which has the label
6 assigned to it. Using its adjacent vertices A(c) = {e, j} (edge
(c, e) and edge (c, j) marked in green), we identify the vertex
h (having label 4) as the middle point mid(c) of the shortest
path in the cycle C,, containing all the vertices in A(c). Thus,
all the vertices highlighted in blue (i.e., a, h and f) are in the
suitable set S(c) and are eligible to be swapped with vertex c.

For the purpose of search diversification, the descent pro-
cedure employs also a larger neighborhood N»(¢) which is
specified by the following expression:

Na(p) = {¢’ = ¢ @ swap(u, v) : u € C(g),
v € R, (u), swap(u,v) ¢ TL}, (7)

where the set R, (1) € V contains y * n randomly selected
vertices (y € (0, 1]). Compared to Ni(¢), the swap operator
can exchange a critical vertex u with any other vertex in the
graph, leading to a much higher freedom for a swap operation.
Since the neighbor solutions of N»(¢) are more varied, this
neighborhood promotes search diversification.

Compared to swapping all pairs of labels to generate neigh-
bor solutions, the neighborhoods N;(¢) and N>(¢) are much
smaller in size. Indeed, N1 (¢) contains |C(¢)|*|S()] neighbor
solutions, where |S()| is the average number of suitable ver-
tices for a critical vertex with respect to the current solution
@, while N>(¢) has |C(¢)| * y * n neighbor solutions.

VOLUME 7, 2019

J. Ren et al.: Iterated Three-Phase Search Approach for Solving the CBP

IEEE Access

Our preliminary experiments indicated that for the tested
instances |C(¢)] < 0.1 % n and |S()| < 0.1 % n hold.
For this reason the value of y was set to 0.05 or 0.1 in
our experiments. As a result, each iteration of the descent
procedure only considers 0.01r candidate solutions, which
significantly accelerates the search process.

Finally, we adopted a fast incremental technique to evalu-
ate a neighbor solution ¢’ according to the evaluation function
fe. Let ¢’ be an embedding obtained by swapping u and v in ¢.
Then, to obtain f,(¢’) from f,(¢), we need only to recalculate
the changing part |A(u)| + |A(V)| (JA(u)| and |A(v)| represent
the number of adjacent vertices to u and v, respectively). This
ensures that each iteration of the algorithm requires a time
complexity bounded by O((|A(u)| + |[A(v)]) * nz).

2) TABU LIST MANAGEMENT

Since the double neighborhood descent search only accepts
non-deteriorating (i.e., improving or equal cost) neighbor
solutions, it is possible that a previously visited solution is
reconsidered at a later iteration, leading to search cycling.
To avoid this problem, the DNDS procedure integrates a tabu
list that is a key concept of the tabu search method [23].
The idea is to keep track of the performed swaps and for-
bid the reverse swap operations during the next 7 iterations
(r is an input parameter called the tabu tenure). So when
swap(u, v) is performed to transform the current solution,
swap(u, v) is added in the tabu list and it is forbidden to swap
vertices v and u during the period fixed by the tabu tenure.
In principle, the tabu tenure can take a fixed value or can
be dynamically calculated during the search. We adopt a
dynamic tabu tenure technique introduced in [24]. As shown
in other studies [25], [26], this technique proves to be robust
and effective in different settings and was also used in [15]
for the CBP. This technique applies a periodic step func-
tion that takes as argument the number of iterations ifer
for computing the tabu tenure value. The value returned
by this function for a particular iteration ifer is given by
(@)j=1,2,...15 = (1,2,1,4,1,2,1,8,1,2,1,4,1,2,1) x d,
where d is a parameter fixing the minimum tabu tenure
(set to 100 in this work) and index j is computed by j =
LWJ + 1. Therefore, each period of this function
is composed of 1500 iterations divided into 15 intervals.

3) DISCUSSIONS

Like [15], the first phase of our ITPS algorithm is based on
two neighborhoods. However, there are some notable differ-
ences. First, our neighborhood N uses a set C(¢) of critical
vertices defined by the condition Cb(w, ¢) = Cb(G, @),
which is more restrictive than the condition Cb(w, ¢) >
o * Cb(G, ¢) (o is a prefixed parameter between 0 and
1) used in [15]. In this way, the set of critical vertices is
reduced and each iteration needs to examine fewer candidate
solutions. Second, we make a swap move after visiting all
candidate solutions induced by all critical vertices in C(¢)
while in [15] a swap move is performed after visiting the
candidate solutions of only one critical vertex. The advantage

VOLUME 7, 2019

of our strategy is that we could encounter a better solution at
each iteration, and have less chance to miss an elite solution.
Third, in [15], the two neighborhoods are used according to
a probability. In our work, N is always applied with priority
and N is used only when N is exhausted (i.e., when a local
optimum is attained with Ny). Finally, our first phase uses the
descent procedure to ensure an efficient search intensification
(i.e., no worsening neighbor solution is allowed), while the
algorithm of [15] uses tabu search which may accept worsen-
ing solution transitions.

D. SECOND PHASE - RESPONSIVE

THRESHOLD-BASED SEARCH

As explained in Section II-C, the double neighborhood based
descent search only accepts non-deteriorating neighbor solu-
tions. As such, it can be trapped in local optima. When this
happens, we trigger the second search phase and apply the
responsive threshold-based search (RTBS) to escape such
traps. During the second phase, both improving and deteri-
orating neighbor solutions can be accepted in order to favor
a large exploration of the search space.

Like the double neighborhood based descent search,
the responsive threshold-based search also relies on the
neighborhoods Nj and N,. However, RTBS adopts the thresh-
old accepting heuristic [27], [28] as the criterion for solu-
tion transitions. As such, a solution whose quality does not
drop below a given threshold can be accepted to replace the
incumbent solution. To further enforce search exploration,
the two neighborhoods are considered alternatively according
to a probability py,. The general responsive threshold-based
search procedure is described in Algorithm 3.

RTBS starts each iteration by calculating the responsive
threshold, denoted by T (line 5, Alg. 3). Then it iteratively
makes transitions from the current solution to a neighbor
solution which is selected by examining the neighborhoods
N1 and N,. The former is applied with probability py,, while
the latter is employed at a (1 — py,) rate (lines 6-10, Alg. 3).
This is simulated with a random number generated in the
interval (0, 1). Then all neighbor solutions whose quality is
no worse than the threshold 7 are identified to form the CLst
(lines 12-16, Alg. 3). Finally, according to the probability
Obest» €ither a best solution or a random solution is selected
from CLst (like DNDS does) and used to replace the current
solution (lines 18-22, Alg. 3). best solution found ¢* during
the search is updated each time a better solution is discovered
(lines 24-29, Alg. 3). If ¢* is not updated, we increase the
counter of non-improving iterations NonlmpCounterT and
move to the next iteration. This process stops if the best local
optimum found during this run cannot be updated during L,
consecutive iterations. In this case, the search is supposed to
be trapped in a deep local optimum.

One key issue concerns the threshold 7. Indeed, if T
takes a value that is far from the current objective value
(T — Cb(G,¢) > 0), even very bad neighbor solutions
can be accepted, leading to a random-like search. On the
other hand, if T takes a value that is too close to the current

98441

IEEE Access

J. Ren et al.: Ilterated Three-Phase Search Approach for Solving the CBP

Algorithm 3 Responsive Threshold-Based Decent
Procedures
1: Input: input solution ¢, best found solution ¢*, neighbor-
hoods Nj and N, evaluation function f,, maximum non-
improving limit L,, neighborhood N application proba-
bility pp,, and best neighbor move strategy probability
Pbest
2: Output: best found solution ¢*, last solution ¢
3: NonlmpCounterT < 0
4: while NonlmpCounterT < L; do

5. T <« Threshold(yp)

6: if rand(0, 1) < py, then
7: N < N; // ' With probability py,
8 else
9: N < N,
10: endif
11: CLst <0
12: for each ¢’ € N(¢p) do
13: if f.(¢") < T then
14: CLst < CLst U {¢'}
15: end if
16: end for
17: if CLst is not empty then
18: if rand(0, 1) < ppes; then
19: @ < BestSol(CLst) // With probability ppess
20: else
21: ¢ < RandomSol(CLst)
22: end if
23: end if
24: i fe(g) < fe(¢™) then
25: NonlmpCounterT < 0
26: e <~
27 else
28: NonlmpCounterT <— NonlmpCounterT + 1
29: end if

30: end while
31: return @, ¢*

objective value (T — Cb(G, ¢) = 0), the search will behave
like the descent search and can hardly escape local optimum
traps. To identify a suitable threshold 7', we follow the work
of [29] and use a responsive mechanism to dynamically tune
T according to the current objective value Cb(G, ¢) and a
threshold ratio r. Specifically, we set T as follows T =
(14 r)*Cb(G, @), where r = 1/(a * Cb(G, ¢) + b) + c. The
coefficients a, b, and ¢ were empirically fixed at 0.00891104,
0.52663736 and 0.16331589, respectively. It was carried out
by solving simultaneously three equations produced with the
following pairs of (Cb(G, ¢), r) values obtained from pre-
liminary experiments: {(2,2), (150, 0.7), (3000, 0.2)}. As a
result, the threshold T evolves according to Cb(G, ¢) and the
threshold ratio ». T tends to become small when the current
solution is of high quality so that only improving or limited

98442

worsening neighbor solutions are accepted. Inversely, 7 tends
to become large when the current solution is not so good in
order to encourage more exploration.

E. THIRD PHASE - SHIFT-INSERT-BASED PERTURBATION
With its threshold accepting strategy, the responsive
threshold-based search ensures a large exploration of solu-
tions of various quality. When this second phase is exhausted,
we trigger a strong perturbation to displace the search to a
new and distant region of the search space. Specifically, this
is achieved by applying the ShiftInsert operator to transform
the current solution as follows.

Let ¢ be the current solution with cyclic bandwidth
Cb(G,). Let W = {(u,v) € E : |o(u) — ¢(v)|» = Cb(G, @)}
be the set of edges whose cyclic distance equals Cb(G, ¢).
Let e = (u, v) be an edge randomly taken from W such that
@) > (). The Shiftinsert(u, v) operator first removes u,
then shifts all vertices between u# and v clockwise or anti-
clockwise at random, and finally inserts u at the position
of v. In practice, Shiftinsert(u,v) is realized by perform-
ing Cb(G, ¢) — 1 successive swap(u, x) operations where
x denotes the inverse clockwise nearby vertex of u in the
solution undergoing transformation until x reaches vertex v.

An illustrative example is shown in Fig. 5(a) (solution
before the ShiftInsert operation) and Fig. 5(b) (solution after
the Shiftinsert operation). In this example, Cb(G, ¢) = 4
and edge (c,e) is chosen for Shiftlnsert among W =
{(c,e), (f,)), (h, i), (a,b)}, which is the set of edges with
a cyclic distance of 4. ShiftInsert(c, e) is performed by
three successive swap operations: swap(c, a), swap(c, h),
and swap(c, f). Table 2 indicates the changes of the cyclic
distances of the edges impacted by the Shiftlnsert(c, e)
operation.

The Shift-Insert-based perturbation has some interesting
features. On the one hand, by displacing a significant number
of vertices, this strategy helps to break long standing ties
and forces the search to overcome deep local traps. Second,
by considering edges whose cyclic distance is equal to the
current cyclic bandwidth, this strategy maintains the quality
of the transformed solution at a reasonable level and thus
avoids searching from a lower quality solution.

When the third phase is triggered, the Shift-Insert-based
perturbation is applied one time to transform the cur-
rent solution. The modified solution is then used as the
new starting solution of the next round of the ITPS algo-
rithm. In Section IV-C, we investigate the usefulness of the
Shift-Insert-based perturbation.

Ill. COMPUTATIONAL EXPERIMENTS

This section is dedicated to an experimental assessment of the
proposed ITPS algorithm, the experimental setup, the test-
suite, the procedure used to set the parameter values and a
performance comparison between ITPS and TScb (the refer-
ence state-of-the-art method) [15].

VOLUME 7, 2019

J. Ren et al.: Iterated Three-Phase Search Approach for Solving the CBP

IEEE Access

TABLE 2. Changes of the cyclic distances associated to the edges impacted by the Shiftinsert operation when applied over the solution depicted in Fig. 5.

(u,v) (f,9) (f,9) (h,9) (h, a) (a,f) (a,€) (a,b)
lp(u) — ©(v)|n 3 4 4 1 2 3 4
lp(u) — o(v)|n 4 3 3 1 2 4 3
Change +1 -1 -1 0 0 +1 -1

(b)

FIGURE 5. An illustrative example of the Shift-Insert-based perturbation.
(a) Solution ¢ before applying the Shiftinsert perturbation. (b) Solution ¢
after applying the perturbation Shiftinsert(c,).

A. EXPERIMENTAL SETUP

The ITPS algorithm described in the previous section was
coded in the C++ programming language.' We have also the
C source code of the TScb algorithm.? Thus, both algorithms
were compiled with g+ version 4.4.7 using the optimization
flag -O3. All the experiments presented in this work were
run sequentially on the same computational platform with a
CPU Intel Xeon X5650 at 2.66 GHz, 2 GB of RAM with
Linux operating system. For each benchmark instance a total
of 50 independent executions, using different random seeds,

IThe source code of our ITPS available at:
https://github.com/thetopjiji/ITPS
2The source code of the TScb algorithm reported in [15] is available at:

https://www.tamps.cinvestav.mx/~ertello/cbmp.php

algorithm is

VOLUME 7, 2019

of the analyzed algorithms were accomplished due to their
stochastic nature.

The test-suite used for the experiments presented in this
work is composed of 113 topologically diverse graphs® pre-
viously tested in the literature [15]. It is divided into two sub-
sets. The first one consists of 85 standard graphs from seven
different families (r-dimensional hypercubes, three dimen-
sional meshes, complete r level k-ary trees, paths, cycles, two
dimensional meshes, and caterpillars). These instances have
9 to 8192 vertices and 8 to 53,248 edges. Their optimal values
are known, which have been obtained theoretically as indi-
cated in Section 4.3.1. of [15]. One notices that no existing
heuristic algorithm is able to attain all the optimal values.
The second subset is composed of 28 problem instances,
with unknown optimal cost. These instances are from the
Harwell-Boeing Sparse Matrix Collection* and corresponds
to graphs from scientific and engineering practical problems.
Most of the graphs in this subset (24 of them) were previously
used by Duarte et al. [30] and Lozano et al. [31] as bench-
mark instances for the related antibandwidth problem [1]
and employed in [15] for the first time as test instances
for the cyclic bandwidth problem. The instances in the sec-
ond subset have a size ranging from 9 to 715 vertices and
46 to 3,720 edges. For a detailed description of this test-suite
as well as the current best known results of the benchmark
instances, the reader is referred to [15].

For the performance comparison of the analyzed algo-
rithms we employed the criteria commonly used in the liter-
ature related with graph embedding algorithms, i.e., the best
cyclic bandwidth yielded for each instance (smaller values are
better) and the computation time in seconds. Following [15],
we applied two other comparison metrics. The first one is the
relative root mean square error (RMSE), which is computed
for each instance ¢ in the test-suite. A smaller RMSE value
(= 0) indicates a better performance while zero means that
the algorithm achieved Cb*(¢) for each of R runs. To assess the
global performance of the studied algorithms, we additionally
used the overall relative root mean square error (O-RMSE),
which averages the RMSE values over the instances of the
test-suite.

To analyze the statistical significance of the experimental
data produced in this work the following procedure was sys-
tematically used. Normality of data distributions was evalu-
ated by using the Shapiro-Wilk test. In the case of non-normal
data, the nonparametric Kruskal-Wallis test was applied.

3 Available at https://www.tamps.cinvestav.mx/~ertello/cbmp.php
4http://math.nist. gov/MatrixMarket/data/Harwell-Boeing

98443

IEEE Access

J. Ren et al.: Ilterated Three-Phase Search Approach for Solving the CBP

TABLE 3. Parameters to be tunned with irace for the ITPS algorithm.

Parameter Description Type Range/Values
5 Search depth Integer [1,10]
Ly Maximum non-improving limit Categorical {5, 10, 20, 50, 100}
Phest Best neighbor move strategy probability Real [0.00, 1.00]
Ly Maximum non-improving limit Categorical {0.1,0.5,0.7,1.0,1.5, 2.0, 2.5,3.0,4.0}
PNy Neighborhood N7 application probability Real [0.00, 1.00]
¥ percentage of vertices employed in neighborhood N3 Real [0.01, 1.00]

In contrast, when the data follows a normal distribution the
homogeneity of the variances across the samples is first veri-
fied with the Bartlett’s test. Then, for homogeneous data the
ANOVA parametric test is executed, whereas Welch’s t test is
employed in the presence of heteroskedasticity. For all these
statistical tests a 0.05 significance level was considered.

B. DETERMINATION OF THE INPUT PARAMETER

VALUES FOR ITPS

The proposed ITPS algorithm, like most meta-heuristic algo-
ithms, has a number of input parameters. In general, one
can tune these parameters on an instance-by-instance basis to
identify the best parameter values for each considered prob-
lem instance. However, fine-tuning of parameters becomes
a tedious task when one wants to solve a large number of
instances (like in our case), and moreover, renders it difficult
to make fair comparisons with other algorithms. For the
purpose of this work, we accomplished the task of tuning
parameters of the ITPS algorithm by employing the popular
irace utility [32], which is one of a number of automatized
parameter tuning tools such as ParamILS [33] and GGA++
[34]. This tool uses a (small) training set of instances to
determine the most suitable parameter values for the training
instances. In our case, we used 20 out of the 113 benchmark
instances of Section III-A for the parameter tuning task with
irace (see below). Finally, we comment that the parameter
values obtained by irace can be considered to define the
default parameter setting of ITPS, though fine-tuning some
parameters for a particular instance could enable the algo-
rithm to achieve better results.

There are seven parameters associated with our ITPS algo-
rithm. The first two of them (6 and 7,,,,) are directly used
by ITPS, while the other five parameters are required by the
double neighborhood descent and the responsive threshold-
based search procedures (L4, ppest, ON, > Ls, and). To ensure
a fair comparison between our ITPS algorithm and the
TScb method, the same cutoff time limit reported in [15]
was adopted (i.e., Tuax = 600 seconds). Table 3 presents for
each of the six remaining parameters considered in the tuning
process its description, its type, and the values provided to
configure irace.

For our tuning experiment we have selected a subset
of 20 graphs from the original test-suite of 113 benchmark
instances described in Section ITI-A. The criteria used to com-
pose this subset was to include large and complex instances

98444

covering all graph types present in the original benchmark.
We have observed, from our preliminary tuning tests, that the
performance of ITPS presented some variations depending on
the graph family. For this reason, we have divided the subset
of 20 graphs into three groups:

e path200, path650, path825, pathl000, cycle200,
cycle300, cycle650, cyclel000, caterpillar29, tree2x9,
mesh2D5x 25, mesh2D20x 50, mesh3D12x 12x 12

o dwt 592, can_715, can_445, 494 bus, 662 bus,
685 _bus

o hypercubel |

Each group of instances was then used independently
for a tuning process. The maximum number of executions
(i.e., maximum budget of experiments, maxExperiments) of
irace was fixed to 2,000, where each one of them was lim-
ited to 600 seconds as suggested in the CBP literature [15].
The final values returned by these parameter calibration
experiments, for each group of instances, are summarized
in Table 4.

TABLE 4. Final values found by irace after the parameter calibration
experiments.

Instance group) Ly Phest Ly PNy ¥
1 3 50 0.50 1.00 0.03 0.03
2 2 100 0.29 0.10 0.48 0.27
3 3 100 0.10 3.00 0.97 0.03

C. COMPARISON WITH THE STATE-OF-THE-ART
ALGORITHM

The comparative experiments presented in this section have
as main objective to assess the performance of the proposed
ITPS algorithm with respect to TScb [15], which is the current
best-performing CBP reference method. These experiments
were carried out using the experimental conditions presented
in Section III-A, and the parameter setting determined in
Section III-B.

The computational results of this experiment are summa-
rized in Table 5 and organized according to the type of the
graphs evaluated. Columns 1 and 2 present the graph type and
the number of instances of that family. Then, for each com-
pared algorithm and each graph family, we indicate the fol-
lowing average data: the best cyclic bandwidth cost reached
(Avg. Cbpesr), the computation time in seconds needed to

VOLUME 7, 2019

J. Ren et al.: Iterated Three-Phase Search Approach for Solving the CBP

IEEE Access

TABLE 5. Summary of the comparison between TScb and ITPS over 113 benchmark instances: 85 standard graphs from 7 different types with known
optimal solutions, and 28 Harwell-Boeing instances with unknown optimal cost arising from scientific and engineering practical problems.

TSCB ITPS

Graph type Num. Avg. Cbpest AV Tpest O-RMSE % Best Avg. Cbpest AVE Thest O-RMSE % Best I M F
path 15 2.53 62.38 1.98 66.67 1.80 148.34 2.78 80.00 4 11 0
cycle 15 2.40 25.15 1.84 73.33 2.47 145.68 4.04 7333 2 12 1
mesh2D 15 27.73 53.38 1.80 60.00 12.07 76.17 0.43 4000 3 9 3
mesh3D 10 163.30 177.21 1.46 40.00 139.40 174.73 1.37 7000 6 4 0
tree 12 55.17 36.39 0.02 91.67 54.67 18.49 0.00 100.00 1 11 0
caterpilar 15 15.20 41.90 0.07 86.67 15.07 67.56 0.07 10000 2 13 0
hypercube 3 1532.00 497.41 0.34 0.00 1991.67 550.32 0.57 0.00 1 0o 2
Harwell-Boeing 28 22.25 97.82 2.64 28.57 21.36 109.64 3.18 2857 12 15 1
Total 113 31 75 7

reach its best solution (Avg. Tpes), the overall relative root
mean square error (O-RMSE), as well as the percentage
of instances for which an algorithm attains the optima (for
the standard graphs) or the best-known solutions (for the
Harwell-Boeing graphs) (% Best). The last three columns
list the number of instances for which our ITPS algorithm
improved (I), matched (M) or failed (F) to attain the best
cyclic bandwidth costs reported by TScb [15]. The detailed
instance-by-instance results from this experiment are pro-
vided in Tables 9 and 10 listed in the Appendix.

Table 5 shows that for 5 out of the 7 tested families of
standard graphs, our ITPS algorithm produced an average
best cyclic bandwidth (see column Avg. Cbp,.s) which is
considerably lower (better) than that produced by TScb. Two
exceptions are the cycle graphs and the hypercubes for which
TScb was able to score a smaller average best cyclic band-
width than ITPS (2.78% and 30.00% smaller, respectively).
As these seven types of graphs have known optimal solutions,
it is important to assess if the compared algorithms attain
those optimal values. Comparing columns 6 and 10 (% Best)
it is easy to see that ITPS found a greater percentage of
optimal Cb values than TScb for the following graph types:
paths, three dimensional meshes, complete r level k-ary trees,
and caterpillars. For the cycle graphs, both of the compared
algorithms found the same percentage of optimal solutions
(73.33%). However, our ITPS algorithm was able to solve to
optimality 100% of the tree and caterpillar graphs.

In contrast, TScb outperformed ITPS in this regard over the
two dimensional meshes, and both algorithms failed to reach
the optimal cost for any of the r-dimensional hypercubes;
indicating that this type of graphs is still an open challenge for
metaheuristic algorithms. The columns listing the O-RMSE
values disclose that in average ITPS presents a slightly
higher deviation with respect to the known optimal costs
than TScb (1.56 vs. 1.27), notwithstanding ITPS showed to
be more effective for finding global optimal embeddings.
By inspecting the row allocated for the Harwell-Boeing
graphs of Table 5, we notice that TScb achieved an average
best solution cost (Avg. Cbpesr) which is 4.18% higher than
that produced by ITPS (22.25 vs. 21.36). Even though the two

VOLUME 7, 2019

Optimal solutions —e—
35 ITPS —A—

TScg —o—

25 (‘.7

ha Sy

Cyclic bandwidth (log;o)

N

)

By By D5 QG G G
0 % %0n Lo, Yo, Yo, Yoo, P
”%&”5& %y, O, On g, %,

TN

%
%%y o35y g Ry oy oy Ry o o oy e
DR %, %5 B Ry 9,505,580, 505°0,50,0, 0,50, 50,90, %0, %0,
D O 0 T Gy 78,09, 0,50, 9, T 0 3 G
G, 00 R By % By By
STV VRS

Instances

(@)

TR R R
1.8 - Lower bounds —e—
ITPS —A—

cB

it
>
N,
>

Cyclic bandwidth (logq)

1A
ool o]

) \/

p. 4, %, %%, % G Gn P, o, %o %% % %, G5 %

G 00,255 200 00 2% "% %, %, %0657,

5520, 58 2530, 0,30, % 18R, a8 % 290, 35,3, R0 2 X bX S0 L 8% O
% %7725 % O, % 0, % % 2%, %, %, X 78,58, AL Sn R85,
0TS Il e &t 0 5% % 2% %

Instances

(b)

FIGURE 6. Performance evaluation of the best solutions found by the
algorithms TScb and ITPS, over a standard test-suite of graphs. (a) Graphs
with regular topologies, with respect to the known optimal solutions; the
plot includes only the 22 instances whose optimal solutions were not
reached by neither of the compared algorithms. (b) Harwell-Boeing
instances with unknown optimal cost, with respect to the theoretical
lower bounds proposed by Lin [8].

compared algorithms attained the same number of theoretical
lower bounds (i.e., % Best equals 28.57%) for this type of
graphs, it is clear that TScb is the one providing the smallest
O-RMSE value (2.64 vs. 3.18), showing in average a more
stable behavior.

98445

IEEE Access

J. Ren et al.: Ilterated Three-Phase Search Approach for Solving the CBP

TABLE 6. Performance comparison between ITPS and ITPS ¢, over 20 selected graphs.

ITPS, .z ITPS
Graph V] |[E| Cb* Cbpest Avg. Cb Dev. Avg. Tpes: RMSE Cbpest Avg. Cb Dev. Avg. Tpesy RMSE p-value SS
path200 200 199 1 1 1.06 0.24 132.18 0.24 1 1.00 0.00 74.64 0.00 2.3E-20 +
path650 650 649 1 1 3.62 1.10 321.17 2.84 3 6.00 2.97 473.59 5.80 3.2E-18 —
path825 825 824 1 3 6.18 2.50 476.68 5.74 4 12.86 6.08 532.00 13.30 2.2E-17 —
path1000 1000 999 1 4 11.16 5.68 535.62 11.61 8 2090 5.40 562.32 20.60 6.6E-18 —
cycle200 200 200 1 1 234 1.87 83.85 2.28 1 234 1.52 71.53 2.01 6.8E-01 =«
cycle300 300 300 1 1 3.70 2.06 127.81 3.39 1 3.00 1.95 180.95 2.78 7.2E-19 +
cycle650 650 650 1 3 6.22 257 323.75 5.81 4 7.50 2.59 469.61 6.99 2.6E-18 —
cycle1000 1000 1000 1 5 1476 529 560.68 14.72 12 2432 7.67 541.70 2453 1.2E-17 —
mesh2D5x25 125 220 5 6 6.00 0.00 4.61 0.20 6 6.00 0.00 0.90 0.20 1.8E-20 —
mesh2D20x50 1000 1930 20 23 40.58 11.95 496.91 1.19 22 38.58 54.32 375.06 2.84 44E-16 +
mesh3D12 1728 4752 114 435 437.06 1.20 484.29 2.83 108 325.04 0.49 411.07 2.80 1.4E-18 +
tree2x9 1023 1022 57 58 60.94 192 429.94 0.08 57 57.34 048 215.84 0.01 1.2E-20 -+
caterpillar29 494 463 24 24 2498 222 114.65 0.10 24 24.00 0.00 43.14 0.00 9.5E-09 -+
hypercubell 2048 11264 526 907 923.84 6.57 593.52 0.76 548 561.46 7.86 457.93 0.07 4.3E-18 -+
can_445 445 1682 6 46 64.76 11.46 178.11 9.97 46 59.72 7.63 313.35 9.04 2.7E-20 +
494 _bus 494 586 5 54 65.52 4.32 219.85 12.13 30 4194 6.23 271.86 7.49 9.2E-19 -+
dwt_592 592 2256 7 30 3228 4.14 326.00 3.66 29 36.00 23.80 405.82 5.34 5.7E-17 —
662_bus 662 906 5 95 107.94 6.01 174.85 20.62 61 7230 498 336.13 13.50 3.3E-18 +
685_bus 685 1282 6 99 116.02 4.10 21221 18.35 33 72.68 12.88 343.03 11.31 S5.3E-18 -+
can_715 715 2975 52 61 109.22 20.00 110.99 1.16 60 168.12 74.02 231.48 2.64 1.0E-13 —
Average 92.85 10191 4.76 295.38 5.88 52.90 77.06 11.04 315.60 6.56
* 1

Total + 11

From the data generated in this experiment, it is thus
possible to conclude that ITPS is certainly a very competitive
approach, with respect to the state-of-the-art algorithm TScb,
for solving the CBP in the case of graphs with standard
topologies, and those coming from practical scientific and
engineering problems. In fact, ITPS was able to establish new
lower bounds for 31 instances, and to equal the best solution
cost reached by TScb for other 75 graphs (see Figure 6). For
the remaining 7 instances (6.19%) TScb still offers the best-
known results.

Finally, the statistical analysis carried out for this exper-
iment, and presented in the last two columns of Tables 9
and 10, allows us to verify that a statistically significant
performance amelioration was achieved by ITPS with respect
to TScb on 37 instances (32.74% of the graphs). Nevertheless,
ITPS was significantly surpassed by TScb in 24 instances
(21.24%). For the remaining 52 graphs (46.02%), a signif-
icant difference between the two compared methods could
not be concluded. Furthermore, the excellent performance
of ITPS was attained by consuming only a slightly higher
CPU time than that expended by TScb (in average 161.37 vs.
123.95 seconds), which could be justified by the good final
embeddings produced.

IV. ANALYSIS
We present additional experiments to investigate the key
components of the ITPS algorithm: a) the extended evaluation

98446

function (f,) of Section II-B, b) the responsive threshold-
based search (RTBS) method of Section II-D, and c) the Shift-
Insert-based perturbation mechanism of Section II-E. For
these experiments, we adopted the same subset of 20 repre-
sentative graphs (14 standard topology graphs and 6 Harwell-
Boeing graphs) that were used for parameter tuning
in Section III-B.

A. INFLUENCE OF THE EXTENDED

EVALUATION FUNCTION

As we pointed out in Section II-B, the objective function
of the CBP is unable to establish preferences among differ-
ent potential embeddings with the same cyclic bandwidth
cost. This function could leads to large plateaus in the fit-
ness landscape [35], [36], on which identifying a promising
search direction may become difficult for local search meth-
ods [37], [38]. This problem could seriously compromise
the search efficiency of the search algorithm. The extended
evaluation function (f;) proposed in this work was designed
to cope with this delicate problem. To evaluate its impact
on the ITPS global performance, we provide a comparison
of ITPS with a ITPS variant, named ITPS,,,z, which only
employs the conventional evaluation function of the CBP.
Table 6 summarizes the computational results of this com-
parison. Columns 1 to 3 present for each instance the name,
the number of vertices (|V|) and edges (|E|). For the first

VOLUME 7, 2019

J. Ren et al.: Iterated Three-Phase Search Approach for Solving the CBP

IEEE Access

TABLE 7. Performance comparison between ITPS and ITPS 4, over 20 selected graphs.

ITPS, 011 ITPS
Graph [Vl |E] Cb* Cbpest Avg. Cb Dev. Avg. Tpest RMSE Cbpest Avg. Cb Dev. Avg. Tpesy RMSE p-value SS
path200 200 199 1 1 1.40 0.81 109.81 0.89 1 1.00 0.00 74.64 0.00 2.2E-20 +
path650 650 649 1 5 11.06 242 522.89 10.34 3 6.00 297 473.59 5.80 3.7E-18 +
path825 825 824 1 10 1830 3.75 553.66 17.69 4 12.86 6.08 532.00 13.30 3.1E-01 «
path1000 1000 999 1 19 28.28 4.13 57221 27.58 8 20.90 5.40 56232 20.60 5.1E-18 +
cycle200 200 200 1 1 234 145 110.52 1.96 1 234 1.52 71.53 2.01 93E-01 =«
cycle300 300 300 1 324 136 254.60 2.62 1 3.00 1.95 180.95 278 1.6E-18 +
cycle650 650 650 1 6 11.90 232 47354 11.14 4 7.50 2.59 469.61 6.99 5.4E-18 +
cycle1000 1000 1000 1 19 29.14 4.65 567.59 28.51 12 2432 7.67 541.70 24.53 1.0E-17 +
mesh2D5x25 125 220 5 6 6.00 0.00 14.74 0.20 6 6.00 0.00 0.90 0.20 6.5E-23 —
mesh2D20x50 1000 1930 20 21 43.84 11.90 552.03 1.33 22 38.58 54.32 375.06 2.84 2.6E-05 +
mesh3D12 1728 4752 114 433 433.04 0.20 427.26 2.80 108 325.04 0.49 411.07 2.80 1.6E-18 +
tree2x9 1023 1022 57 57 5724 0.74 251.39 0.01 57 57.34 048 215.84 0.01 8.0E-20 —
caterpillar29 494 463 24 24 27.82 4.78 248.55 0.25 24 24.00 0.00 43.14 0.00 5.2E-13 +
hypercubell 2048 11264 526 662 684.02 5.07 567.99 0.30 548 561.46 7.86 457.93 0.07 4.2E-18 +
can_445 445 1682 6 46 63.48 11.07 147.87 9.75 46 59.72 7.63 313.35 9.04 2.7E-20 +
494 bus 494 586 5 30 57.56 10.17 150.06 10.70 30 4194 6.23 271.86 749 7.8E-19 +
dwt_592 592 2256 7 29 3412 6.22 397.57 3.97 29 36.00 23.80 405.82 5.34 47E-07 —
662_bus 662 906 5 57 90.76 8.63 220.13 17.24 61 7230 4.98 336.13 1350 4.0E-18 +
685_bus 685 1282 6 69 96.40 8.48 260.64 15.13 33 72.68 12.88 343.03 1131 12E-17 +
can_715 715 2975 52 60 116.56 31.42 281.04 1.38 60 168.12 74.02 231.48 2.64 1.0E-19 —
Average 77.80 90.83 5.98 334.20 8.19 52.90 77.06 11.04 315.60 6.56
* 2

Total + 14

14 instances, column 4 reports the known optimal costs,
whereas for the 6 remaining graphs the theoretical lower
bounds are listed (Cb*). Next, for each compared algorithm
five columns are used to show: the best (Cbp,s), the average
(Avg. Cb) and standard deviation (Dev.) of the cyclic band-
width cost reached over 50 independent executions, the aver-
age CPU time in seconds needed for attaining their best
solutions (Avg. Tp.st), and the relative root mean square error
(RMSE) with respect to the best-known solutions (Cb*) indi-
cated in column 4. The last two columns provide the results
of a statistical significance analysis which was executed with
the method described in Section III-A over this experimental
data. The obtained p-value is presented in column 15. Cells
in column 16 (SS) are marked 4 if a statistically significant
difference in favor of ITPS is found over ITPS,,yf,, or — if this
difference is against ITPS. Those cells with the » symbol indi-
cate that no significant difference can be detected between
the analyzed algorithms for the corresponding benchmark
instance.

By observing the average data presented at the bottom of
Table 6, it is possible to identify that the ITPS,,,f, algorithm,
using only the conventional evaluation function, achieved
worse values for both the best and average cyclic band-
width costs (columns Cbpes; and Avg. Cb) than those of
ITPS (92.85 vs. 52.90 and 101.91 vs. 77.06). On the one
hand, this confirms the weak discrimination capacity fur-
nished by the conventional evaluation function. On the other

VOLUME 7, 2019

hand, it discloses the positive influence of the f, function
in the global performance of ITPS, when it is employed for
assessing the quality of the visited potential solutions. The
results of our statistical significance analysis indicate that
ITPS significantly outperformed ITPS,,z on 11 instances.
However, ITPS,,,, significantly surpassed ITPS in 8 graphs.
It is interesting to remark that 6 of these graphs are paths and
cycles of order n > 650. This suggests that the proposed f,
function has some trouble in discriminating potential solu-
tions for graphs with these specific topologies, but further
studies are needed to gain understanding on this behavior.

B. INFLUENCE OF THE RESPONSIVE

THRESHOLD-BASED SEARCH

In our ITPS algorithm, the first phase employs a double
neighborhood decent search procedure (DNDS) to explore
embeddings of increasing quality until a local optimal solu-
tion is reached. To escape from the basin of attraction [36],
ITPS triggers a second phase using a responsive threshold-
based search (RTBS), which accepts neighboring solutions
that are not worse than the incumbent solution by more
than a given threshold (uphill moves). In this section we
evaluate the effect of applying RTBS on the final outcome
produced by our iterated three-phase search algorithm. To this
end, we completely removed the responsive threshold-based
search from our ITPS algorithm; and compared experimen-
tally this algorithmic variant, called ITPS,,,s,, with respect to

98447

IEEE Access

J. Ren et al.: Ilterated Three-Phase Search Approach for Solving the CBP

TABLE 8. Performance comparison between ITPS and ITPS ,,,; over 20 selected graphs.

ITPS,,0s; ITPS

Graph [Vl |E|] Cb* Cbpest Avg. Cb Dev. Avg. Tpest RMSE Cbpest Avg. Cb Dev. Avg. Tpese RMSE p-value SS
path200 200 199 1 1 1.02 0.14 82.20 0.14 1 1.00 0.00 74.64 0.00 2.6E-20 +
path650 650 649 1 3 6.26 2.72 504.29 591 3 6.00 297 473.59 5.80 24E-18 +
path825 825 824 1 5 13.38 6.43 521.80 13.92 4 12.86 6.08 532.00 1330 7.1E-11 +
path1000 1000 999 1 11 21.72 5.56 568.06 21.44 8 2090 5.40 562.32 20.60 1.2E-143 +
cycle200 200 200 1 1 3.08 1.68 28.25 2.66 1 234 152 71.53 2.01 2.5E-02 +
cycle300 300 300 1 1 348 2.04 140.50 3.20 1 3.00 1.95 180.95 278 2.6E-18 +
cycle650 650 650 1 3 8.06 3.01 476.23 7.66 4 7.50 2.59 469.61 6.99 2.8E-20 +
cycle1000 1000 1000 1 8 25.54 8.05 550.77 25.80 12 2432 7.67 541.70 2453 32E-20 +
mesh2D5x25 125 220 5 6 6.00 0.00 12.64 0.20 6 6.00 0.00 0.90 0.20 7.2E-21 —
mesh2D20x50 1000 1930 20 22 32.56 34.38 384.03 1.81 22 38.58 54.32 375.06 2.84 7.0E-03 —
mesh3D12 1728 4752 114 433 43352 0.54 387.14 2.80 108 325.04 0.49 411.07 2.80 1.6E-18 +
tree2x9 1023 1022 57 57 5730 0.46 204.22 0.01 57 5734 048 215.84 0.01 5.8E-21 —
caterpillar29 494 463 24 24 24.00 0.00 70.27 0.00 24 24.00 0.00 43.14 0.00 1.4E-06 —
hypercubell 2048 11264 526 548 564.72 7.88 490.95 0.08 548 56146 7.86 457.93 0.07 5.2E-18 +
can_445 445 1682 6 149 149.00 0.00 0.74 23.83 46 59.72 7.63 313.35 9.04 2.7E-20 +
494 _bus 494 586 5 46 54.74 4.50 268.50 9.99 30 4194 6.23 271.86 749 3.8E-20 +
dwt_592 592 2256 7 198 198.00 0.00 1.87 27.29 29 36.00 23.80 405.82 534 2.1E-20 +
662_bus 662 906 5 75 90.60 5.86 28435 17.16 61 7230 4.98 336.13 1350 4.1E-18 +
685_bus 685 1282 6 77 106.54 10.00 200.23 16.84 33 72.68 12.88 343.03 11.31 14E-17 +
can_715 715 2975 52 61 23544 25.17 30.68 3.56 60 168.12 74.02 231.48 2.64 53E-19 +

Average 86.45 101.75 592 260.39 9.22 52.90 77.06 11.04 315.60 6.56
* 0
Total + 16
— 4

the full ITPS method. Table 7 presents the results from this
comparison, using the same column organization previously
described for Table 6.

It is clear, from Table 7, that the inclusion of the responsive
threshold-based search in the second phase of the ITPS algo-
rithm enables ITPS to obtain for 15 out of 20 instances better
average final results (smaller values in column Avg. Cb)
than those produced by the ITPS,,; approach, resulting
in a smaller O-RMSE value (6.56 vs. 8.59). For some of
the analyzed instances (e.g., mesh3D12 and hypercubell),
ITPS is even able to attain improvements in the final Cb cost
of two orders of magnitude with respect to that produced
by ITPS,,,s. Furthermore, from our statistical significance
analysis one observes that ITPS, including the RTBS phase,
significantly outperformed ITPS,,,, in 14 instances. It scored
significantly worse results than ITPS,,,, in only 4 graphs. For
the path825 instance, no statistically significant difference is
observed between the compared algorithms.

C. INFLUENCE OF THE SHIFT-INSERT-BASED
PERTURBATION

After the conclusion of the second phase in our ITPS algo-
rithm, a shift-insert perturbation is applied to the incumbent
solution in order to move out search to a distant new region
of the search space. As in the two previous sections, we
assess the impact of using this shift-insert perturbation on the
cost of the final solutions produced by our ITPS algorithm.
We prepared an algorithm, named ITPS,,,s;, which excludes
the shift-insert perturbation phase. It was then contrasted

98448

experimentally against the complete ITPS algorithm. The
data produced in this experiment is shown in Table 8, which
has the same column headings defined for Table 6.

As shown in Table 8, the algorithm that removed the shift-
insert perturbation phase (ITPS,,,;) was significantly outper-
formed by the full ITPS version in 16 instances, leading in
average to a higher O-RMSE value (9.22 vs. 6.56). It indicates
that ITPS,,,s; presented in average a much higher deviation
with respect to the best-known solutions. These observations
provide a solid confirmation of the usefulness of applying the
third phase, based on the shift-insert perturbation, within our
ITPS algorithm.

V. CONCLUSIONS AND FUTURE WORK

Cyclic bandwidth minimization in graphs is a relevant model
with a number of significant applications. Given its compu-
tational complexity, it is quite challenging to devise solution
methods able to solve the problem effectively. In this paper,
we have presented an iterated three-phase search algorithm
(ITPS) for the problem. The algorithm originally integrates
a double neighbor-decent phase, a threshold-based search
phase and a special perturbation phase, which are guided
by an enriched evaluation function. These different algo-
rithmic components play complementary roles in terms of
search intensification and diversification and together ensure
a highly effective examination of the search space. This algo-
rithm enriches the solution methods for the cyclic bandwidth
problem, which currently remain scarce.

VOLUME 7, 2019

J. Ren et al.: Iterated Three-Phase Search Approach for Solving the CBP I E E E ACC@SS

TABLE 9. Detailed performance assessment of the TScb and ITPS algorithms over 85 standard graphs from 7 different families all of them having tight
lower bounds.

TScB ITPS

Graph V| |E| Cb* Cbpest Avg.Cb Dev. Avg. Tpest D Cbpest Avg. Cb Dev. Avg. Tpesy D p-value SS
path20 20 19 1 1 1.00 0.00 0.17 0 1 1.00 0.00 0.03 0 1.0E+00 %
path25 25 24 1 1 1.00 0.00 0.44 0 1 1.00 0.00 0.08 0 1.0E+00 =
path30 30 29 1 1 1.00 0.00 1.25 0 1 1.00 0.00 0.12 0 1.0E+00 %
path35 35 34 1 1 1.00 0.00 2.93 0 1 1.00 0.00 0.23 0 1.0E+00 %
path40 40 39 1 1 1.00 0.00 4.05 0 1 1.00 0.00 0.28 0 1.0E+00 =
path100 100 99 1 1 1.00 0.00 59.82 0 1 1.00 0.00 4.55 0 1.0E+00 =
path125 125 124 1 1 1.00 0.00 148.25 0 1 1.00 0.00 6.98 0 1.0E+00 =
path150 150 149 1 1 1.34 0.48 190.91 0 1 1.00 0.00 20.55 0 6.7E-06 +
path175 175 174 1 1 1.64 0.48 123.52 0 1 1.00 0.00 38.62 0 8.8E-12 +
path200 200 199 1 1 1.94 0.24 28.63 0 1 1.00 0.00 74.64 0 73E-21 +
path300 300 299 1 2 2.96 0.35 46.02 1 1 1.04 0.20 180.24 0 98E-22 +
path475 475 474 1 5 5.56 0.50 56.86 4 1 234 124 330.87 0 22E-18 +
path650 650 649 1 6 6.98 0.14 86.92 5 3 6.00 297 473.59 2 6.0E-07 +
path825 825 824 1 7 7.92 0.34 66.25 6 4 12.86 6.08 532.00 3 4.5E-10 —
path1000 1000 999 1 8 8.84 0.47 119.71 7 8 20.90 540 562.32 7 12E-17 —
cycle20 20 20 1 1 1.00 0.00 0.32 0 1 1.00 0.00 0.02 0 1.0E+00 =
cycle25 25 25 1 1 1.00 0.00 0.86 0 1 1.00 0.00 0.05 0 1.0E+00 =
cycle30 30 30 1 1 1.00 0.00 0.36 0 1 1.00 0.00 0.11 0 1.0E+00 =
cycle35 35 35 1 1 1.00 0.00 0.67 0 1 1.00 0.00 0.20 0 1.0E+00 =%
cycle40 40 40 1 1 1.00 0.00 0.67 0 1 1.00 0.00 0.21 0 1.0E+00 =
cycle100 100 100 1 1 1.00 0.00 3.52 0 1 1.34 0.80 25.85 0 34E-03 —
cyclel25 125 125 1 1 1.00 0.00 4.63 0 1 146 1.03 18.36 0 1.8E-03 —
cyclel150 150 150 1 1 1.00 0.00 7.86 0 1 1.86 1.28 49.58 0 74E-06 —
cyclel75 175 175 1 1 1.00 0.00 9.14 0 1 244 1.66 62.03 0 3.2E-08 —
cycle200 200 200 1 1 1.00 0.00 21.39 0 1 234 152 71.53 0 13E-08 —
cycle300 300 300 1 1 2.86 0.57 23.82 0 1 3.00 1.95 180.95 0 8.2E-01 «
cycled75 475 475 1 4 5.52 0.58 70.24 3 3 528 271 236.98 2 8.6E-03 -+
cycle650 650 650 1 6 7.12 0.56 61.02 5 4 7.50 259 469.61 3 94E-01
cycle825 825 825 1 7 8.00 0.40 65.70 6 7 1372 4.56 528.06 6 34E-14 —
cycle1000 1000 1000 1 8 8.88 0.59 107.05 7 12 2432 7.67 54170 11 1.2E-18 —
mesh2D5x4 20 31 4 4 4.00 0.00 2.29 0 4 4.00 0.00 0.04 0 1.0E+00 =
mesh2D5x5 25 40 5 5 5.00 0.00 2.86 0 5 5.00 0.00 0.02 0 1.0E+00 =
mesh2D5x6 30 49 5 5 5.00 0.00 0.86 0 5 5.00 0.00 0.07 0 1.0E+00 =
mesh2D5x7 35 58 5 5 5.00 0.00 1.49 0 5 5.00 0.00 0.09 0 1.0E+00 %
mesh2D5x8 40 67 5 5 5.00 0.00 1.48 0 5 5.00 0.00 32.58 0 1.0E+00 %
mesh2D10x10 100 180 10 10 10.58 0.50 58.15 0 10 10.76 0.43 37.75 0 5.7E-02 «
mesh2D5x25 125 220 5 5 5.00 0.00 13.00 0 6 6.00 0.00 0.90 1 25E-23 —
mesh2D10x15 150 275 10 11 11.00 0.00 12.02 1 11 11.00 0.00 2.80 1 1.0E+00 =«
mesh2D7x25 175 318 7 7 7.02 0.14 73.44 0 8 8.00 0.00 4.19 1 1.8E-22 —
mesh2D8x25 200 367 8 8 8.10 0.30 73.37 0 9 9.00 0.00 7.16 1 23E-19 -—
mesh2D15x20 300 565 15 16 19.66 14.13 117.35 1 16 16.56 0.50 109.68 1 4.0E-04 +
mesh2D19x25 475 906 19 119 119.82 0.39 55.34 100 20 2092 0.27 31.77 1 3.7E-21 +
mesh2D25x26 650 1249 25 164 164.00 0.00 1522 139 26 2722 3.33 23991 1 44E-21 +
mesh2D28x30 840 1622 28 30 14234 87.31 194.10 2 29 59.76 66.36 300.47 1 3.1E-08 -+
mesh2D20x50 1000 1930 20 22 187.06 102.01 179.68 2 22 38.58 54.32 375.06 2 5.3E-09 +
mesh3D4 64 300 14 14 15.70 0.68 47.01 0 14 14.00 0.00 12.30 0 27E-18 +
mesh3D5 125 540 21 21 22.76 3.14 111.95 0 21 21.00 0.00 41.29 0 1.5E-14 +
mesh3D6 216 882 30 30 32.34 5.71 84.38 0 30 30.00 0.00 23.21 0 1.1E-19 +
mesh3D7 343 1344 40 40 4526 12.47 191.09 0 40 55.14 21.44 239.37 0 14E-02 —
mesh3D8 512 1344 52 53 114.38 30.21 190.27 1 52 101.32 37.04 107.42 0 2.0E-05 +
mesh3D9 729 1944 65 68 182.44 16.52 150.34 3 65 157.40 48.71 57.20 0 7.1E-19 +
mesh3D10 1000 2700 80 83 249.60 24.05 212.68 3 80 214.02 70.19 155.73 0 3.6E-18 +
mesh3D11 1331 3630 96 336 336.54 0.50 21390 240 108 325.04 43.33 218.14 12 19E-19 +
mesh3D12 1728 4752 114 435 436.26 0.56 252.79 321 433 43340 0.49 411.07 319 4.3E-19 +
mesh3D13 2197 6084 133 553 554.40 0.67 317.70 420 551 552.68 1.00 481.57 418 14E-13 +
tree2x4 31 30 4 4 4.00 0.00 0.86 0 4 4.00 0.00 0.00 0 1.0E+00
tree3x3 40 39 7 7 7.00 0.00 0.37 0 7 7.00 0.00 0.00 0 1.0E+00 =
tree10x2 111 110 28 28 28.00 0.00 0.23 0 28 28.00 0.00 0.00 0 1.0E+00 =
tree3x4 121 120 15 15 15.76 0.43 18.60 0 15 15.00 0.00 0.44 0 6.7E-15 +

VOLUME 7, 2019 98449

IEEE Access

J. Ren et al.: Ilterated Three-Phase Search Approach for Solving the CBP

TABLE 9. (Continued.) Detailed performance assessment of the TScb and ITPS algorithms over 85 standard graphs from 7 different families all of them

having tight lower bounds.

TScB ITPS

Graph 4 |[E] Cb* Cbpest Avg.Cb Dev. Avg. Tpesr D Cbpest Avg. Cb Dev. Avg. Tpeste D p-value SS
treeSx3 156 155 26 26 26.00 0.00 11.83 0 26 26.00 0.00 0.04 0 1.0E+00 =
tree13x2 183 182 46 46 46.00 0.00 0.33 0 46 46.00 0.00 0.01 0 1.0E+00 =
tree2x7 255 254 19 19 20.12 0.39 75.01 0 19 19.00 0.00 0.83 0 25E-21 +
tree17x2 307 306 77 77 77.00 0.00 0.50 0 77 77.00 0.00 0.06 0 1.0E+00 =
tree21x2 463 462 116 116 116.00 0.00 0.87 0 116 116.00 0.00 0.18 0 1.0E+00 =
tree25x2 651 650 163 163 163.00 0.00 1.02 0 163 163.00 0.00 0.49 0 1.0E+00 =
treeSx4 781 780 98 98 98.28 0.45 134.45 0 98 98.00 0.00 3.95 0 6.0E-05 +
tree2x9 1023 1022 57 63 64.30 0.79 192.58 6 57 57.34 048 215.84 0 6.9E-19 +
caterpillar3 9 8 3 3 3.00 0.00 0.00 0 3 3.00 0.00 0.00 0 1.0E+00 =
caterpillar4 14 13 3 3 3.00 0.00 0.42 0 3 3.00 0.00 0.00 0 1.0E+00 =
caterpillard 20 19 4 4 4.00 0.00 0.49 0 4 4.00 0.00 0.00 0 1.0E+00 =
caterpillar6 27 26 5 5 5.00 0.00 0.58 0 5 5.00 0.00 0.00 0 1.0E+00 =
caterpillar7 35 34 6 6 6.00 0.00 0.51 0 6 6.00 0.00 0.00 0 1.0E+00 =
caterpillar13 104 103 10 10 10.00 0.00 16.33 0 10 10.00 0.00 0.31 0 L1.OE+00
caterpillar14 119 118 11 11 11.00 0.00 11.15 0 11 11.00 0.00 0.11 0 1.0E+00
caterpillar16 152 151 13 13 13.00 0.00 10.28 0 13 13.00 0.00 0.34 0 1.0E+00 =
caterpillar17 170 169 14 14 14.00 0.00 21.29 0 14 14.00 0.00 0.56 0 1.0E+00 =
caterpillar19 209 208 15 15 15.68 047 41.71 0 15 15.00 0.00 2.76 0 9.2E-13 +
caterpillar23 299 298 19 19 19.32 047 54.77 0 19 19.00 0.00 5.97 0 14E-05 +
caterpillar29 464 463 24 24 2564 1.75 79.02 0 24 24.00 0.00 43.14 0 44E-13 +
caterpillar35 665 664 29 29 3446 3.88 154.46 0 29 3252 587 281.87 0 2.0E-05 +
caterpillar39 819 818 33 34 40.08 4.19 121.96 1 33 39.24 8.60 275.49 0 6.9E-03 +
caterpillar44 1034 1033 37 38 4998 5.59 115.59 1 37 54.10 11.19 402.83 0 14E-02 —
hypercubell 2048 11264 526 562 584.64 10.92 472.22 36 548 561.46 7.86 457.93 22 1.1E-20 +
hypercubel2 4096 24576 988 1224 1351.12 42.00 503.62 236 1508 1546.32 12.88 596.02 520 6.5E-18 —
hypercubel3 8192 53248 1912 2810 2916.70 40.69 516.38 898 3919 3952.02 11.50 597.00 2007 5.1E-79 —

Average 89.52 100.55 491 75.80 28.88 100 108.54 5.26 119.84 39.32
* 38
Total —+ 31
— 16

We have assessed the proposed algorithm on two groups
of 113 benchmark graphs from the literature including
85 standard graphs (e.g., paths, cycles, caterpillars, etc) and
28 Harwell-Boeing graphs which arise from diverse engineer-
ing and scientific real-world problems. The computational
results are compared with those provided by the best refer-
ence algorithm in the literature, showing a very competitive
performance. For the 85 standard graphs, the proposed algo-
rithm is able to improve on the best computational results of
the reference algorithm for 19 graphs, while matching the best
computational results for 60 instances. For the 28 Harwell-
Boeing graphs, the proposed algorithm discovers new record
results (updated upper bounds) for 12 graphs, while matching
the best-known results for 15 instances.

We have performed additional experiments to shed light on
the roles of the key composing ingredients of the algorithm
including: the extended evaluation function, the threshold-
based search and the shift-insert-based perturbation strategy.
We have shown that these components contribute positively
to the performance of the algorithm.

For future work, it would be useful to study additional
search strategies to better solve problem instances for which
the proposed algorithm does not perform well (e.g., two
dimensional meshes and r-dimensional hypercubes). It would
also be useful to investigate hybrid approaches mixing
population-based global search and local search. To this end,

98450

it is important to identify meaningful ‘“‘building blocks” in
solutions, which can be used to design powerful solution
recombination operators. Moreover, it is worth studying other
forms of extended evaluation functions to better guide the
search process. Finally, there are a number of effective algo-
rithms for other related bandwidth problems. It would be of
great interest to study these algorithms with respect to the
cyclic bandwidth problem and investigate the possibilities
of adapting their key search strategies to design effective
algorithms for the cyclic bandwidth problem.

APPENDIX

DETAILED COMPARISON OF THE ITPS

AND TScb ALGORITHMS

In this appendix we show detailed results of the pro-
posed ITPS algorithm with respect to the reference
TScb method [15] on the two groups of 113 benchmark
instances. The results for the group of 85 standard graphs with
known optima are presented in Table 9, whereas the results
for the group of 28 graphs from real-world applications
with unknown optima are listed in Table 10. Columns 1-3
in these tables indicate the graph name, its order (|V]) and
size (|E|). The known optimal values (Cb*) or the theoretical
lower (Lp) and upper (Up) bounds are then listed. The
remaining columns show the best (Cbp,), average (Avg. Cb)
and standard deviation (Dev.) of the cyclic bandwidth cost

VOLUME 7, 2019

J. Ren et al.: Iterated Three-Phase Search Approach for Solving the CBP

IEEE Access

TABLE 10. Detailed performance comparison of the TScb and ITPS algorithms over 28 Harwell-Boeing graphs.

Bounds TScB ITPS
Graph |V| |E| Lp Up Cb* Cbpest Avg. Cb Dev. Avg. Tpest D Cbpest Avg. Cb Dev. Avg. Tpest D p-value SS
jgl009 9 50 4 4 4 4 4.00 0.00 0.00 0 4 4.00 0.00 0.00 0 L.OE+00
rgg010 10 76 5 5 5 5 5.00 0.00 0.00 0 5 5.00 0.00 0.00 0 1.OE+00 =«
jeloll 11 76 5 5 5 5 5.00 0.00 0.00 0 5 5.00 0.00 0.00 0 1.0E+00
can_24 24 92 4 12 5 5 5.00 0.00 0.02 0 5 5.00 0.00 0.47 0 1.0E+00
pores_1 30 103 5 15 7 7 7.00 0.00 0.15 0 7 7.00 0.00 0.01 0 L.OE+00
ibm32 32 90 6 16 9 9 9.00 0.00 0.03 0 9 9.00 0.00 0.02 0 1.0E+00
bespwrOl 39 46 3 19 4 4 4.10 0.30 167.59 0 4 4.00 0.00 2.90 0 22E-02 +
besstk01 48 176 6 24 12 12.00 0.00 0.03 6 12 12.00 0.00 0.11 6 1.0E+00 «
bespwr02 49 59 3 24 7 7.00 0.00 0.00 4 7 7.00 0.00 0.03 4 1.0E+00
curtis54 54 124 g8 27 8 8.00 0.00 0.55 0 8 8.00 0.00 0.43 0 1.0E+00
will57 57 127 5 28 6 6.00 0.00 12.80 1 6 6.00 0.00 0.21 1 1.0E+00 =«
impcol b 59 281 9 29 17 17.00 0.00 0.47 8 17 17.00 0.00 0.05 8 1.0E+00 «
ash85 85 219 5 42 9 9.00 0.00 50.30 4 9 9.00 0.00 0.39 4 1.0E+00
nos4 100 247 3 50 10 10.00 0.00 0.69 7 10 10.00 0.00 0.41 7 1.0E+00 =«
dwt_234 117 162 5 58 12 12.00 0.00 19.22 7 11 11.00 0.00 8.74 6 25E-23 +
bespwr03 118 179 5 59 11 11.00 0.00 12.50 6 10 10.00 0.00 2.24 5 25E-23 +
besstk06 420 3720 14 210 49 49.72 0.57 198.23 35 45 45.00 0.00 200.49 31 6.3E-21 +
besstk07 420 3720 14 210 49 49.72 0.61 201.60 35 45 45.00 0.00 204.72 31 7.8E-21 +
impcol_d 425 1267 8 212 37 38.70 0.51 125.60 29 35 39.70 5.17 177.69 27 29E-01 «x
can_445 445 1682 6 222 47 47.00 0.00 83.01 41 46 59.72 7.63 313.35 40 23E-12 —
494 bus 494 586 5 247 35 38.50 1.30 287.74 30 30 4194 6.23 271.86 25 4.1E-02 —
dwt_503 503 2762 12 251 45 46.50 3.73 23431 33 41 59.00 9.61 116.37 29 1.7E-06 —
shermand 546 1341 3 273 28 28.18 0.39 180.88 25 27 27.66 0.48 139.71 24 2.6E-07 +
dwt_592 592 2256 7 296 32 32.52 0.54 186.54 25 29 36.00 23.80 405.82 22 1.2E-05 —
662_bus 662 906 5 331 55 66.38 3.98 255.91 50 61 7230 4.98 336.13 56 3.7E-08 —
nos6 675 1290 2 337 19 20.48 0.54 222.10 17 17 21.88 6.42 313.31 15 8.5E-05 —
685_bus 685 1282 6 342 36 39.78 3.11 303.12 30 33 72.68 12.88 343.03 27 2.6E-15 —
can_715 715 2975 52 357 60 60.86 0.53 195.56 8 60 168.12 74.02 231.48 8 7.8E-15 —
Average 22.25 23.19 0.58 97.82 14.32 21 29.21 5.40 109.64 13.43

* 14
Total + 6

— 8

reached by each of the compared methods over 50 indepen-
dent executions, the average computation time in seconds
needed to reach their best solution (Avg. Tpes), and the
difference (D) between its best result (Cbp,g) and the corre-
sponding best-known bound (either Cb* or Lp). A statistical
significance analysis was performed for these experiments
by using the procedure detailed in Section III-A and the
resulting p-values are presented. If a statistically significant
difference exists between the results of ITPS and TScb,
the corresponding cells in the last column (SS) are marked
either + or — depending on whether such a difference is in
favor of ITPS or not. Cells marked with the symbol x indicate
that no significant difference exists between the analyzed
algorithms.

ACKNOWLEDGMENT

The authors are grateful to our reviewers for their timely
and constructive comments that helped us to improve the
presentation of the work. Eduardo Rodriguez-Tello would
like to thank the high performance computing resources
(Neptuno cluster) and the technical assistance provided by
CINVESTAV-Tamaulipas.

REFERENCES

[1] J. Y.-T. Leung, O. Vornberger, and J. D. Witthoff, “On some variants of
the bandwidth minimization problem,” SIAM J. Comput., vol. 13, no. 3,
pp. 650-667, Jul. 1984.

VOLUME 7, 2019

[2]
[3]
[4]
[5]

[6]

[7

—

[8]
[9]

(10]

(11]
[12]

[13]

(14]

Y. Lin, “The cyclic bandwidth problem,” J. Syst. Sci. Complex., vol. 7,
no. 3, pp. 282288, 1994.

S. N. Bhatt and F. T. Leighton, “A framework for solving VLSI graph
layout problems,” J. Comput. Syst. Sci., vol. 28, no. 2, pp. 300-343, 1984.
A. L. Rosenberg and L. Snyder, “Bounds on the costs of data encodings,”
Math. Syst. Theory, vol. 12, no. 1, pp. 9-39, 1978.

F. R. K. Chung, “Labelings of graphs,” in Selected Topics in Graph
Theory, vol. 3, L. W. Beineke and R. J. Wilson, Eds. New York, NY, USA:
Academic, 1988, ch. 7, pp. 151-168.

J. Hromkovi¢, V. Miiller, O. Sykora, and I. Vrt’o, “On embedding inter-
connection networks into rings of processors,” in PARLE Parallel Archi-
tectures and Languages Europe (Lecture Notes in Computer Science),
vol. 605. Berlin, Germany: Springer-Verlag, 1992, pp. 51-62.

Y. Jinjiang and Z. Sanming, “Optimal labelling of unit interval graphs,”
Appl. Math., vol. 10, no. 3, pp. 337-344, 1995.

Y. Lin, “Minimum bandwidth problem for embedding graphs in cycles,”
Network, vol. 29, no. 3, pp. 135-140, May 1997.

P.C.B.Lam, W. C. Shiu, and W. H. Chan, “Characterization of graphs with
equal bandwidth and cyclic bandwidth,” Discrete Math., vol. 242, no. 1,
pp. 283-289, 2002.

P. C. B. Lam, W. C. Shiu, and W. H. Chan, “On bandwidth and cyclic
bandwidth of graphs,” Ars Combinatoria, vol. 47, no. 3, pp. 147-152,
1997.

S. Zhou, “Bounding the bandwidths for graphs,” Theor. Comput. Sci.,
vol. 249, no. 2, pp. 357-368, 2000.

W. H. Chan, P. C. B. Lam, and W. C. Shiu, “Cyclic bandwidth with an edge
added,” Discrete Appl. Math., vol. 156, no. 1, pp. 131-137, 2008.

E. de Klerk, M. E-Nagy, and R. Sotirov, “On semidefinite program-
ming bounds for graph bandwidth,” Optim. Methods Softw., vol. 28,
pp. 485-500, Nov. 2011.

H. Romero-Monsivais, E. Rodriguez-Tello, and G. Ramirez, A New Branch
and Bound Algorithm For the Cyclic Bandwidth Problem. (Lecture Notes
in Artificial Intelligence), vol. 7630. Berlin, Germany: Springer-Verlag,
2012, pp. 139-150.

98451

IEEE Access

J. Ren et al.: Ilterated Three-Phase Search Approach for Solving the CBP

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

E. Rodriguez-Tello, H. Romero-Monsivais, G. Ramirez-Torres, and
F. Lardeux, “Tabu search for the cyclic bandwidth problem,” Comput.
Oper. Res., vol. 57, pp. 17-32, May 2015.

L. H. Harper, “Optimal assignments of numbers to vertices,” J. SIAM,
vol. 12, no. 1, pp. 131-135, 1964.

E. Pifiana, I. Plana, V. Campos, and R. Marti, “GRASP and path relinking
for the matrix bandwidth minimization,” Eur. J. Oper. Res., vol. 153,
pp- 200-210, Feb. 2004.

E. Rodriguez-Tello, J.-K. Hao, and J. Torres-Jimenez, “‘An improved simu-
lated annealing algorithm for bandwidth minimization,” Eur. J. Oper. Res.,
vol. 185, no. 3, pp. 1319-1335, 2008.

N. Mladenovic, D. Urosevic, D. Pérez-Brito, and C. G. Garcia-Gonzélez,
“Variable neighbourhood search for bandwidth reduction,” Eur. J. Oper.
Res., vol. 200, no. 1, pp. 14-27, 2010.

J. Torres-Jimenez, [. Izquierdo-Marquez, A. Garcia-Robledo,
A. Gonzalez-Gomez, J. Bernal, and R. N. Kacker, “A dual representation
simulated annealing algorithm for the bandwidth minimization problem
on graphs,” Inf. Sci., vol. 303, pp. 33-49, May 2015.

Z.-H. Fu and J.-K. Hao, “A three-phase search approach for the quadratic
minimum spanning tree problem,” Eng. Appl. Artif. Intell., vol. 46,
pp. 113-130, Nov. 2015.

Y. Zhou, J.-K. Hao, and A. Goéffon, “A three-phased local search approach
for the clique partitioning problem,” J. Combinat. Optim., vol. 32, no. 2,
pp. 469491, Aug. 2016.

F. Glover and M. Laguna,
Kluwer Academic, 1997.

P. Galinier, Z. Boujbel, and M. C. Fernandes, “An efficient memetic
algorithm for the graph partitioning problem,” Ann. Oper. Res., vol. 191,
no. 1, pp. 1-22, Nov. 2011.

Q. Wu and J.-K. Hao, “Memetic search for the max-bisection problem,”
Comput. Oper. Res., vol. 40, no. 1, pp. 166-179, 2013.

X. Lai and J.-K. Hao, “A tabu search based memetic algorithm for the
max-mean dispersion problem,” Comput. Oper. Res., vol. 72, pp. 118127,
Aug. 2016.

G. Dueck and T. Scheuer, “Threshold accepting: A general purpose opti-
mization algorithm appearing superior to simulated annealing,” J. Comput.
Phys., vol. 90, no. 1, pp. 161-175, Sep. 1990.

G. Dueck, “New optimization heuristics: The great deluge algorithm and
the record-to-record travel,” J. Comput. Phys., vol. 104, no. 1, pp. 86-92,
Jan. 1993.

Y. Chen and J.-K. Hao, “Iterated responsive threshold search for the
quadratic multiple knapsack problem,” Ann. Oper. Res., vol. 226, no. 1,
pp. 101-131, Mar. 2015.

A. Duarte, R. Marti, M. G. C. Resende, and R. M. A. Silva, “GRASP with
path relinking heuristics for the antibandwidth problem,” Network, vol. 58,
no. 3, pp. 171-189, Oct. 2011.

M. Lozano, A. Duarte, F. Gortazar, and R. Marti, ‘“Variable neighborhood
search with ejection chains for the antibandwidth problem,” J. Heuristics,
vol. 18, no. 6, pp. 919-938, Dec. 2012.

M. Lépez-Ibéiiez, J. Dubois-Lacoste, L. P. Caceres, M. Birattari, and
T. Stiitzle, ““The irace package: Iterated racing for automatic algorithm
configuration,” Oper. Res. Perspect., vol. 3, pp. 43-58, Jan. 2016.

F. Hutter, H. H. Hoos, L. B. Kevin, and T. Stiitzle, ‘“ParamILS: An auto-
matic algorithm configuration framework,” J. Artif. Intell. Res., vol. 36,
no. 1, pp. 267-306, 2009.

Tabu Search. Norwell, MA, USA:

C. Ansotegui, Y. Malitsky, H. Samulowitz, M. Sellmann, and
K. Tierney, “Model-based genetic algorithms for algorithm
configuration,” in Proc. 24th Int. Joint Conf. Artif. Intell.,

Menlo Park, CA, USA, 2015, pp. 733-739.

P. F. Stadler, “Correlation in landscapes of combinatorial optimization
problems,” Europhys. Lett., vol. 20, no. 6, pp. 479-482, Nov. 1992.

E. Pitzer and M. Affenzeller, “A comprehensive survey on fitness land-
scape analysis,” in Recent Advances in Intelligent Engineering Systems
(Studies in Computational Intelligence), vol. 378, J. Fodor, R. Klempous,
and C. P. Sudrez-Araujo, Eds. Berlin, Germany: Springer-Verlag, 2012,
ch. 8, pp. 161-191.

W. Michiels, E. Aarts, and J. Korst, Theoretical Aspects of Local Search
(Monographs in Theoretical Computer Science. An EATCS Series), Ist ed.
Berlin, Germany: Springer-Verlag, 2007.

M. Marmion, C. Dhaenens, L. Jourdan, A. Liefooghe, and S. Verel, On the
Neutrality of Flowshop Scheduling Fitness Landscapes (Lecture Notes in
Computer Science), vol. 6683, Berlin, Germany, 2011, pp. 238-252.

98452

JINTONG REN was born in Pizhou, Jiangsu,
China, in 1993. He received the B.S. degree
in electrical engineering from Northwestern
Polytechnical University, China, in 2015, and
the M.S. degree in electronics and embedded
systems from the Technological University of
Belfort-Montbéliard, France, in 2016. He is cur-
rently pursuing the Ph.D. degree in computer
science with the University of Angers, France.
His research interests include combinatorial

optimization, graph embedding problems, and advanced metaheuristics
design.

JIN-KAO HAO was born in Hebei, China, in 1961.
He received the B.S. degree in computer science
from the National University of Defense Technol-
ogy, China, in 1982, the M.S. degree in computer
science from the National Institute of Applied Sci-
ences, Lyon, France, in 1987, the Ph.D. degree
in constraint programming from the University
of Franche-Comté, France, in 1991, and the Pro-
fessorship Diploma (Habilitation a Diriger des

CHUEEL Recherches) degree from the University of Science
and Technology of Montpellier, France, in 1998.

Since 1999, he has been a Full Professor with the LERIA, Université
d’Angers, France. He has authored or coauthored more than 250 peer-
reviewed publications and co-edited nine books in Springers LNCS series.
His research interests include the design of effective algorithms and intel-
ligent computational methods for solving large-scale combinatorial search
problems. He is also interested in various application areas, including data
science, complex networks, and transportation.

Dr. Hao has been a Senior Fellow of the Institut Universitaire de France,
since 2015. He became a Distinguished Professor (Professeur de classe
exceptionnelle), in 2010. He has served as an Invited Member of more than
200 program committees of international conferences and is on the Editorial
Board of seven international journals.

EDUARDO RODRIGUEZ-TELLO (M’18) was
born in Mexico City, Mexico, in 1973. He received
the M..S. degree in computer science from ITESM,
Cuernavaca, Mexico, in 1999, and the Ph.D.
degree in informatics from the University of
Angers, France, in 2007.

Since 2008, he has been an Associate Pro-
fessor (CINVESTAV-3B Researcher) with the
CINVESTAV—Tamaulipas, Ciudad Victoria,
Mexico. He has authored or coauthored a book
and over 40 technical papers and book chapters. His publications currently
report over 540 citations in Google Scholar with an H-index of 12. His current
research interests include evolutionary computation as well as the design and
implementation of effective metaheuristic algorithms for solving large-scale
combinatorial optimization problems arising in various application areas,
such as bioinformatics, graph theory, and software engineering.

VOLUME 7, 2019

	INTRODUCTION
	ITERATED THREE-PHASE SEARCH FOR THE CBP
	MAIN SCHEME
	EXTENDED EVALUATION FUNCTION
	FIRST PHASE - DOUBLE NEIGHBORHOOD DESCENT SEARCH
	NEIGHBORHOODS
	TABU LIST MANAGEMENT
	DISCUSSIONS

	SECOND PHASE - RESPONSIVE THRESHOLD-BASED SEARCH
	THIRD PHASE - SHIFT-INSERT-BASED PERTURBATION

	COMPUTATIONAL EXPERIMENTS
	EXPERIMENTAL SETUP
	DETERMINATION OF THE INPUT PARAMETER VALUES FOR ITPS
	COMPARISON WITH THE STATE-OF-THE-ART ALGORITHM

	ANALYSIS
	INFLUENCE OF THE EXTENDED EVALUATION FUNCTION
	INFLUENCE OF THE RESPONSIVE THRESHOLD-BASED SEARCH
	INFLUENCE OF THE SHIFT-INSERT-BASED PERTURBATION

	CONCLUSIONS AND FUTURE WORK
	REFERENCES
	Biographies
	JINTONG REN
	JIN-KAO HAO
	EDUARDO RODRIGUEZ-TELLO

