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ABSTRACT The distributed cubature Kalman filter is widely used in the field of target tracking, however,
the presence of model uncertainties will undermine its tracking stability and effectiveness for tracking
maneuvering target. In order to eliminate this effect on maneuvering target tracking, this paper develops
a distributed consensus based strong tracking cubature Kalman filter scheme. First, each node obtains its
local estimation with the usage of local observations via strong tracking cubature Kalman filter, where the
suboptimal fading factor and adaptive factor are introduced for adaptively modifying the filter gain. Then,
the designed filter gain is used for updating the local state estimation. Second, after all, nodes have achieved
its local estimation, each node exchanges its local estimation to its neighbors and updates its local estimation
according to the consensus communication protocol. It can be further proved that the distributed interaction
between neighbors will contribute to enhancing the tracking stability. The detailed proof for stochastic
boundedness of the estimation error is analyzed by introducing a stochastic process. Simulation results
demonstrate that the proposed algorithm can achieve higher tracking accuracy than the existing methods
for tracking a maneuvering target.

INDEX TERMS Adaptive cubature kalman filtering (ACKF), consensus method, distributed estimation,

stochastic boundedness.

I. INTRODUCTION

The distributed state estimation (DSE) problem for nonlinear
system has received extensive attention in past few years
[1]-[3]. Based on the fast development of large scale mobile
sensor network, DSE has been widely used in target local-
ization and tracking, surveillance [4]-[6]. Compared with
traditional centralized estimation, DSE does not need a cen-
tral node to process large amounts of communication data
in real time [7]. The communication topology of the mobile
sensor network need not to be connected completely and
each sensor node in the network only communicates with
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its neighbor [8]. The distributed structure can reduce the
communication burden of sensor network, which makes the
filter algorithm based on consensus method more effective in
dealing with practical problems. Olfati-saber et al. proposed
the distributed Kalman filtering algorithm (DKF) for dis-
tributed estimation in discrete linear system [9]. Distributed
estimation based on extend Kalman filter named distributed
extend Kalman filter (DEKF) is proposed for nonlinear sys-
tem [10]. However, DEKF has low precision when dealing
with high-order nonlinear system because extend Kalman
filter algorithm expands the nonlinear function into Taylor
series and ignores the second-order and above terms.

The consensus algorithm is an effective method for solving
DSE problem and it can almost achieve the same performance
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as centralized method. G. Battistelli et al. propose consensus-
based linear and nonlinear filtering [11] and W. Y. Li et al.
propose a weighted average consensus-based unscented
kalman filtering [12]. The main idea of consensus based
distributed estimation is to reach consensus of the state esti-
mation and measurements by spreading the available infor-
mation between sensor nodes [13]. The consensus-based
algorithm for DSE problem include consensus on information
(CI), consensus on measurements (CM), and consensus on
estimation (CE) [11]. The CE algorithm, which is based on
the idea of spreading the available information over sen-
sor network by performing average consensus of the local
estimation at each time instant, can be used to solve the
DSE problem. The consensus based distributed information
filtering algorithm is proposed in [14], which has the advan-
tage of consensus estimation and information filtering fusion.
Consensus based estimation for nonlinear system is more
challenging and has been a focal point of state estimation
research for many years [15], [16].

In the past few decades, the filtering algorithm for non-
linear system has been studied widely [16]-[18]. Ienkaran
Arasaratnam et al. have proposed the cubature Kalman filters
(CKF) [19]. Then CKF algorithm become a popular filter
algorithm to solve the DSE problem because it has an excel-
lent performance while dealing with the high-order nonlinear
system. Ding et al. propose distributed algorithm-based CKF
algorithm, which can achieve the high-precision filtering and
strongly robust to node failures based on the information
filter and weight-average consensus method [20]. Adaptive
cubature Kalman filter (ACKF) is proposed by Tan et al. and
it can adjust the weight matrix between node and its neigh-
bor to improve the convergence rate of consensus iteration
adaptively [21]. Both of the algorithm mentioned above can
achieve target tracking in a certain degree, but neither of
them can reduce the effect of the previous bad measurement
on the current estimation, which is important for tracking a
maneuvering target. Y. H. et al. propose adaptive tracking
algorithm based on modified strong tracking filter (MSTF),
which is suitable for tracking maneuvering target and non-
maneuvering target [22]. However, the MSTF algorithm does
not consider the distributed state estimation for maneuvering
target.

It has been realized for many years that traditional filtering
method has low accuracy for state estimation of maneuvering
target and the result of state estimation is very susceptible
to measurement noise [3], [23]. How to improve the accu-
racy of state estimation for maneuvering target has been a
central topic in state estimation. It is, however, impossible to
eliminate the effect of noise completely. Besides, centralized
estimation can achieve high tracking accuracy at the expense
of increasing the burden of network communication. It is
a fact that available techniques cannot solve the problems
mentioned above at the same time.

This paper proposes a consensus based strong tracking
adaptive cubature Kalman filter (CSTA-CKF) algorithm for
mobile sensor network to solve DSE problem of nonlinear
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system, which takes advantage of strong tracking adaptive
cubature Kalman filter and consensus algorithm. The algo-
rithm is consisted of two steps. The first step is local filter
stage. In that stage, the suboptimal fading factor is intro-
duced firstly to adjust the filter gain, which makes the resid-
ual sequences orthogonal to achieve the strong tracking for
maneuvering target. Then, we introduce a bounded adaptive
factor to balance the weight of state prediction and measure-
ment when the measurement is affected largely by noise.
The second step is consensus process. In this step, each
node exchanges its local estimation with neighbor node and
then updates its local estimation according to the consensus
communication protocol to achieve global optimal estimation
of target state. Besides, the communication topology need not
to be connected completely and the burden of communication
is reduced largely for each sensor node only communicates
with its neighbor in the consensus process.

The rest of the paper is organized as follows. Section 2 gives
some basic concepts of graph theory and nonlinear sys-
tem. Section 3 introduces the standard CKF filtering algo-
rithm and strong tracking adaptive cubature kalman filter.
Section 4 introduces the consensus algorithm and gives the
consensus based strong tracking adaptive cubature Kalman
filter algorithm and compared it with some other filter
algorithms for nonlinear system. The stochastic bounded-
ness of the algorithm is analyzed and the detailed proof is
given in Section 5. Section 6 gives a simulation example.
Section 7 concludes the paper.

Il. PROBLEM DESCRIPTION
In this section, some basic concepts and results on graph the-
ory are introduced and the problem description is presented.

A. BASIC CONCEPTS ON GRAPH THEORY

Let G = {V, E} be an undirected graph of order N, where
V =1{1,2,...,N}is the node set and E C V x V is the
edge set. Two nodes are said to be connected if they can
communicate directly with each other. The adjacency matrix
A with elements a;; is defined by a; > 0 if and only if
(G, € E,and g;; = 0 otherwise. For an undirected graph,
if (j, i) € E, then (i, j) € E. The set of nodes connected with
a certain node i is called the neighbor set of node i and the
set is denoted by N;. Let deg;, (i) = Zsz 1 ajj denote the in-
degree of node i. Denote D = Diag(deg;,(i),i = 1,2,...N)
the degree matrix of G. The Laplacian matrix of the graph is
defined as L = D — A. If an undirected graph is connected,
the Laplacian has a single zero eigenvalue, and the other
eigenvalues can be listed in an increasing order 0 = A{(L) <
ML) < ... < An(L).

B. PROBLEM DESCRIPTION

Assume that a set of nodes are evenly distributed in space. All
the nodes cannot obtain the real state of the target directly.
However, the nodes can get the distance and angle of the tar-
get through certain sensors. Then the following equations (1)
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and (2) can describe the discrete-time nonlinear system:

X = f(Xp—1) + Wi—1, ey
Z;;:hi()ck)‘FV;;, i:1,2,...,N, (2)

where x; € R” is the state vector of the system, z}; e R™
represents the observation vector of node i, k is the sample
instant time, f(-) and A‘(-) are the nonlinear state transition
function and measurement function respectively. wy repre-
sents the process noise and vf{ represents the observation
noise, which covariance matrices are Qy and Rj{.

Each node can obtain the global optimal state estimation
based on local measurements and neighboring information
using the consensus Kalman filter. In the consensus process,
the state estimation and intermediate states are exchanged
among the nodes to reach the estimation consensus. Consider
that each observation node should exchange their local state
estimation at every sampling time instant, which cause the
sensor network have to process a great deal of data. As a
result, it will inevitably aggravate the burden of sensor net-
work. Although exchanging information at every sampling
instant contributes to the accuracy of the state estimation, it is
a good choice to decrease the times of communication on the
premise of satisfying the accuracy requirements in order to
reduce the burden of the network.

IIl. STRONG TRACKING ADAPTIVE CUBATURE

KALMAN FILTER

Cubature Kalman filtering (CKF) algorithm has been one of
the most popular filter algorithms for nonlinear system [19].
However, the CKF algorithm has low precision when esti-
mating the state of maneuvering target. The strong tracking
adaptive cubature Kalman filtering (STA-CKF) algorithm can
estimate the state of maneuvering target with high precision
for the suboptimal fading factor and the adaptive factor are
introduced to weaken the effect of the previous measure-
ment on the current estimation and balance the weight of
prediction and measurement of state respectively. In this
section, the CKF algorithm is given first, then the STA-CKF is
introduced.

A. CUBATURE KALMAN FILTER
In this section, the standard CKF filtering algorithm is
introduced first.

1) PREDICT

For each sensornode i (i € N), which is included in the sensor
network, one initi_alize the estimation of state fc(") and error
variance matrix Pf, according to the following equations

X = E(xo), A3)
Py = El(xo — §)(xo — %), “)

wherei=1,2,---,N.
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By using the Cholesky decomposition approach, one gets

the equation
. . . T
L
P =\/P2—1\/P5<—1 : o)

Then 2n cubature points can be obtained according to the
following equation

x/?il = P;'(_lé‘r +3AC;;_1, (6)

where r = 1,2, - - - 2n, ¢, is the rth element of the following
equation

1 0 -1 0 0
1 0 0 -1 0
Jn
0 0 1 0 0 -1
2n

Then the propagated cubature points can be obtained by
the following transform function

x}i’&(,] :f(x]:i])- (7
Next the one step prediction can be completed according to
1 2n
Al _ ir
Xklk—1 = n Xklk—1> ®)
r=1

2n
. 1 . . T . . T
i _ ir ir ~i ~i
Pij—1 = _2n§ x: k|k—1(xk|k—1) X1 Fgp—) Hk—1- (9)
r=1

2) UPDATE
The obtained cubature points can be transformed into the
forms as below based on the measurement function

Zy" = h ey, (10)

where r = 1,2,---2n, Z;'" is the transformed points. Then
the prediction of measurement and error covariance can be

obtained according to the equations below.

12n

G=52-2%4" (1D

r=1

2n
. 1 . . T i A T .
Plzk,zk = Z 2 :Zli’r(zli,r) _Zk(zk) +R;<7 (]2)
r=1

2n
. 1 . . T N M T
Py = n § :xll{ﬁ(—l(ziir) — X1 @) (43)
r=1

The filter gain can be calculated by
Ki=pP _P )L (14)

Xk sk N ZhsZk

In the final step, the state estimation and error variance of
node i at time k can be updated according to the following
equations

& = Tpeor + Ki@ = 2, (15)

fc = P;;\k—l - K,iP;k’Zk(K,i)T. (16)
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Remark 1: CKF and UKF algorithm are based on
Bayesian filter for nonlinear system. CKF gets 2n cubature
points based on three-order spherical radial criterion and then
calculates the Gaussian weighted integral. UKF calculates
the Gaussian weights through a set of sigma points. The
sigma points have one more center points than cubature
points and those points occupy a higher weights. The center
points is negative while approximating the high-dimensional
nonlinear system. For example, the covariance is proved non-
positive and indefinite due to those negative center sigma
points with high weight. Meanwhile, EKF is another filter
algorithm for nonlinear system and it has low precision when
dealing with second-order nonlinear system due to it expands
the nonlinear function into Taylor series and ignores the
second-order and above terms. In that case, CKF is better than
EKF.

B. STRONG TRACKING ADAPTIVE CUBATURE KALMAN
FILTER ALGORITHM
The strong tracking adaptive cubature kalman filter algorithm
has been one of the most popular algorithm for solving target
tracking problem. H. W. Zhang et al. propose strong tracking
SCKEF based on adaptive CS model for maneuvering aircraft
tracking [24] and R. Wang et al. propose a fusion algorithm
based on adaptive cubature strong tracking filter for target
tracking [25]. The general form of the strong tracking adap-
tive cubature Kalman filter is summarized in this section.
According to the CKF filtering algorithm, the one step
prediction of state and variance can be obtained as follow
equations

2n
N 1

Xelke—1 = n

r=1

x,’;’ﬁc_l, (17
2n
. 1 . . T . " T
Pli—y = %Zx;c];cq(x;{&_l) K1 )+ Ck. (18)
r=1

In order to track maneuvering targets accurately, we intro-
duce a suboptimal fading factor A; to adjust the variance
Pf{ 1k in real-time. Then adjust the filter gain to force the
residual sequences orthogonal to achieve the strong tracking
of the target. The suboptimal fading factor Ax can be calcu-
lated by follow formulas.

A = : RS P L/ ST
1, %0 <1 (M

Ny = Vi — H QeH! — BR, (20)

My =P, . —Vi+Ne+(B— DR, @1

Hy = [P, 1T1PL 17" (22)

where 7r[-] is matrix trace. (8 > 1) is the weaken factor,
which can smooth the estimation. Hy is the Jacques matrix
and Vy is the measurement residual covariance, which can be

VOLUME 7, 2019

calculated by the equation

ylle, k=0

Vie— r . 23
Pkl+)’k]’k’ k> 1 (23)
1+p

where p is the forgotten factor and let p = 0.95 generally. y;
is the measurement covariance.

After introducing the suboptimal fading factor A, the pre-
diction step covariance matrix can be calculated by the follow
equation according to equation (6), (10), (11) - (13)

Vi =

2n
. 1 . . T i i T
Plk—1 = Mk (% lel{\;—1(le{|2—1) = X1 Gre—r) )
r=1
+ Ok-1. (24)

Remark 2: The suboptimal fading factor Ay is introduced
to reduce the influence of past data on the current data and
make the filter gain can be adjusted online and achieve targets
stable tracking. Moreover, A; has no affect on the conver-
gence speed of covariance due to it can be regarded as a
constant, which can be calculate online.

Under normal measurement circumstance, the true value
of measurement covariance equals the measured value. The
formula below is satisfied.

VkaT =Pyy =Py +R (25)

When bad measurement occurs, equation (25) cannot be
satisfied. By introducing an adaptive factor to form adaptive
cubature Kalman filter, the equation below is satisfied.

Vi = Pyz = Po + 1R, (26)

Assumed that the adaptive factor py is bounded and it can be
calculated by

_rlny{1—1r[P]
N 1r[R] '

27)

The adaptive factor can balance the weight of prediction
and measurement of state, and fade the effect of target maneu-
vering on filter. Thus improving the filter accuracy.

The ACKEF algorithm is applied only when the target has
maneuvering and the normal CKF algorithm is used under
normal circumstance. The algorithm is chosen according
to the measurement value. Assumed that the measurement
value obey the x? distribution of n: ¥ ~ x2(n). Select
the confidence interval a: P{x> < XgM} = 1 - q,
0 < a < 1. The threshold of the measured value detec-
tion can be determined according to the confidence level
and the criterion for adaptive selection switching is: CKF:
Y < Xath;ACKF: Y > X§,M'

Next update the measurement to achieve STA-CKF
algorithm, one can get

2n

. 1 . N .

PZZk,Zk = 2}12 :Zl?r(zlgr) — 41(z) +/kasz (28)
r=1
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2n

. 1 . T " AT

Prow = 57 2%k &) —Hpa @ @9
r=1

K]é = ijk»Zk(P;k,Zk)_l’ (30)
P, =Py — KiPL (KD (32)

IV. CONSENSUS ALGORITHM AND CONSENSUS

BASED STRONG TRACKING ADAPTIVE

CUBATURE KALMAN FILTER

A. CONSENSUS ALGORITHM

The consensus method has received extensive attention due to
its wide applications [26]—[28]. The distributed state estima-
tion problem for sensor network can be treated as a consensus
problem [15]. In the local filtering stage, each node gets
an estimation of the target state by applying the filtering
algorithm based on the local prediction and measurement
information. In the consensus iteration process, each sensor
node interacts information with its neighbor. In the final of
the consensus process, each node reaches consensus. The
state estimation fc}( and covariance matrix P}; are selected as
information pairs, which can reach a same level in the final
of the consensus process. According to [12], the consensus
method can be summarized as follow equation.

GF, PH = lim &, PL ), (33)
=00 ’ ’

where [ represents the iteration times of consensus. fc,’( and
P, are the state estimation and covariance matrix of node i
at time k. X; ; and P} ; are the variables of Ith step in the
consensus process, which satisfies

s _disi ijai
X gl = T Xy +Z’T e (34)
JEN;
i _iipi ijpi
iy = 7P+ ) 7P, (35)
JEN;

where N; is the neighbor of node i. 7'/(j € N;) is the
consensus weight, which satisfy

o v =1,7% > 0. (36)
JEN;

w4
Based on the nonlinear filtering algorithm, each node
obtains the local state estimation. In the consensus step,
each node interacts estimation information with its neighbor.
Finally, each node gets estimation of the target state according
to the local measurements and information from neighbor to
reach the estimation consensus. Noticed that the distributed
sensor nodes only exchange information with its neighbor
during the consensus process, which can decrease the burden
of communication network. In the centralized model, the cen-
ter node cannot deal with the huge real-time dataflow when
the communication network is large enough.
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B. CONSENSUS BASED STRONG TRACKING ADAPTIVE
CUBATURE KALMAN FILTER ALGORITHM AND SOME
OTHER CONSENSUS BASED ALGORITHMS

According to equation (28)-(32), we can complete the
CSTA-CKF algorithm by following two steps. First, one
initialize X , = &(, P} o = P}.Forl =0,1,---,L—1,then
broadcast the information pairs (fc,’;’ I P};’ ;) with its neighbor
and fuse the state estimation and error covariance according
to the consensus algorithm below

s _iini ijai

X gl = T % "‘Z” X0 (37
JEN;

i _ _ipi i.jpl

Py ="+ 7P, (38)
JEN;

Finally, the state estimation of target based on the
CSTA-CKEF algorithm can be obtained by

X =3, (39)
P =P,. (40)

Remark 3: The Algorithm 1 is summarized under the cir-
cumstance of fixed topology. The Algorithm is also suitable
for switching topologies with the conditions that the isolated
nodes do not exist in the switched topologies and the topology
weights satisfying W1 =1, 17w, = 17.

The CSTA-CKF proposed in this paper is summarized
in Algorithm 1. For comparison, the consensus based
extended Kalman filtering (CEKF) algorithm is summarized
in Algorithm 2 and the consensus based unscented Kalman
filtering (CUKF) algorithm is summarized in Algorithm 3.

V. STOCHASTIC BOUNDEDNESS OF THE

ESTIMATION ERROR

The most commonly used criterion for the filter performance
is the algorithm’s boundedness in the sense of mean square
error (MSE). The estimation error of the standard CKF algo-
rithm has been proven to be bounded. In this section, some
basic preliminaries on stochastic boundedness are presented
and the boundedness proof of the CSTA-CKF algorithm
under mean square error is proposed. Consider the system
described by equation (1) and (2). Motivated by the technique
in [2], [4], [28], we derive a pseudo system matrix and obser-
vation matrix in this sensor network in order to analyze the
boundedness of CSTA-CKF algorithm. S,i_l and 0}; can be
defined by

. o

Skt = Py e ) P ™ (41)
P et T

Of = (Pyo) P )™ (42)

Meanwhile, one introduce the compensation diago-
nal matrices o = diag(a,’( l,a,’( g Q) By =
diag(By; |, By o> - - - » By ,) to compensensate the error caused
by the approximation. Then the system can be rewritten as

X = oy Fi_Xe—1 + wr—1, 43)
z, = BHpxk +vy, i=1,2,...,N. (44)
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Algorithm 1 Consensus Based STACKF Algorithm

Algorithm 2 Consensus Based EKF Algorithm

1) Perform the local CKEF filter and prediction step

xklk 1= 2n Z xklkfl’

k|k 1_2n2xk|k l(xk\k 1) xk\k l(xk|k 1) +0k-1.

2) Introduce a suboptimal fading factorA and calculate
the covariance

i o T

1 1
Pk|k ;= M| Zxklk l(xk|k 1) =Xt et ) +
Ok—1.

3) Introduce an adaptive factor ug, which satisfies
_ rlny/1-rlP).
- tr(R]
4) Update the measurement to achieve STACKF algo-

rithm.
1 2 ir i T ISRV i
Ple %~ 2n Z 2 (Zy) = (5)" + Ry,

r—l
P;CA [ 2n Z xiqic 1(Zl r)
_ 1
Kk Piq Zk( Zks Zk) .
xk _xkik 1 T Kz — Zk),.
P _Pic\k 1 - K; P;k Zk(Kli)T'

5) Apply consensus algorithm for/ =0, 1, - - -

ai SiNT
= X1 (&)

,L—1.
a) First initialize the fc,’;‘o = fc,’( Pic,o_ = P};.
b) Each node exchange the (x; ,, P} ;) information
with its neighbors.
¢) Combine the state estimation and error covari-
ance according to the consensus algorithm:
X =7+ Y At fx’ 1
JEN;
Py =P+ Z”/Picz
JEN;
6) Then the state estimation can be obtained by
IR i _ pi
X% = %L P = Py

Assumption 1: Provided that o, f, B, h,a.f, B, h # 0,

and then we can get the inequalities (45), (46), (47), (48) when
eachk > 0:

o’ < al(a)! <a’l, (45)
A< FFED" <f21, (46)
B < BB < B (47)
W1 < Hi(HHT <RI (48)

Assumption 2: There exist positive real numbers ppyin,
pmax > 0,p,p > 0, r,7 > 0, so that the following

inequalities are fulfilled:

Pmin = Pi < Pmax, (49)
pl < P <pl, (50)
ql < O <4l (51)
rl < piRE < I (52)
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1) Calculate the one step prediction based on the EKF
xe = f-1),
P’| —] = FP’ LF'+0.
2) Update the state and covariance matrix
Kl = P;{lk (i (HiPly_ Hi +R)™,
xk = xklk 1 +K; (Zk i hi()%]ldk_]v 0)),
= = KkH)Pklkfl
3) Initialize the information pairs with the follow equa-
tions
fci,o =x1ivPi<,o =P
4) Apply the consensus algorithm.
a) Each node spread the local information of fc,’( !
and Pf{_ ; to neighbors
b) Each node obtain the (x,‘;’ I P};’ ;) information
from neighbors.
¢) Forl = 0,1,...,L — 1, fuse the information
from local and neighbors according to following

equations: '
ai o dini ija
X =705+ 2 TR,
JEN;
i ii pi ijpl
Prig=7"P+ 2w Py
JEN;

5) Set the state estimation as
ai_ai i _ pi
X = X P = Py

Lemma 1: [29] Provided that ¢; is a stochastic variable
and V(g ) is a stochastic process, then there exist real num-
bers Vimin > 0, vimax > 0 and u > 0,0 < A < 1, such that

V(i) < vmaxllsll®,  (53)
= AV(sk-1), (54)

Vnin |l Sk 12
E{V(s)lsk—1} — V(ck-1)

are satisfied. Moreover, the stochastic process can be proved
to be bounded in the sense of mean square error, which means

IN N

k—1

E s {lcol?} a-nf+ 2= a-a) 55)

'min 'min
i=1

Lemma 2: [30] Provided that A € R"™" B € R"*", and
C e R™" if A > 0and C > 0, one can get

'sa@a+o (56)
A~' > BBTAB + C)"'BT. (57)

Lemma 3: [13] If Assumption 1 and Assumption 2 hold,
then there exist definite positive matrices ¥, Y, Y+ and Y T,

which satisfied that 0 < ¥ < ¥/ < Yand0 < YT <

Yli|k | < < Ytforanyk > 1andieN.

Theorem 1: Consider a nonlinear system described by (1)
and (2). In the case that Assumption 1 and Assumption 2 are
established, the topology remains unchanged during the con-
sensus iteration and the consensus weight matrix [ is row
stochastic and primitive at time instant k, the error of state
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Algorithm 3 Consensus Based UKF Algorithm

1) Collect a set of points and weights ' using sampling
rules of UKF. .
X=Xkt Xt/ (n + MPry Xg—+/(n + M) Py ].

2) Calculate one-step prediction of points set.
2n

1
Xppk—1 = waldk 1>

li

Pklk—l_Zw[Xk\k— . X X t) "1o.

3) Calculate the prediction and covariance of the state.

—_ l l
Xeje—1 = Z ' X1

Zn
Pji— 1—_260 (X1 — k‘k_ll +Q

4) Generatela new set of points according to the one-step
prediction based on UT transform.

Xk|k | = [Xk|k 1 Xk\k 1+ /(n+ )P Xk|k 1 —
V(@ + A)Prj—1].

5) Fori=1,2,---,2n+ 1, apply the points set obtained
from (4) into the measurement equation and get the
measurement value.

Zli|k—l = h(Xlé|k—l)'
6) Then calculate the covariance and mean prediction of

system by following equations
2n

_ _ i
Zk|k—1 = Z wlzklk*l’

k‘k_l][xk\k 1—

Pya= Za) klk 1 chk 1][Zk|k 1—Zk|k 1] +R
. . — . - T
Py = Z ' X1 = Zik—1Zg g — Zik—11" -
s
7) The Kahlnan gain can be obtained by
Ki = Py 5 P70,

8) Next update the prediction and covariance of state by
Xic = Xije—1 + Ki[Zk — Zijk—11,
Py = Prj—1 — Kk Py o K|
9) Apply the consensus algorithm.
a) Each node spread the local information of )Ac,’{ !
and P};’ ; to neighbors.
b) Each node obtain the (x,’;’ IR P};’ ;) information
from neighbors.
¢) For/l = 0,1,...,L — 1, fuse the information
from local and neighbors according to following
equations: ;Cli,l+1 = JT"’[)AC;;’I + > JTi’j)AC]](J,
JeN;
Pi g1 =7 Py + Z”]chl
JeN;
10) Set the state estimation as
i =3P =P

d

— X}, e represents a constant value.

estimation satisfies

2
Yl <e

i A
where ¥; = xi
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Proof At node i, first define the prediction error as
xk +1|k = Xk41 — xk ke then define the estimation error
as xk = x; — xk Besides, one define X X1k = col(xk+1|k,
i€N),x, = COl()Ck,l € N).

LetP = (p1 s, ph e N )T be the Perron Frobenius left
eigenvector of the matrix WL. Where p' represents a positive

element and satisfies PT WL = PT | then one can get

> oy =p'. (58)

jeN
A stochastic process is selected as below:
VGt = 3 PG Py T (59)
According to the Assumption 1 and Lemma 2, one can get
Gaf? + ' < (Pl < @aPfP+ g7 (60)

From Assumption 2, we get

Pmin 2
T 11k || SV R 1p)< Xe+1k)| - (61)
e el LY
Meanwhile, one can get
X1k |
= X+l = Xy
= a,iS,i(xk — fc,i) + wy,
= OékSk(ZWka _ZWL 0)+Wka
jeN jeN
= ol SEO Wi — 3 o) + wie,
JEN
= i Sy wi O — Fyey — Ky (G — 5N + we,
JEN
= o S{LY Wi = K[ B0k = e y)
jeN
— Z wy KJ1/] + wy,
JEN
i,j~j —~iJ
= 2 Tl + )0 B+ we 62)
JEN JEN

where T/=w}/al SL(I — K| B]0}), Ef/=—w}/alSIK].
Then, substituting (62) to (59), one can get
E{(V @10 Xkk—1)}
Lo T . _1 o -
= B0 ) Phgap) T i1},
ieN
= Oy + Py + Py (63)

where

. P T . _
Py = E{ZP’(Z D) Prgnp) !

ieN JeN
x (Y T k1) (64)
JEN
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i =k T (pi -1
Pp = E{ZPZ(Z Di,j"i) (Phype)

ieN JeN
x(Y BV Ek-1). (65)
JEN
i i -1
Oy = EDY_pWE Py wilfig—1l. (66)
ieN

Under the circumstance of noise-free. One can get
Pryip)”" = [o SpPi(eg ST + Oil™!
< FapsH TP efsH™ (67)
where 7 < 1.

. i (A _
iy = E{ZPI(Z F;,inlkil) (Prs1i) '

ieN JjeN
X(ZFZ]%,(_I)WMk*l},
jeN
- . L -1 T .
< TE{ZPI(ZWZLJ(PQM—Q K1) (PP
ieN JEN
L -1 .
XD W P i) (68)
JjenN

Then define A =1 — t,according to (Pj‘()_1 > Y
JE{Ni,i}

i.j -1 :
wi( k|k—1) , we can write that

- l l.’. i T . _ .
Of STEQ P Y Wi Gl D Pl D™ ),

ieN jeN
< fE{Zpi(illé\k—l)T(Pilk—l)_lxilk—l}
ieN
= (1 = ME{V(Gkik-1)}- (69)

Consider the process noise and measurement noise, one
can get

iy + Py
. i - T . -1 i
= EQ_PQ_ VD P QWD
ieN  jeN JEN
; i -1
+ZP’W1(T(P§<+W() Wi | Xkjk—1})
ieN
- -1 5 _,_ .
< [P 1| x| @PERN Y P im
i.jeN
+3()_phm & (70)
ieN

where n and m represent the dimensions of x; and z};, N is the
number of the nodes.
According to equation (70) and (54),

E{Vi 1 Gap 101 Ee ik -1} = Vi Grpe—) < o —=AViGrpe—p. (71)

According to Lemma 3, it can be concluded that the
stochastic process X;11jx is bounded in the sense of mean
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square error. So the )Nc,‘< 41% is bounded in the sense of mean
square error. Besides, according to the equation

K1 = o F (e — ) + wie,

and finally one gets
12
E {ka( } <a ¥ AE {

Taking the same method, it shows that wy is also bounded
in the sense of mean square error. Finally, We can prove that
the estimation error is bounded in the sense of mean square
error. The proof is completed. [ ]

)?/’;+1|kH2}—E{IIWk||2]). (72)

VI. ILLUSTRATIVE EXAMPLE
In this section, a simulation example is given to compare
the availability of the STACKF, CEKF, CUKF, CCKF and
CSTACKF. The mobile sensor network on the ground is
designed to track the target in the sky. The network consist
one moving node and three static nodes. The initial posi-
tion of the static nodes is (2500,1000) km, (3500,1000) km,
(4500,1000) km and the position of moving node is (1500,0)
km with a 10 km/s speed in the X direction and 20 km/s speed
in the Y direction. The height of the sensor node is 0.2 km.
The initial position of the target is (2000,10000) km with a
height of 0.5 km. Each sensor node could obtain the directions
and distance of the target.

The target’s state can be described as x; = [ & ék Nk Mk 1
& and 7 are the position in the X direction and Y direction, £
and 7 is the velocity in the X direction and Y direction. The
turning speed can be represented as €2 and wy_1 is the process
noise. The angular speed of turning is 0.5°/s and covariance
of the process noise is 107/,. The time interval for each
estimation is 0.5s.

The measurement function can be express as the equation

ST [ Vet ra-’ ]
a4 = | Vi | =| arctan((ne — ¥}/ — x| TV (73)
Ok arctan(Ah/d)

where d = \/(gk —xI2 4 (e — yL)2 + A2, Ah is the
height difference between target and sensor node. v}; is the
measurement noise at time k. ¥ and 6; is the azimuth
angle and pitch angle, respectively. r; represents the distance
between target and sensor node.

The topology of the sensor network can be illustrated by
Fig. 1 and each node can only communicates with its neighbor
in the consensus process. Besides, 77/ represents the consen-
sus weights in the consensus weight matrix 1. According to
the Metropolis weights rule, we get

i

1 + max {d,-,dj}7 Flj ek,
A =11=Y " xl, ifi=j, (74)
ijeE
0, otherwise.

where d; is the degree of node i.
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FIGURE 1. Topology of sensor network.
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FIGURE 2. The trajectory of sensor and target in 2-D.
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FIGURE 3. The trajectory of sensor and target in 3-D.

The consensus weight matrix can be selected as

-2 1 1 -
2 2 )
P
3 12 o1 Y

=9 7 1T 1 (75)
N
o o - =2
L 4 44

Figs. 2 and 3 illustrate the sensor 1’s position, the sensor
2’s position, the sensor 3’s position, the sensor 4’s trajectory
and target’s trajectory in 2-dimensional and 3-dimensional
respectively. Note that the sensor node and the target are not at
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FIGURE 4. Filtered trajectory in 2-D.
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FIGURE 5. Filtered trajectory in 3-D.

the same height, so it can be guaranteed that the trajectory of
the moving node does not intersect with the trajectory of the
target. Besides, it can be seen from Fig. 2 that the target makes
maneuvering at the position (2000,4000) km and position
(4000,2500) km.

The filtered trajectory in 2-dimensional and 3-dimensional
based on the CEKF, CUKF, CCKF and CSTA-CKF are shown
in Figs. 4 and 5, respectively. At the beginning, there exists a
large tracking error between target trajectory and filtered tra-
jectory. The tracking error of CSTA-CKF are approximately
equivalent to those of the other filters. After a few steps, how-
ever, it can be seen from the simulation results that the CSTA-
CKF algorithm has the best tracking performance among
these algorithms when tracking the maneuvering target.

Fig. 6 shows the azimuth angle measured by four sensor
nodes based on the CSTA-CKEF algorithm. The azimuth angle
measured by four sensors are different for the position of the
four sensor nodes are different. The azimuth angle between
sensor 4 and target is 180 degree when t = 200s, which can be
seen from Fig. 6. Besides, sensor 1, sensor 2 and target form
a horizontal line, which result the azimuth become 0 when
t = 370s. The pitch angle is close to O for the height difference
between target and sensor nodes is relatively small, so the
picture of pitch angle is not given.
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FIGURE 6. The azimuth measured by sensors.
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FIGURE 7. Comparison of RMSE.

In order to illustrate the performance of the proposed filter-
ing algorithm, Monte Carlo simulation has been performed
to validate the efficiency of the algorithm. The root-mean-
square-error (RMSE) for node i at time instant & is defined
as

LM 1/2
RMSEk={ o ; [(Ekm - §k|n)2+(77k\n - ﬁk|n)2]} ;
where [ &kn nk|,,]T and [§k|n ﬁk|n]T are the true and esti-
mated states at the n-th Monte Carlo algorithm performing
respectively, M is the times of Monte Carlo algorithm per-
forms.

Fig. 7 shows the RMSE of CUKF, CEKF, CCKF and
CSTA-CKEF. The error plots show the RMSE values averaged
over 100 Monte Carlo algorithm runs. At the beginning,
the RMSE of those algorithms are all relatively large. After a
few steps, the RMSE of the CSTA-CKF become lower than
the other algorithms by 60%. The convergence rate of CCKF
and CSTA-CKF algorithm is shown in Fig. 8. Compared to
the CCKEF algorithm, the convergence rate of the CSTA-CKF
is reduced by 50 %.

As shown in Fig. 9, another 300 times Monte Carlo
simulation is conducted to compare the RMSE of central-
ized algorithm with CSTA-CKF algorithm. At the begin-

ning, the RMSE of CSTA-CKF is larger than the RMSE of

VOLUME 7, 2019
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FIGURE 8. Convergence rate of consensus algorithm between CCKF and
CSTA-CKF.
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FIGURE 9. RMSE comparison of centralized method and CSTA-CKF.

centralized method. After some steps, the RMSE difference
of both algorithms is very small and it can be kept within
a reasonable range. In that sense, CSTA-CKF algorithm can
achieve the same effect as centralized method.

VIl. CONCLUSION

In this paper, CSTA-CKF algorithm was proposed to deal
with the distributed state estimation problem for nonlinear
system. The algorithm can track the maneuvering target accu-
rately based on mobile sensor network by combining the
advantage of consensus method and STA-CKF. The stochas-
tic boundedness of the algorithm was analysed and the proof
was given in detail. Then, we compared the results of tracking
a maneuvering target based on CEKF, CUKF, CCKF and
CSTA-CKEF respectively, and the simulation results showed
that the CSTA-CKF had the best performance in estimating
the state of the target than those of the other algorithms.
In this algorithm, communication topology of sensor network
was undirected and fixed. Directed switching communication
topology and communication delay might be studied in the
future.
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