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ABSTRACT An improved blind spectrum sensing scheme is established by the covariance matrix Cholesky
decomposition and radial basis function (RBF)-support vector machine (SVM) decision classification at
low signal-to-noise ratios (SNRs). Under strong background noises, the proposed scheme improves the
recognition rate of primary users (PUs) than that of the current blind spectrum sensing. First, the ratio of
the maximum-to-minimum eigenvalue of a covariance matrix obtained by the Cholesky decomposition is
used to construct the statistics. Second, the statistics are labeled with ‘‘+1’’ or ‘‘−1,’’ namely, the energy
characteristics of the training samples are extracted and marked with ‘‘+1’’ for PUs and ‘‘−1’’ for noises.
Finally, an RBF-SVM classification model, with an intelligent RBF as the SVM kernel function, is obtained
by training the above-mentioned statistics and the labels. Thus, the received signals are classified as PUs
or not be trained in the SVM model. The threshold possesses self-learning ability, and it distinguishes
PU signals from noises effectively. The classification among PU signals and noises is implemented by the
optimal SVM decision boundary, derived from maximizing the margin of the decision boundary of trained
samples for efficient detection. In addition, the complexity of the statistic construction is lower than that
of the conventional maximum minimum eigenvalue (MME). The simulation results show that the RBF
in our scheme has 77.5% accuracy at −10 dB, and it outperforms linear kernel function significantly by
about 27.5% in accuracy at −10 dB. In addition, the average error probability of the proposed scheme is
reduced by about 26% when compared with those of original SVM schemes at −20 dB. The proposed
scheme also outperforms the currentMME detection in detection probability over 10% at−20 dB. Therefore,
the proposed blind spectrum sensing scheme can be efficiently used to detect the PUs by the covariance
matrix Cholesky decomposition and the RBF-SVM decision classification in the fifth-generation (5G)
communications, especially at low SNRs.

INDEX TERMS Blind spectrum sensing, Cholesky decomposition, RBF-SVM, covariance matrix, decision
classification.

I. INTRODUCTION
Spectrum sensing is one of significant techniques in cognitive
radio (CR), which helps alleviate spectrum shortage in wire-
less communications. Traditionally, spectrum sensing mainly

The associate editor coordinating the review of this manuscript and
approving it for publication was Wen-Long Chin.

included energy detection (ED), matched filter detection, and
cyclostationary feature detection methods [1], [2]. The ED
method without prior information of a primary user (PU)
usually had low computational complexity. However, it was
sensitive to the uncertainty of noise range and it could not
distinguish a PU signal from noises at low signal-to-noise
ratios (SNRs) [3]. Despite of the short detection duration and
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satisfactory precision in matched filter detection, it required
prior information of PUs in advanced and it had high com-
putational complexity [4]. Cyclostationary feature detection
had high recognition rate at low SNRs. But its complexity was
high, which also led to successive large detection latency [5].

Generally, spectrum sensing methods needed prior infor-
mation about signals or noises, which confines their practi-
cal use. Thus, some blind methods occurred [6], [7], where
the eigenvalue, and also the covariance based sensing meth-
ods were widely investigated. They just consider the cor-
relation among signals without any prior information. The
eigenvalue-based spectrum sensingmethods performed better
than the ED ones, when PU signals were highly correlated [8].
In [9], a maximum eigenvalue (ME) method about the covari-
ance matrix was proposed. However, it was restricted in prac-
tice due to the difficulty of obtaining the detection threshold
derived from the impractical assumptions that the number
of received signals and the dimension of the covariance
matrix were infinite. Consequently, it did not permit an accu-
rate decision threshold, which needed to be operated with
a finite number of signal samples [10]–[12]. The spectrum
sensing methods by Cholesky decomposition overcame the
difficulty of decision thresholds for improved performance,
when compared with the eigenvalue-based methods. The test
statistic in [13] was the ratio of the sum of all squares of
the elements from the signal covariance matrix obtained by
Cholesky decomposition, to the sum of the squares of the
diagonal elements from that matrix. But in [14], it was the
ratio of the first diagonal element to the last diagonal element
of the covariance matrix by Cholesky decomposition. Thus,
the performance of spectrum sensing in [13], [14] mainly
depended on the selected elements of the covariance matrix
obtained by Cholesky decomposition. This effect resulted in
non-robust detection performances of these methods. In [15],
a blind detection was proposed for good performance, fea-
tured with Cholesky decomposition of a covariance matrix
as the criterion to determine the vacant radio frequency (RF)
band. However, its decision threshold was fixed with its
derivation rather than its self-learning capability.

In CR systems, cognitive devices were capable of learning
and reasoning, because they needed to identify the activ-
ities of PUs in their RF environments [16]. Also machine
learning (ML) had been utilized for spectrum sensing in
CR [17], [18]. And supervised and non-parametric k-nearest
neighbor (KNN) had been proposed for the same purpose.
It extracted the linear combination of features in high dimen-
sional signals and thus reduced classification complexity.
However, it may result in a majority of large capacity samples
of k neighbors, when they were unbalanced. For instance,
the sample size of a class was large, while those of other
classes were quite small [19]. In [20], a novel spectrum sens-
ing framework is proposed by the Bayesian machine learning
approach. And it introduced Bayesian inference into group
sensing data with common spectrum states without prior
knowledge of the state number. In [21], [22], a deep learning-
based convolutional neural network (CNN) was suggested

to merge sensing results in cooperative spectrum sensing
scenarios. In these studies, classifier based learning methods
exhibited excellent signal detection capability. Simultane-
ously, a support vector machine (SVM) method was pro-
posed in spectrum detection [23]. Usually, an SVM-based
classifier performed better in practice compared with other
techniques due its kernel function tricks [24], [25]. In [26],
the authors used an SVM and a weighted k-nearest neighbor
based technique for spectrum sensing in a cooperative sce-
nario. But the input of the SVM and the w-KNN classifier
is based on the original sensing signals rather than the fea-
tures of sensing signals. And it would increase the amount
of calculation. Then a hardware implementation of k-means
clustering for spectrum sensing in a cognitive radio system
was proposed. It is easy to be implemented in hardware
equipment. However, the selection of the initial cluster center
had large impact on the clustering results [27]. In this method,
unclassifiable problems in an eigenspace were transformed to
a high-dimensional space, where classification was feasible
by using a linear hyper-plane.

Confronted with the aforementioned spectrum sensing
methods on current studies, especially the poor recogni-
tion rate under low SNRs and large complexity, we pro-
pose an efficient blind spectrum sensing method based
on Cholesky decomposition and the radial basis function-
support vector machine (RBF-SVM) decision classification
at low SNRs. The main contributions of the proposed scheme
are summarized as follows.
• The actual decision threshold possesses self-learning
ability by the SVM technique.
The proposed spectrum detection method is suited
for various signal detections without prior knowl-
edge of signals, channels and noise power. The
actual decision threshold possesses self-learning abil-
ity based on the SVM, which distinguishes signals
from noises effectively.

• The RBF kernel function maps a nonlinear space to
a linear space by non-linear transform and it effi-
ciently works under mixed situations of many PU
signals and large background noises.
At low SNRs, the proposed scheme can achieve
satisfactory detection, because the optimal decision
boundary established by the SVM can maximize
the margin between the separating hyper-plane and
received samples by minimizing the upper bound
of Vapnik-Chervonenkis dimension [28]. Different
from a linear kernel function, a radial basis func-
tion (RBF) kernel is applied tomap a nonlinear space
to a linear space by non-linear transform. Thus,
it can efficiently work under mixed situations with
many PUs and large background noises.

• Collaborative spectrum sensing with multiple anten-
nas of the SUs.
A new statistic vector is proposed with the spectrum
sensing information of all SUs and it is constructed
by the ratio of the maximum and the minimum
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eigenvalues of Cholesky decomposition of the sample
covariance matrix. But the method of labeling the
above vector is just related to the spectrum sens-
ing situation of most SUs. Therefore, it can effec-
tively achieve collaborative spectrum sensing with
the antennas of these SUs.

• Low complexity by the training and the testing pro-
cedures in the proposed scheme.
The proposed scheme mainly includes the statistic
construction, the training and the testing procedures.
An original SVM scheme only includes the latter
two ones. But the complexity of the former one is
negligible. The size of the training and testing sample
sets in the proposed scheme remarkably decreases by
the statistic construction , when compared with that
in an original SVM scheme. Therefore, much lower
complexity is obtained in the training and testing
procedures of the proposed scheme.

The remainder of this paper is organized as follows.
Section II introduces a system model of spectrum sensing in
a CR system. Section III presents a new spectrum sensing
scheme based on the covariance matrix Cholesky decom-
position and the RBF-SVM decision classification on the
basis of the aforementioned model to improve detection per-
formance and reduce complexity. Section IV compares the
complexity of the proposed scheme with those of other exist-
ing schemes. Subsequently, Section V presents the numerical
simulations and result analyses to verify good performance of
the proposed scheme, especially with an RBF kernel function,
by conducting comparisons and analyses with other existing
detection algorithms. SectionVI provides the summary in this
study.

II. SYSTEM MODEL OF SPECTRUM SENSING
IN CR SYSTEMS
A. SYSTEM MODEL OF SPECTRUM SENSING
Suppose that a pair of a primary user transmitter (PU-T), a PU
receiver (PU-R) and some secondary users (SUs) belong to
different communication terminals, and there is not direct
information between any two of them. So the SUs cannot
obtain channel status information from the PU-T. Then, a typ-
ical cognitive radio network (CRN) system model is shown
in Fig. 1. A cognitive base station (CBS) first detects PU sig-
nals in the detection channel at all divided frequency bands.
Then, the CBS transmits the status of a PU-R and determines
the idle spectrum. When the PU-R is in the detection area,
real-time detection continues until it leaves the detection area
and releases its previously occupied spectrum. Thus, the SU
can reuse this free spectrum band. It can avoid interference
to the PU-R without transmission when it senses at least one
PU-R in detection areas. The SU must release and transfer
the spectrum to a buffer and enable access for the PU-R.
Cognitive devices simultaneously detect other free spectrum
for SU utilization.

Suppose that an SU has a multi-antenna device with M
antennas in a CRN, and a PU is located a little far away

FIGURE 1. Typical cognitive radio network architecture.

from the SU, but still within the detection area of constant
channel gain. Then, the modeling of spectrum sensing as
a binary hypothesis testing problem under Neyman-Pearson
and Bayes tests is expressed as{

H0 : xm(n) = ηm(n)
H1 : xm(n) = hm(n) ∗ sm(k)+ ηm(n),

(1)

where sm(n) and ηm(n) (n = 1, 2, · · · ,N , m = 1, 2, · · · ,M )
represent the received PU signals and the additive white
Gaussian noises (AWGNs) with zero mean and variance σ 2

η at
the k−th sample and them−th antenna in an SU, respectively.
N is the total number of sensing samples in one observation
obtained in a sensing slot. xm(n) indicates the signals received
by an SU. hm(n) is the channel gain. Operator ‘‘*’’ denotes the
convolutional calculation. H1 and H0 denote the hypothesis
of the presence of a PU or not, respectively. By the collected
samples from M antennas of an SU, a sample matrix is
listed as

X =


x1(1) x1(2) · · · x1(N )
x2(1) x2(2) · · · x2(N )
...

...
. . .

...

xM (1) xM (2) · · · xM (N )

 . (2)

The performance of spectrum sensing is mainly eval-
uated by three following items, namely, the detection
probability(Pd ), the false alarm probability (Pf ), and the
missed alarm probability (Pm). They are expressed as

Pd = P (D1 |H1 )

Pf = P (D1 |H0 )

Pm = P (D0 |H1 ),

(3)

where D1 and D0 represent the existence of a PU or not
determined by SU detectors.
The definitions of the aforementioned three items are listed

as follows:
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• Pd : when a PU is present, the SU detector determines
the probability of its presence.

• Pf : when a PU is not present, the SU detector determines
the probability of its presence.

• Pm: when a PU is present, the SU detector determines
the probability of its none existence.

Suppose that P(H1) and P(H0) are the prior probability of
the existence of a PU or not, respectively. And they are all
initially set as 0.5. The average error rate (Pe) is calculated
by Pf and Pm, and it is multiplied by its average prior
probability, respectively. Then, Pe is expressed as

Pe = P(H0)Pf + P(H1)Pm
= P(H0)P(D1/H0)+ P(H1)P(D0/H1). (4)

B. PRIOR WORKS
• MME Method

The statistical covariance matrices, i.e., Rx , of received
signals under the above two hypotheses when N → ∞ are
different and they are jointly expressed as

Rx = E(XXT ) =

{
σ 2
η IM , H0

Rs + σ 2
η IM , H1,

(5)

where E(·) denotes the expectation operator and (·)T repre-
sents the transpose operator. IM denotes the identity matrix
of order M and Rs represents the covariance matrix of PU
signals.

Let R̃x be the normalized covariance matrix, defined as
R̃x = (N/σ 2

η )Rx . R̃x is in proportional to Rx and R̃x
is a Wishart matrix under the hypothesis H0. λ1 and λM
denote the maximum and minimum eigenvalue of R̃x . The
maximum-minimum eigenvalue (MME) algorithm is related
to the ratio of the maximum to the minimum eigenvalue under
alternate hypothesis. The test statistic of the MME detection
is defined as TMME =

λ1
λM

. According to the analysis of MME
detection, under the assumption lim

N→∞
M
N = a (a is a constant

with range of 0 < a < 1), the approximate expressions for
Pf and the decision threshold γMME are given in [11] as

γMME=
(
√
N+
√
M )2

(
√
N −
√
M )2

[
1+

(
√
N +
√
M )−2/3f −1(1− Pf )
(NM )−1/6

]
,

(6)

where F1 is the inverse function of F−11 , i.e., the cumulative
distribution function (CDF) of the Tracy-Widom distribution
with order 1 [12]. u and v are given as follows.

u = (
√
N − 1+

√
M )2

v = (
√
N − 1+

√
M )

(
1

√
N − 1

+
1
√
M

)1/3

.
(7)

• EME Method

The test statistic of energy with minimum eigen-
value (EME) algorithm is the ratio of the average energy of

received signals to the minimum eigenvalue of the covariance
matrix from received signal samples and it is expressed as

TEME =

1
/
MN (

M∑
i=1

N∑
k=1

∣∣x2i (k)∣∣)
λM

. (8)

The corresponding threshold is given in [13] as

γEME = (

√
2
MN

Q−1(Pf )+ 1)
N

(
√
N −
√
M )2

, (9)

where Q−1(·) is the inverse function of Q(·) function and it is
expressed as

Q(x) =
∫
+∞

x

1
√
2π

exp(−
1
2
t2)dt. (10)

• CAV Method
The covariance absolute value (CAV) algorithm is con-

structed according to the difference of the received signal
covariance matrix given PU presence or not. The CAV detec-
tion statistic is expressed as

TCAV = T1
/
T2, (11)

where T1 and T2 are the sums of the absolute values of all
diagonal elements of R̃x , respectively. They are expressed as

T1 =
1
M

M∑
i=1

M∑
j=1

∣∣Ri,j∣∣, (12)

T2 =
1
M

M∑
i=1

∣∣Ri,i∣∣, (13)

where Ri,j and Ri,i are the elements of R̃x with coordinate (i, j)
and (i, i), respectively.
And the CAV detection threshold is given in [13] as

γCAV =
1+ (M − 1)

√
2
/
Nπ

1+ Q−1(Pf )
√
2
/
N
. (14)

.

III. BLIND SPECTRUM SENSING BY CHOLESKY
DECOMPOSITION AND RBF-SVM
In this section, an efficient CR spectrum sensing scheme with
statistic construction by covariance matrix Cholesky decom-
position and RBF-SVM is established. It includes the blind
detection with the covariance Cholesky factorization (CCF)
and the SVM. Then the flow diagram of the scheme is pro-
posed and analyzed as follows.

A. BLIND DETECTION BY COVARIANCE
CHOLESKY FACTORIZATION
Since R̃x is a non-negative defined symmetric matrix, there
exists a unique Cholesky decomposition of the matrix. Let
U denote the matrix obtained by Cholesky decomposition

97120 VOLUME 7, 2019



J. Bao et al.: Improved Blind Spectrum Sensing

of R̃x . Then, based on Cholesky decomposition theorem, U
is expressed as

R̃x = U · UT , (15)

According to the above theorem, the matrix U by the CCF
under the above two hypotheses are also different. The matrix
U obtained by Cholesky decomposition under the hypothesis
H0 and N →∞ is a diagonal matrix with the same diagonal
elements. The eigenvalues of a diagonal matrix are the diag-
onal elements. But U obtained by Cholesky decomposition
under the hypothesis H1 and N → ∞ is a lower triangular
matrix with different diagonal elements, which is given by

U =


u11 0 · · · 0
u21 u22 · · · 0
...

...
. . .

...

uM1 uM2 · · · uMM

 , (16)

where ui,j ≥ 0 (i ≥ j) is calculated by

ui,i =

√√√√(R̃i,j −
i−1∑
k=1

u2i,k ), if i = j, (17)

ui,j =

R̃i,j −
j−1∑
k=1

ui,k · uj,k

uj,j
if i > j, (18)

where R̃i,j is the (i, j)-th element of R̃x .
Let Uk be the k-th matrix U in the SUs, where k =

1, 2, · · · ,K and K is the number of the SU. λki repre-
sents the descending ordered eigenvalues of Uk , where i =
1, 2, · · · ,M , namely, λk1 ≥ λk2 ≥ · · · ≥ λkM . The diago-
nal elements of Uk are the eigenvalues of Uk and they are
not ordered. Similar to the maximum minimum eigenvalue
(MME) scheme, in our scheme, the statistic Tk is established
by using the ratio of themaximum to theminimum eigenvalue
of the matrix Uk obtained by the covariance matrix Cholesky
decomposition. Thus, the test statistic and detection threshold
under the two hypotheses are expressed as

Tk =
λk1

λkM

H1
>

=
H0

1, k = 1, 2, · · · ,K , (19)

where Tk is greater or equal to 1 and the statistic vector is
expressed as T = [T1,T2, · · · ,TK ].
In practice, the statistical covariance matrix R̃x can only be

estimated by sample covariance matrix RN that is defined as
RN = 1/N (XXT ) and the decision threshold obtained by the
following SVM model, which will be discussed in the next
subsection.

B. CLASSIFICATION OF PUS AND NOISES BY THE SVM
The proposed schememainly relies on the statistic vector T to
solve the optimal decision boundary. Decision function f (T )
is generated from T by mapping the kernel function and then
solving the optimal equations. Decisions and classifications

are rapidly executed by the established decision functions,
as the testing signals are received by statistic construction.

As shown in Fig. 2, the circles filled with white and black
color represent two groups of training samples. The classifi-
cation interval determined by the hyper-plane is 2/ ‖w‖. The
samples on two broken lines are support vectors. The interval
hyper-plane changes with the change of samples.

FIGURE 2. Maximum interval of a typical hyper-plane.

The training samples are represented as G = {(Ti, fi)|i =
1, 2, · · · ,L}. Ti represents an input data vector and fi denotes
that Ti belong to a certain class of two labels as ‘‘+1’’
or ‘‘−1’’. The decision result Ti is fi. The statement fi ∈
{−1,+1} is the binary class label with hypothesis H0 or H1,
respectively. L is the number of training samples. The nonlin-
ear SVM achieves classification with the optimal separation
hyper-plane. Then the optimal hyperplane and the classifica-
tion decision function are represented respectively as

w · φ(T )+ b = 0, (20)

f (T ) = sign(w · φ(T )+ b), (21)

where w and b are respectively the weighting vector and the
bias. φ(T ) is mapping function and it maps T into a high
dimensional space. Symbolic function sign(x) is defined as
sign(x) = +1 when x > 0, sign(x) = −1 when x < 0 and
sign(x) = 0 when x = 0.
To alleviate the over fitting in high-dimension, soft mar-

gin has been introduced in [29]. A new slack variable is
increased for margin adjustment. Then, the optimal hyper-
plane is present as

min
w

1
2
‖w‖2 + C

(
L∑
i=1

ξi

)
, (22)

st : fi [(w · φ(Ti)))+ b] ≥ 1− ξi, ξi ≥ 0,

∀i ≥ 0, i = 1, 2, · · · L, (23)

where ξi is the slack variable and C is the penalty factor.
The optimization of (22) and (23) can be solved by a

standard Lagrangian multiplier method. New parameters of
αi and βi are Lagrangian multipliers, which satisfy the rela-
tionship of αi > 0 and βi > 0. So the objective function turns
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into

La(w, b, α, β)

= ‖w‖2
/
2+ C

(
L∑
i=1

ξi

)

−

L∑
i=1

αi{fi[(w · φ(Ti))+ b]− 1+ ξi}−
L∑
i=1

βiξi. (24)

Take partial derivative of La(w, b, α, β) with independent
variable w and b, and then set the results as 0, respectively,
there are

∂La(w, b, α, β)
∂(w)

= 0 ⇒ w =
L∑
i=1

αifiφ(Ti)

∂La(w, b, α, β)
∂(b)

= 0 ⇒

L∑
i=1

αifi = 0.

(25)

After deriving the above Lagrangian function and then
bringing it into (22) and (23), the original optimization prob-
lem is converted into its dual problems [26]. Then the optimal
hyperplane can be modeled as

max
α

L∑
i=1

αi −
1
2

L∑
i,j=1

αiαjfifjK (Ti,Tj), (26)

s.t. :
L∑
i=1

fiαi = 0, 0 ≤ αi ≤ C, i = 1, 2, · · · L, (27)

where K (Ti,Tj) = φ(Ti) · φ(Tj) is the kernel function which
represents a legitimate inner product in Eigen space.

After solving (26) and (27), the final classification function
is given as

f (T ) = sign[
∑L

i=1
αifiK (T ,Ti)+ b], (28)

where f (T ) determines the existence of PUs based on
detected samples. f (T ) = +1 represents H1 with the exis-
tence of a PU. Otherwise, the PU does not exist.

In classification, it is difficult for a linear hyperplane to
distinguish between the two classes. Then, a kernel function
K (Ti,Tj) is used to transform the data from input space to a
higher dimensional space. So it is possible for a linear hyper-
plane to differentiate the data elements of the two classes.
Then three kernel functions are utilized and given as

K (Ti,Tj) = Ti · T Tj . (29)

K (Ti,Tj) =
[
(Ti,Tj)+ p

] q
. (30)

K (Ti,Tj) = e−‖Ti−Tj‖
2
2/2σ

2
. (31)

Let θ=−1/2σ 2 and then the theoretical analysis about the
preference of the RBF kernel function can be expresses as

K (Ti,Tj) = eθ‖Ti−Tj‖
2
2

= eθ (‖Ti‖
2
2+‖Tj‖

2
2)e2θTiTj , (32)

where e2θTiTj = 2θ (
∑n

i = 0
(TiTj)n

n! + o((TiTj)n)) according to
Taylor Expansion. It can ignore the remainder o((TiTj)n)
when n→+∞. Thus, (32) can be represented as

K (Ti,Tj) =
n∑
i=0

√
2θ/

n!T
n
i e
θ‖Ti‖22

n∑
j=0

√
2θ/

n!e
θ‖Tj‖

2
2 . (33)

Kernel function can be converted into an inner product
form of two vectors, namely, K (Ti,Tj) = φ(Ti) · φ(Tj). Thus,
the mapping function φ(Ti) is present as

φ(Ti) = eθ‖Ti‖
2
2

[√
2θ/

0!T
0
i ,

√
2θ/

1!T
1
i , · · · ,

√
2θ/

n!T
n
i

]T
.

(34)

Thus, the RBF kernel function maps non-linear spaces to
high-dimensional linearly separable spaces through nonlinear
mapping function (34). φ(Ti) satisfies the following relation-
ship as

‖φ(Ti)‖22 =< φ(Ti), φ(Ti) >= K (Ti,Ti) = 1. (35)

It indicates that φ(Ti) implements the normalization of the
kernel value after Ti is mapped to a high-dimensional space.

C. FLOW DIAGRAM OF THE PROPOSED
SPECTRUM DETECTION
The proposed scheme includes training and testing proce-
dures. In the training procedure, it includes the construction
of training vector T and the corresponding label. The con-
struction of the training set with bind spectrum sensing is
shown in Fig. 3 and it is further depicted in Tab. 1.

FIGURE 3. Flow diagram of the construction of a training set.

The statistic construction of the SVM training sets is a key
factor in spectrum sensing. It is the ratio of the maximum to
the minimum eigenvalue of matrix U obtained by covariance
matrix Cholesky decomposition. The statistic vectors T and
the corresponding labels of ‘‘+1’’ and ‘‘−1’’ are trained
to generate an optimized SVM classification model, which
determines the presences of the PUs in the testing process.
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TABLE 1. The procedures of the proposed scheme.

FIGURE 4. Flow diagram of the proposed scheme.

Namely, the output is ‘‘+1’’ or ‘‘−1’’ corresponding to the
spectrum occupied by PUs or not. Finally, the flow diagram
of the proposed scheme is shown in Fig. 4.

IV. COMPUTATIONAL COMPLEXITY ANALYSES OF
THE PROPOSED SPECTRUM SENSING SCHEME
In this section, the computational complexity of the proposed
spectrum sensing scheme is analyzed in the following two
aspects and it is represented as follows.

First, in the construction of the test statistic, the complexity
of the proposed scheme mainly lies in the following two
aspects. One is the computation of the covariance matrix,
where M (M + 1)N /2 multiplications and M (M + 1)(N −
1)/2 additions are required. Here, M ,N are the number of
antennas in an SU and the total number of sensing samples
in one observation obtained in a sensing slot as described
in Subsection II(A). Another is the Cholesky decomposition

of the covariance matrix. Since the MME, the EME and the
CAV schemes are also required to compute the covariance
matrix, the computations of the covariance matrix are all
the same among them. So the complexity difference mainly
lies in the latter, i.e., the eigenvalue decomposition of the
covariance matrix. In this work, the Gaxpy algorithm [30] is
used to perform the Cholesky decomposition. The complexity
of the Gaxpy algorithm is o(M3/3), while the complexity of
the eigenvalue decomposition of the covariance matrix by the
QR decomposition in the MME, and the EME schemes are
o(M3) [30]. Then the complexity of the proposed scheme is
much lower than that of the MME one. The CAV scheme
needs M2 multiplications and (M + 2)(M − 1) additions.
The ED and EME need MN multiplications and M (N − 1)
additions. In conclusion, the computational complexity of the
proposed statistic construction is compared with those of the
MME and the ED statistic construction in Tab. 2.

TABLE 2. Complexity comparison among the detection schemes.

Second, the input of the classifier is given in form of test
statistics in (19), which is obtained by Cholesky decomposi-
tion over sample covariance matrix of sensing signals rather
than the input of original sensing signals. In addition, the
value of the test statistic is approximately 1, which reduces
the calculations in the training procedure of the SVM clas-
sification model. Suppose that L and L1 are the number of
training and testing samples, respectively. The size of training
sample set is L · K ·M · N , and the size of testing sample set
is L1 · K · M · N . The size of training and testing sample
sets are then reduced to L · K and L1 · K , respectively,
by both the Cholesky decomposition of the covariance matrix
and the construction of the test statistics. Therefore, the size
of training and testing sample sets in proposed scheme are
remarkably decreased, when compared with that of the tradi-
tional SVM spectrum sensing scheme in [23].

V. NUMERICAL SIMULATIONS AND RESULT ANALYSES
In numerical simulations, ideal historical training samples
are required in the implementation of the proposed spectrum
sensing scheme. The generation of a good SVM classifier
with ideal historical data can guarantee the detection perfor-
mance. In this study, statistic vector T and corresponding
labels are used as training samples. They can be obtained
on the basis of simulations of an ideal wireless environment
by using a reliable perception algorithm. In this experiment,
wireless signals are simulated with PUs in BPSKmodulation.
Then, the cosine carriers are multiplied by the baseband
signals of the PUs to generate the binary phase shift key-
ing (BPSK) modulated transmission signals. Given that the
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simulations are performed in an ideal AWGN channel with
zero mean µ = 0 and variance σ 2

η = 1, the channel gains for
all PU signals are assumed as h = 1. The prior probability
P(H0) and P(H1) that represent the presence of at least a PU
or not are all set as 0.5. The Pf in the next simulation is set
as 0.01. The bandwidth is set as W = 1.5 × 104, and the
sampling frequency is Fs = 2W = 3 × 104. The sampling
time is 0.01s (i.e., t = 0.01s). The number of antennas of
an SU is 10 (i.e., M = 10). And the number of SUs is 10
(i.e., K = 10). The simulations in each SNR are performed at
least for 1 thousand times to fulfill the requirement of Monte
Carluo experiments.

A. KERNEL FUNCTION PERFORMANCE AND ANALYSES
In the SVM, two groups of samples are easily separatedwith a
hyperplane. However, the aliased PUs and noises are difficult
to be classified in practice. Local classification charts are
simulated and listed with linear, polynomial, and RBF kernel
functions. The detection probability of the energy detection
is nearly up to 100% at 10 dB. Thus, the method of labels is
simulated at 10 dB. The parameter of the RBF kernel function
is set as σ = 2 in (31). The parameter of polynomial kernel
function is set as p = 0, q = 2 in (30). Penalty factor C is
set as ‘‘+∞’’ in (22). As shown in Figs. 5, 6, and 7, PUs and
noises are classified based on training and testing conditions.
They are obtained by inputting the statistic vector T into the
SVM classification model. The curve in the figure refers to
the hyper-plane, which can distinguish PUs from noises.

FIGURE 5. Plot of test data classification by using a linear kernel function.

Fig. 5 shows the local classification chart of a sample
set by using a linear kernel function. A linear hyper-plane
is observed and support vectors that related to the SVM
classifier model are labeled with all training samples. But
the support vectors have approximately more than half of
the errors on training samples. The reasons can be explained
as follows. The wireless channel includes PU signals, noises
and environmental interferences which belong to the nonlin-
ear space. So the linear kernel function is only suitable for

FIGURE 6. Plot of test data classification by using the polynomial kernel
function.

FIGURE 7. Plot of the test data classification by using the RBF kernel
function.

linear spaces. Thus, the separation of PUs and noises cannot
be solved on such occasions.

Fig. 6 shows the local classification of a sample set by
using the polynomial kernel function. Compared with the lin-
ear hyper-plane of the linear kernel function, the hyper-plane
can easily separate PUs from noises. The polynomial kernel
functions are less than those of the linear kernel functions in
term of the number of support vectors with five errors on the
training samples.

As shown in Fig. 7, the RBF kernel function needs less
support vectors to successfully classify the testing sam-
ples compared with those of contrast polynomial and linear
kernel-based schemes. In this case, support vectors have four
errors on the training samples. Comparedwith the polynomial
kernel function, the RBF successfully classifies more testing
samples.

The performance of the classifier is evaluated by the accu-
racy, i.e., the ratio of correct classifications to the number
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FIGURE 8. Comparison of the SVM-based classifiers trained with linear,
polynomial and RBF kernel functions in the proposed scheme.

of total test observations. Fig. 8 shows the accuracy of the
three aforementioned kernel functions based on different
SNRs. The number of training and testing samples are all
set as 1000. The classifier trained by either the RBF or the
polynomial kernel function always outperforms the linear
kernel function, and it attains accuracy about 50%, irrespec-
tive of SNRs. The former two use one of the two classifiers of
either the RBF or the polynomial kernel function of the same
increased accuracy along with the growth in SNRs. However,
the RBF kernel value avoids large amount of computations,
because it is approximately 1 or 0, when

∥∥Ti − Tj∥∥2 ≈ 0
or
∥∥Ti − Tj∥∥2 >> 0 in (31), respectively. Thus, the RBF

can be efficiently used as a kernel function in the proposed
scheme.

According to the above simulations, the number of training
samples should be equilibrium, since they remarkably affects
the training efficiency. Excessive samples lead to long learn-
ing time and deteriorate the training efficiency. Few training
samples result in insufficient learning. Thus, the studies on
the number in sample training are conducted as follows.
As shown in Fig. 9, the number of training sample is set from
300 to 2700. So the training sample number in testing is set
as 1000.

The simulation results of average error rate are obtained
by using the above parameters combined with the RBF ker-
nel function in the SVM, as shown in Fig. 9. In Fig. 9,
Pe decreases with the increased SNRs and the increased
number of training samples. Pe is less than 0.1 at 0 dB.
With 1500 training samples, the values of Pe are 0.52, 0.47,
0.35, 0.09, and 0.02, when the SNRs are set as −20dB,
−15dB, −10dB, −5dB and 0dB, respectively. The increase
in training samples leads to much larger complexity. How-
ever, a few training samples lead to an increase in Pe.
When the number of training samples is increased to 1500,
Pe is approximately stable. Therefore, the number of train-
ing samples is optimally adopted as 1500 in successive
simulations.

FIGURE 9. Relationships of Pe ∼ L with SVM training data at different
SNRs.

B. PERFORMANCE COMPARISONS OF THE
SPECTRUM SENSING SCHEMES
Next, in the ED [3], theMME [13], the EME [6], the CAV [7]
and the SVM [23] schemes, the spectrum sensing schemes
are compared in term of Pe under different SNRs with differ-
ent N . For the SVM and the proposed scheme, the number
of testing sample are all selected as 1500. The SNR ranges
from −20 dB to 0 dB. Pe is obtained as in Fig. 10 through
numerical simulations.

FIGURE 10. Comparisons among various spectrum sensing schemes in
terms of average error rate Pe at different SNRs.

As shown in Fig. 10, Pe decreases with increased SNRs in
various spectrum sensing schemes. The proposed spectrum
sensing obtains apparently lower Pe than the energy detec-
tion, the SVM detection and other blind spectrum sensing
schemes with the same N . With the increase of N from
300 to 400, Pe of all schemes are reduced. The MME scheme
has lower Pe compared with other blind spectrum sensing
schemes, including the CAV and EME schemes. Compared
with blind spectrum sensing, the proposed scheme declines
rapidly in term of Pe. And it achieves a perfect performance
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when N = 400. Even at low SNR of −15dB, Pe reaches
0.365. This phenomenon can be explained by the following
reasons. First, at low SNRs, the capability of the energy
detection is suppressed, and PU signals are submerged into
large background noises. At this situation, the SVM scheme
has much better performance, because the optimal decision
boundary established by the SVM maximizes the margin
between the separated hyper-plane and the received data.
Second, compared with the SVM and other blind spectrum
sensing schemes, the superiority of the proposed scheme lies
in features extracted from Cholesky decomposition covering
all key information and the decision threshold is based on the
SVM self-learning, which can distinguish the signals from
noises effectively.

The receiver operating characteristic (ROC) curve is
another effective tool to evaluate the performance of a
detection scheme. Fig. 11 exhibits the ROC situations
between the energy detection [3] and the machine learn-
ing schemes, including k-means [17], the KNN [19] and the
SVM schemes.

FIGURE 11. ROC curves of machine learning schemes and an energy
detection one.

At each SNR, the relationship of Pd ∼ Pf is obtained
and shown in Fig. 11, where the detection probability Pd
increases with the increased false alarm probability Pf . Given
the same false alarm probability, large SNR leads to better
detection probability. It shows that the SNR becomes larger,
which makes the signal energy larger and thus it improves the
detection performance. The three machine learning methods
perform better than the energy detection in term of ROC
at −15 dB and −20 dB. Specifically, the SVM classifier
performs better than k-means classifier in the false alarm
probability region of 0.1-0.6 at −20 dB and it also performs
better than KNN classifier in the false alarm probability
region of 0.1-0.3 at −20 dB. Further, SVM classifier also
performs comparatively better than the k-means classifier in
all false alarm probability at −15 dB and it also performs
better than the KNN classifier in the false alarm probability

region of 0.1-0.4 at −15 dB, approximately. In summary,
the KNN method achieves higher performance in compar-
ison to the k-means and the energy detection due to the
exploitation of the localized information, whereas the SVM
classifier achieves a higher detection probability by map-
ping feature space to a higher dimension with the help of
kernel function. Thus, blind spectrum sensing by the SVM
method obtains better detection performance compared with
the energy detection and k-means scheme.

FIGURE 12. Comparison of detection probabilities among the proposed
and existing blind detection schemes, and also the energy detection one.

Fig. 12 illustrates the detection probability of the proposed
scheme with other contrast blind spectrum sensing schemes.
In this figure, the Pd of the proposed scheme and the MME
based SVM ones all increase much more rapidly than those
of conventional bind spectrum sensing and also the energy
detection schemes. This phenomenon can be explained as
follows. First, the blind spectrum sensing schemes, including
the MME, the EME and the CAV schemes, outperforms the
traditional energy detection. Because the thresholds in them
are independent of noises. They are only dependent on the
parameters, such as N ,M and Pf in (6), (9), (14). Thus, they
had stable and excellent performance at low SNRs. Second,
compared with the asymptotic threshold in (6) of the MME,
EME, and CAV detection, the decision threshold in (19) for
the CCF detection can be calculated by using an exact non-
asymptotic expression without asymptotic assumptions that
lim

M ,N→∞
M
N is a constant. Third, the energy detection and the

blind detection schemes by the covariance matrix of received
signals mainly rely on detection thresholds. Once the detec-
tion thresholds are inaccurate, the detection performance is
seriously deteriorate. In addition, a classifier in the proposed
scheme is constructed to achieve spectrum sensing by history
learning data and it has self-learning capability rather than
the fixed decision threshold. Therefore, the proposed scheme
outperforms the traditional ED, other blind spectrum sensing
schemes and the MME based SVM schemes in detection
accuracy and efficiency.
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Subsequently, to simplify the computational complexity

analyses, the normalized sensing time is defined as
∧

t =

(ti − tmin)/(tmax − tmin), where
∧

t is the normalized sensing
time, tmin and tmax represent the minimum and the maximum
sensing time, respectively. The sensing time of the proposed
scheme includes the time of statistic construction, the training
and testing processes. The testing number of the SVM and the
proposed schemes are selected as 1500. To compare sensing
time, the number of the simulations with energy detection
and other blind spectrum sensing are all selected as 1500.
At the range of N from 100 to 600, we obtain the changes
of the normalized sensing time at −10 dB shown in Fig. 13.
The ED [3], MME [13], the EME [6], the CAV [7], and the
SVM [23] schemes are compared with our proposed one in
term of normalized sensing time in Fig. 13.

FIGURE 13. Normalized sensing time based on different spectrum
sensing schemes.

Fig. 13 shows the normalized sensing time of various
spectrum sensing schemes with different dimension N . The
normalized sensing time of all schemes increase along with
the increase of N . But in our scheme, it has no significant
change with the increase of N . Compared with the original
SVM spectrum sensing scheme, our scheme has much lower
normalized sensing time. The reasons can be explained as
follows. The statistics of all schemes are proportional to
the signal dimension N shown in Tab. 2. Thus, the nor-
malized sensing time of the statistic construction is related
to N . However, compared with the training sample sets of
the original SVM scheme in [23], the size of the training
sample sets in proposed scheme are remarkably decreased
from L · K · M · N to L · K , namely, the training sample
sets of the proposed scheme are only related to the size of
training samples(L) and the number of the SUs (K ). And
the complexity of the proposed scheme, the SVM, the ED
and other MME similar blind spectrum sensing schemes are
o(M (M +1)(2N −1)/2+o(M3/3))+o(L2 ·K 2)+o(L21 ·K ),
o(L2 · (K ·M ·N )2)+o(L21 · (K ·M ·N )), o(L ·K ·M · (2N −1))
and o(L ·K · (M (M + 1)(2N − 1)/2+M (2N − 1)+ o(M3))),

respectively, where o(L2 · K 2) and o(L21 · K ) are the time
complexity of training and testing processes of the proposed
scheme, respectively. Thus, compared with the original SVM
scheme, the proposed scheme reduces the waiting time for the
SUs to find a new channel significantly and thus it decreases
communication interruption.

VI. CONCLUSION
In this study, we present an efficient blind spectrum sens-
ing by covariance matrix Cholesky decomposition and
RBF-SVM decision classification at low SNRs. The deci-
sion is rapidly made by using an established SVM classi-
fication model. It has several advantages as follows. First,
the proposed scheme can be used for various signal detec-
tion occasions without prior knowledge of signals, channels
and noise power. The actual decision threshold possesses
self-learning ability based on the SVM, which distinguishes
signals from noises effectively. Second, at low SNRs, the pro-
posed scheme can achieve satisfactory detection, because the
optimal decision boundary established by the SVM max-
imizes the margin between the separated hyper-plane and
received samples. Finally, the proposed scheme outperforms
the conventional MME scheme in computational complexity.
Simulation results demonstrate that the proposed scheme
has better performance than conventional detection ones,
especially at low SNRs, which verifies its suitability in 5G
communications.
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