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ABSTRACT Due to the space inconsistency between benchmark image and segmentation result in many
existing semantic segmentation algorithms for abdominal CT images, an improved model based on the basic
framework of DeepLab-v3 is proposed, and Pix2pix network is introduced as the generation adversarial
model. Our proposed model realizes the segmentation framework combining deep feature with multi-scale
semantic feature. In order to improve the generalization ability and training accuracy of the model, this paper
proposes a combination of the traditional multi-classification cross-entropy loss function with the content
loss function of generator output and the adversarial loss function of discriminator output. A large number
of qualitative and quantitative experimental results show that the performance of our proposed semantic
segmentation algorithm is better than the existing algorithms, and can improve the segmentation efficiency
while ensuring the space consistency of the semantics segmentation for abdominal CT images.

INDEX TERMS Semantic segmentation, generation adversarial networks, weighted loss function,
multi-scale features, game adversarial, atrous space pyramid pooling.

I. INTRODUCTION
Primary liver cancer, especially hepatocellular carcinoma,
is one of the common malignant tumors, and is one of
the leading causes of cancer death in the world. According
to the statistics of the 2015 World Health Organization[1],
liver cancer has become the second disease in global cancer
mortality. The prevention and treatment of liver diseases are
imminent and have become a hot spot and focus of the world.
In the primary liver cancer, the texture is hard, the edges
are irregular, and the surface irregularities are characterized
by large or small nodules. Therefore, the detection of liver
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lesions provides an important basis for the subsequent clin-
ical and treatment planning, and there are more and more
requirements for detection and diagnosis in the clinic [2].

The rapid development of medical imaging technology
provides a new means for the identification of primary liver
cancer. Doctors can observe the signs of the lesion from the
image, analyze and diagnose it. However, the existing med-
ical imaging technology for liver examination rely heavily
on the experience and technology of the operator, and often
has the disadvantages of strong subjectivity, low reproducibil-
ity, high labor intensity, and low efficiency [3]. Therefore,
the assisted detection technology is adopted for primary liver
cancer. It is of great significance in clinical applications.
Intelligent medical image processing needs to accurately
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locate the spatial location, size and other states of the lesion
and its corresponding relationship with surrounding tissues,
assist the medical staff to qualitatively and even accurately
quantify the diseased tissues and organs, and then the liver
status and treatment plan have a more accurate judgment.
However, most of the existing medical image-based process-
ing algorithms are not universal, and the treatment effects
for different human organs are quite different [3]. Therefore,
the establishment of a robust, objective, repeatable, efficient
and high-accuracy method for detecting liver lesions has
important clinical significance for the prevention and treat-
ment of liver diseases. In recent years, domestic and foreign
studies have begun to actively explore the research methods
of liver damage imaging and achieved some stage results.

Semantic segmentation is one of the challenging research
topics in the field of computer vision. Its purpose is to assign
a label to each pixel in the image, and to decompose an
overall scene into several separate entities, which helps to
infer the different behaviors of the target and finally solve
the higher levels of visual problems, including autonomous
driving, augmented reality, etc. With the development of
artificial intelligence technology, semantic segmentation has
attracted more and more scholars’ attention and proposed
a series of effective solutions. However, the semantic seg-
mentation model is still very challenging to obtain accurate
segmentation in target localization and segmentation, mainly
due to complex background, multi-scale variation, boundary
blur for abdominal CT images.

In recent years, deep learning algorithms represented
by convolutional neural networks (CNN) have achieved
significant performance improvements in image semantic
segmentation, but these methods always suffer from spatial
inconsistencies between the benchmark template and the
segmentation results, which are partially attributed to the
random error generated by the independent prediction pro-
cess of the tag variable. Therefore, scholars have proposed
a number of post-processing methods to enhance spatial
consistency in predictive label maps, refine segmented label
masks and eliminate significant boundary errors for liver
segmentation. Chen et al. added a fully connected conditional
random field based on deep semantic pixel classification to
enhance the spatial consistency of the segmentation result [4].
The DeepLab method introduced a fully connected condi-
tional random field in the last layer of the deep network,
and combined the response results at different scales to
enhance the performance of target positioning. This method
can be widely used for information combination of high-level
deep features and low-level local features [5]. Despite of
these improvements in the use of post-processing methods,
the DeepLab model is still limited to the use of point-pair
random field model to fuse feature information with a priori
information. In [7], Luc et al. proposed a generative adver-
sarial networks method to train the segmentation model. The
average performance of the method is good, but the seman-
tic segmentation performance is general in some specific
scenarios.

Due to the multi-scale characteristics of the object image
and the low resolution of the feature map, the deep net-
work mainly uses the maximum pooling and down-sampling
methods to obtain feature invariance, which leads to loss of
positioning accuracy [6]. In general, a deep network is con-
nected to a convolutional layer with several fully connected
layers. The purpose is to map the feature map generated by
the convolutional layer into a fixed length feature vector [8].
Since the network output is a probability-based feature map,
the network is suitable for pixel-level binary classification
and regression tasks [9]. However, for the semantic multi-
objective segmentation model, the fully concatenated convo-
lution network may input an image of any size, compress it
by layer-by-layer convolution, and then up-sample the final
feature image with the deconvolution layer to reconstruct it to
the same size of the input image. This makes the final saliency
map with deviation. The general solution is to preserve the
original spatial information while generating a prediction
probability for each pixel, and finally achieve pixel-by-pixel
classification, but this increases the spatial and temporal com-
plexity of the network [10]. In [11], Wang et al. proposed
a novel feature transformation network that connected con-
volutional networks with deconvolution networks to enhance
the representation of shared features so as to recover spatial
information from low-resolution featuremaps. TheDeepLab-
V3 model proposed in [12] introduced the idea of atrous
convolution, and realized the exponential expansion of the
receptive field on the basis of ensuring the resolution of the
convolution feature. At the same time, under the framework
of cascading module and space pyramid pooling, multi-scale
semantic information was extracted to improve the segmen-
tation effect [12]. However, the DeepLab V3 network not
only removed the fully-connected module in the last layer
to obtain accurate local spatial consistency information, but
also eliminated global information, resulting in incomplete
segmentation results.

Since the classical spatial pyramid scale structure can pro-
cess images with any size and scale, it not only improves
the accuracy of classification, but also improves the detection
efficiency. In order to obtain more scales of irregular object
information, different levels of features can be cascaded
through the atrous space pyramid pooling (ASPP), and the
understanding ability of image is enhanced by blending local
and global semantic features. Based on the basic framework
of DeepLab v3, this paper introduced Pix2pix network as
the Generative Adversarial Networks model, and realized
the segmentation architecture based on deep features and
multi-scale semantic features. The architecture used a gen-
erator, two discriminators and a semantic network to correct
semantic segmentation results and reduce spatial structure
inconsistency. In order to increase the generalization ability
and training precision of the model, this paper proposed to
combine the traditional multi-class cross entropy loss func-
tion with the content loss function of the generator output
and the adversarial-loss function of the discriminator out-
put to construct a weighted loss function. The results of
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FIGURE 1. ASSP-based DeepLab V3 architecture.

qualitative and quantitative experiments showed that the per-
formance of the semantic segmentation algorithm proposed
in this paper exceeds the existing segmentation algorithm,
and the segmentation efficiency is improved while ensuring
the consistency of semantic segmentation. The rest of this
paper is organized as follows: the related work is presented
in section II. The section III is dedicated to the introduction
of the main contributes of the study about how to improve
the efficiency of the improved adversarial network, and the
improved algorithm is developed. The experimental results
are presented in section IV. The paper ends up with conclu-
sions and perspectives.

II. RELATED WORKS
Semantic segmentation is a very active research direction
in the field of computer vision, and many excellent algo-
rithms have been proposed. Before the arrival of the deep
network, the semantic segmentation method relied mainly on
artificially designed features to classify pixels independently.
Specifically, the features of the image segmentation are sent
to a well-designed classifier, such as SVM, random forest
and Boosting, to predict the category of the central pixel of
the image block. With the rapid development of convolu-
tional neural networks in image classification, the deep fea-
ture extracted by deep model for semantic segmentation can
improve the accuracy of segmentation. Most of the existing
algorithms use deep network training on a block-by-block
basis to achieve accurate boundary prediction by super-pixel
refinement of random fields or local classifiers.

The DeepLab V3 network is currently a better semantic
segmentation algorithm. The model architecture is shown
in Figure 1. The deep module of the structure is generally
improved by the VGG-16 or ResNet-1 architecture. This
model replaces all the fully connected layers in DeepLab with

convolutional layers, and reduces the resolution of the feature
map to 1/8 of the original image by atrous convolution; then
the feature map is enlarged by 8 times through the bi-linear
interpolation algorithm so as to reconstruct the original size.
Finally, the final feature map is input into the fully-connected
condition random field to be refined so as to further improve
the segmentation result. It can be seen that under the frame-
work of the cascade module and the space pyramid, the atrous
convolution module increases the receptive field of the filter
to fuse the multi-scale semantic information, and the network
also introduces convolution modules with different learning
rates to enhance the feature representation capability.

III. OUR PROPOSED SEMANTIC FRAMEWORK
It is well known the DeepLab V3 network not only removes
the fully-connected module in the last layer to obtain
local spatial consistency information, but also eliminates
global information, resulting in incomplete segmentation
results. Therefore, according to the basic framework of
DeepLab-v3, this paper introduces Pix2pix network as the
Generative Adversarial Networks (GAN) model, and real-
izes the segmentation architecture combining deep features
and multi-scale semantic features. The basic framework is
shown in Figure 2. The model proposed in this paper consists
of three modules: (1) basic semantic segmentation model,
which is mainly constructed by DeepLabv3 network; (2)
generator for reconstructing the generated image from the
training samples; and (3) discriminator for identifying the
generated image and real image. The generator and discrim-
inator form a generative adversarial network that is first pre-
trained using the reference mask and its original image. In the
pre-training phase, the reference mask is used as an input, and
the generator is driven to produce a reconstructed image that
is difficult to distinguish from the real image. Then, a pre-
trained generator and discriminator are used to characterize
the change of the loss function during training. Therefore,
the semantic segmentation framework proposed in this paper
uses WGAN as a loss function to optimize the basic semantic
segmentation network in an adversarial manner.

A. IMPROVED GENERATIVE ADVERSARIAL
NETWORKS MODEL
TheGenerativeAdversarial Networks (GAN) consistsmainly
of two modules, that is, the generator and the discriminator.
The generator is mainly used to learn the real image distri-
bution so that the image generated by it is more realistic,
which can fool the discriminator. While the discriminator
then judges if the input image is fake. The whole learning
process is that the generator generates a more realistic image,
and the discriminator accurately recognizes the real and fake
image. This process is equivalent to a two-person game, and
a dynamic equilibrium is finally achieved through continuous
confrontation. That is to say, the generator gets close to the
real image distribution, and the discriminator cannot recog-
nize the real and fake images. This training process for GAN
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FIGURE 2. Our proposed semantic framework.

can be defined as follows:

min
G

maxEI∼Pdata(I )[logD(I )]
D

+EIR∼Pg(I )[log(1− D(I
R)]

(1)

The generator simultaneously takes the output of the
prediction layer pseg and the original image I as inputs, and
generates an image similar to the original image. Inspired by
the Pix2pix network, the generator consists of four convo-
lutional layers and four deconvolution layers, followed by a
dropout layer to prevent network over-fitting. During train-
ing, it is only necessary to randomly sample the parameters
of the weight layer according to a certain probability p =
0.5, and use the corresponding sub-network as the object
network for the current update. The discriminator network
is composed of 4 convolution layers, each layer has a ReLU
behind it as an activation function.

As described above, the generator is constructed as a codec
network with convolution and deconvolution layers, and the
sampling scale is gradually reduced by a series of codecs until
the bottleneck layer is reached, and then the process is reverse
reconstructed to the original or first layer. In order to avoid
information loss in the codec process, a skipped-connection
is added between the i-th layer and the (n-i)-th layer, where n
represents the total number of layers in the generator. Each
skipped-connection simply cascades the output features of
the i-th layer with the features of the (n-i)-th layer.

As we all know, the l1 loss function and the l2 loss function
may make the generated image relatively fuzzy. Although
these loss functions do not achieve clear high frequency
characteristics, the low frequency characteristics of the image
are still accurately captured in many cases. Since the l1
loss function enforces low frequency constraints, the model
only needs to simulate the high frequency features of the
local patches of the image. Since GAN only processes low-
frequency components, it does not need to process the entire
image. Therefore, this paper selects PatchGAN as theMarkov
discriminator, and judges the patch with the size N × N in
the image. All responses to the discriminator are averaged to
provide a final output.

B. SEGMENTATION MODEL
As we all know, the goal of the semantic segmentation model
is to generate a confidence map pseg ∈ Rc∗w∗h, in which c is
the dataset class number, and w, h is the width and height of
the predicted saliency map respectively. Then, the prediction
result is proposed by max pooling and the deep model is con-
structed through the fully connected network so that images
of different sizes can be processed.

Therefore, DeepLab V3 is selected as the basic segmenta-
tion model, the purpose of which is to generate a confidence
map pseg, and use argmax operation to obtain the final pre-
diction mask, where each value indicates the label response
of the input pixel.

C. WEIGHTED LOSS FUNCTION
The semantic segmentation framework of this paper adopts
a hybrid loss function l, which is mainly composed of three
parts: segmentation-based loss ls, content-based loss lc and
adversarial-based loss la. Themixed loss function can express
the following equation:

l = ls + λ1lc + λ2la (2)

where λ1 and λ2 are two empirical weight parameters. In this
paper, multi-class cross entropy loss is used to evaluate
semantic segmentation performance. The loss term is defined
as follows:

ls = −
1
M

M∑
j=1

N∑
x

C∑
i

Y (j)xi log(P(j)xi ) (3)

where Pxi is calculated by the segmentation model, indicating
the probability of assigning a label i to a pixel x; Yxi is the
probability of label for a reference template; M ,N ,C are
denoted as the number of samples, the total number of pixels,
and the number of class on data set respectively.

The content-based loss function is used to calculate the
quality of the reconstructed image IR generated by the gener-
ator network. Therefore, the loss function is calculated pixel
by pixel as follows:

lc = Ll1 (G) = EY ,I∼Pdata(Y ,I ),z∼Pz(z) ‖I − G(Y , z)‖1 (4)
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Adversarial-based loss function reflects the image quality
reconstructed by the generator. This paper uses the loss term
of the Wasserstein GAN network, and its equation is written
as follows:

la = −EY∼Pdata(Y ,I ),Z∼Pz(Z )D(G(Y ,Z)) (5)

The objective function of Adversarial network can be
expressed as:

LcG(G,D) = EY ,z∼Pdata(Y ,z)(Y , z)[D(Y , z)]

−EY∼Pdata(Y ,z),I∼Pz(I )[1− D(Y ,G(Y , I ))] (6)

whereG is the loss term that maximizes the generative adver-
sarial map, namely, G∗ = argminGmaxD LcG(G,D). The
experimental results show that the GAN target loss function
and the traditional loss function l1 work together to generate
images, which can improve the accuracy of learning. This
shows that in the case where the discriminator’s objective
function is unchanged, the generator not only needs to deceive
the discriminator, but also the absolute value error loss func-
tion is close to the true reference value. Therefore, the final
loss function term of our proposed model in this paper can be
expressed as the following equation:

G∗ = argminGmaxD LcG(G,D)+ λLl1(G) (7)

If there is no input signal z, the network can still learn the
mapping from x to y, but it will produce an uncertainty output,
so it can’t match any distribution except the δ function. The
generator simply ignores noise, so this strategy does not
enhance the model’s generalization capabilities. For the final
semantic model, its dropout layer can be consider as noise.
Despite there is the dropout noise, the results show that the
output of the model has only a small randomness, which can
capture the complete entropy of the conditional distribution
and achieve accurate semantic segmentation.

D. TRAINING PROCESS
The semantic segmentation framework proposed in this paper
is optimized by the loss function in equation (2). The forward
propagation training process is as follows: First, the GAN
model is trained to learn the mapping relationship between
the benchmark map and the original image. The bench-
mark mask map IGTi is the input of the generator network
G to obtain the generated image IR, and the corresponding
expression is described as follows:

IRi = f (IGTi ;π ) (8)

where, π represents the parameters of the generator G; the
assignment probability of the discriminator D is as follows:

p = D(Ii, IRi , ϕ) (9)

where, Ii is the original image and ϕ is the parameter of the
discriminator D. The learning process of the deep network
is to iteratively optimize the parameters ϕ and π through the
loss function. The network parameters are initialized and for-
ward propagation is used to obtain the loss value loss(lc, la)

for each time. In each iteration, select a small portion of the
image from the training set to learn, and then update each
parameter:

π ← π − τ∇π (lc + la) (10)

ϕ ← ϕ + τ∇π la (11)

where, τ represents the learning rate of the training process.
After the GAN model completes its training, the segmen-

tation model can be trained using the proposed framework.
First, the parameters of the GANmodel are initialized from a
pre-trained weight file. Then, the mask image IMi is obtained
from the segmentation model,

IMi = φ(Ii; θ ) (12)

where, θ is the parameter of the segmentation model.
In the semantic segmentation step, the parameters of the
GAN model are fixed and will not be updated. We use
Back Propagation (BP) for learning and stochastic gradient
descent (SGD) to learn and optimize the parameter θ so
as to minimize the loss function loss(la; lc; ls). In addition,
the forward propagation is adopted to obtain the loss value
of each iteration. The update strategy of the parameter θ
is consistent with the parameter, and its update equation is
denoted as follows:

θ ← θ − τ∇θ (la + lc + ls) (13)

IV. EXPERIMENTAL RESULTS AND PERFORMANCE
ANALYSIS
A. EXPERIMENTAL DATA SET
To evaluate the effectiveness of the proposed semantic
segmentation model, the self-built data-set and the pub-
lic data-set are used for deep learning training and test-
ing. The self-built data-set collects 7000 medical abdominal
image data from several Third-Class A Hospitals in Jiangsu
Province and some data have been labeled by imaging spe-
cialists. The public data set is from the medical imaging data
set DeepLesion released by NIHCC, which contains more
than 32,000 lesion annotations from more than 10,000 cases.
In addition, we also used Liver Tumor Segmentation (LiTS)
challenge data set. The LiTS data-set consists of 131 contrast-
enhanced abdominal CT scans from various clinical sites
around the world. The challenge provides reference anno-
tations for the liver contours as well as for liver lesions.
To facilitate training and testing, 12,150 images are selected
as training samples and 8,800 images as testing samples.

B. PARAMETER SETTING AND EVALUATION CRITERIA
Since the scans vary in in-plane resolution and slice thickness,
we aligned the directions of all images, but kept the different
resolutions, so that the networks are able to process a range
of resolutions and the results can be compared to the original
labels. The image used in this paper is preprocessed and
re-sized to 320 × 240 for training. The networks selected
in this paper are all based on the TensorFlow framework,
and their parameters are consistent with the literature [20].
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The loss function λ1, λ2 are set to 0.15 and 0.1 respectively;
the learning rate is initialized to 0.15, and then the learning
rate is changed to 0.015 when training to the 50th Epoch;
if 100 Epoch are reached, the loss function proposed in this
paper does not change and then stops training. In practical
applications, some parameters are usually done by cross-
validation. Limited to GPU memory, the batch size is set
to 8. Each network trained for 50 epochs, which equaled
60000 iterations. The weight is attenuated to 0.0005 and the
probability of the Dropout layer is set to 0.5. For genera-
tor training, an Adam optimization algorithm with isotropic
Gaussian weights is used. The experimental environment of
this paper is: Xeon (Xeon) E7-8890 v2 @ 2.80GHz (X4),
128 GB (DDR3 1600MHz), Nvidia GeForce GTX 1080 Ti,
Ubuntul6.04, 64-bit operating system.

According to the evaluation of 2017 LiTS challenge [31],
we employed the mean values for Dice score, as well as
Jaccard and volume overlap error (VOE), relative volume dif-
ference (RVD), average symmetric surface distance (ASSD),
and maximum symmetric surface distance (MSSD) [32]
to evaluate the liver and tumor segmentation performance
respectively When applied to a binary segmentation task.
Dice per case score refers to an average Dice score per
volume while Dice global score is the Dice score evaluated
by combining all datasets into one, which can evaluate the
degree of overlap between the predicted segmentation mask
and the reference segmentation mask. Given binary masks
A and B, the Dice score can be described as:

Dice(A,B) =
2 |A ∩ B|
|A| + |B|

(14)

Its interval is [0,1] and a perfect segmentation yields a
Dice score of 1. In order to evaluate the accuracy of image
semantic segmentation results, this paper also uses Pixel
Accuracy (PA), Mean Accuracy (MA) and Mean Intersection
over Union (MIoU) as the evaluation criteria, whose formulas
are written as follows:

PA =
∑

i
nii/

∑
i
ti (15)

MA = (1/ncl)
∑

i
nii/ti (16)

IoU = (1/ncl)
∑

i
nii/(ti +

∑
j
nji − nii) (17)

where, nij is the number of pixels in which class i is correctly
classified as class j and ti is the number of samples in class i.
As can be seen from the IoU definition, this is equivalent to
the result of dividing the overlap of the two regions by the set
of the two regions. In general, a score greater than 0.5 can be
considered to correctly detect and segment the object.

C. QUALITATIVE AND QUANTITATIVE RESULTS ANALYSIS
In order to qualitatively and quantitatively analyze the
performance of the proposed semantic segmentation algo-
rithm, the comparison algorithms selected in this paper are
Deeplabv3 [12], DeconvNet [17], and SegNet [5].

TABLE 1. Average of the evaluating indicators UNDER LITS challenge
data set.

1) ANALYSIS OF QUALITATIVE AND QUANTITATIVE
RESULTS FOR LITS CHALLENGE DATA SET
In recent years, liver segmentation has been a subject of
research in the medical image processing community due
to the availability of the Liver Tumor Segmentation (LiTS)
challenge data set. All top scoring automatic segmentation
methods in the LiTS challenge used CNNs. In order to verify
the performance of the proposed algorithm, the liver seg-
mentation experiment was performed using the Liver Tumor
Segmentation Challenge (LiTS) dataset.

Table I shows the results of different semantic models on
Benchmark LiTS data set, where bold and italics are the best
and second best results, respectively.

The Deeplabv3 model uses an improved 2D-FCN net-
work for liver segmentation, which adjusts the receptive field
of filter and controls the characteristic response resolution
calculated by the convolutional neural network. It can be
seen from Table I that the segmentation accuracy is only
lower than the proposed algorithm. The reason is that the
2D FCN network cannot utilize the spatial information in
the CT image, and our model uses the weighted adversarial-
loss function. The DeconvNet method is also segmented by
2D FCN network, and the network structure and feature
utilization are improved. The segmentation Dice coefficient
reaches 0.921. The core idea of the DesNet model is to create
a cross-layer connection to connect the front and back layers
of the network, so that each layer in the network accepts
the characteristics of all the layers as input. Since a large
number of features are multiplexed, a large number of fea-
tures can be generated using a small number of convolution
kernels, and the size of the final model is also small. The
algorithm has a segmentation Dice coefficient of 0.938. The
proposed semantic segmentation algorithm has a Dice coef-
ficient of 0.970 on the test data of 70 cases of LiTS which
is higher than Deeplabv3, DeconvNet, and SegNet with a
5-fold cross-validation. The accuracy and loss change during
training is shown in Fig.3 and 4. The experimental results
show that the improved GAN segmentation algorithm based
on weighted loss function can accurately segment organs.
Our results differ greatly from the best results in ISBI 2017,
which does not mean that our algorithm is better than all
algorithms. Themain reason is that we choose partial test data
to test different comparison algorithms so as to illustrate the
effectiveness of our algorithm.
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FIGURE 3. Accuracy change during training.

FIGURE 4. Loss change during training.

In order to facilitate the analysis of the results of semantic
segmentation by different models, we use liver contours to
qualitatively analyze the accuracy of segmentation results,
which can characterize spatial consistency very intuitively.
Figure 4 shows segmentation results by different deep learn-
ing models. Ground truth is shown in blue and red curves,
where the red curve is denoted as the contour of liver and
blue is the edge of the tumor. Black curve and green curve
represent the target contours segmented by different algo-
rithms, respectively. It can be seen that the deformed contours
through our proposed model are closer to the liver boundary,
which shows that the deep network architecture proposed in
this paper can stably improve the performance of the semantic
segmentation model.

2) ANALYSIS OF QUALITATIVE AND QUANTITATIVE
RESULTS FOR SELF-BUILT DATA SET
Table II shows the results of different semantic subsets of
the Benchmark DeepLesion data set for different test subsets,
where black and italics are the best and second best results,
respectively. Our experiments are conducted using 5-fold

FIGURE 5. Segmentation results by different deep models. (a) Our
proposed model; (b) Deconvnet; (c) Segnet; (d) Deeplabv3.

TABLE 2. Semantic segmentation indicator results under deeplesion
data-set.

cross-validation. It can be seen that the proposed algorithm
is optimal for all algorithms, mainly due to the semantic
segmentation model proposed in this paper. The Pix2pix
network is used as Generative Adversarial Networks model,
and the segmentation architecture with deep features and
multi-scale semantic features is combined. The model intro-
duced a weighted loss function to enhance the learning ability
of the network to characterize the target. In the DeepLesion
data set, we chose the most complicated Abdominal CT
images. Our proposed algorithm in this test is better than
Deeplabv3, which mainly due to the characteristics that the
model has high spatial consistency and improves the accuracy
of quantitative indexes.

Figure 4 shows the semantic segmentation results of dif-
ferent models for the DeepLesion data set, where 4(a) is the
original CT image; 4(b) is the result of semantic segmen-
tation of the SegNet model; 4(c) is the result of semantic
segmentation of the DeconvNet model; 4(d) is the result
of semantic segmentation of the Deeplabv3 model; 4(e) is
the result of semantic segmentation of the proposed model
in this paper; 4(f) is the benchmark result. The red region
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FIGURE 6. Comparison of results for different segmentation models. (a) Raw CT image; (b) Ground truth;
(c) Proposed; (d) Deeplab v3; (e) SegNet; (f) DeconvNet.

represents the liver, the blue region is the background other
than the liver, and the gray is the liver tumor region. As can be
seen from the results, these deep learning architectures have
achieved very good semantic segmentation results, but they
also have their problems. As for Fig.6, the image is from the
abdomen CT, whose boundary of the liver region is blurred.
In the comparison result, Deeplabv3 is similar to the proposed
model in this paper, and the liver can be stably segmented, but
the pixel precision is lower than that of our model, mainly
due to spatial inconsistency reduced segmentation accuracy.
The results of SegNet and Deeplabv3 are rough, especially
with a lot of sawtooth at the edge of the liver. This is mainly
because SegNet generates semantic probability maps through
convolutional layers and some skipped-connections, and then
gradually refines the accuracy of semantic segmentation.
However, SegNet directly uses the Softmax loss function to
judge whether it is in the processing of boundaries or mall
objects is rough and the spatial consistency is poor. The
structure of DeconvNet is very similar to that of SegNet, but
the network uses a fully connected layer as a relay between
the encoder and the decoder; Deeplabv3 can adjust the fil-
ter field of view and control the powerful response of the
convolutional neural network to calculate the characteristic
response resolution and a BN layer has been added to the
ASPP. The atrous convolution with different sampling rates
can effectively capture multi-scale information, but the sim-
ulation results show that the effective weight of the filter
becomes smaller as the sampling rate increases, which leads
to the performance degradation.

D. COMPARATIVE ANALYSIS OF TRAINING
CONVERGENCE FOR DIFFERENT MODEL
In this section, we conduct comprehensive experiments
to analyze the effectiveness of our proposed model.

FIGURE 7. The training performance of all the algorithm models.

Figure 7 shows the training losses of different comparison
models, which mainly represents the convergence perfor-
mance of the whole algorithm. Note that SegNet model costs
around 48 hours, nearly 1 time than Deeplab_v3. DeconvNet
model costs nearly 42 hours, where 27 hours are spent for
CNN training and 15 hours are to fine-tune the whole archi-
tecture in an end-to-end manner. It is worth mentioning that
all of the models are run with the same hardware platform.
It can be seen that the combination of Deeplabv3 and the
Generative Adversarial Network can not only obtain a higher
segmentation index, but also has more stable convergence
performance. The performance of DeconvNet and SegNet is
worse, which shows that the neural network trained by the
algorithm framework has a better convergence effect.

The semantic segmentation model proposed in this
paper first initializes the shared convolution layer with the
pre-trained parameters of the residual network, and initializes
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the GAN detection and semantic segmentation module with
Xavier. In the early stage of model training, the strategy of
alternating training is adopted: first input the object image
and the forward propagation and back propagation param-
eters of the GAN module are updated; the semantic seg-
mentation image is input, and the forward propagation and
back propagation parameter update of the semantic segmen-
tation are completed on the basis of the update parameters
of the generator module in the previous step, and the two
are alternately performed. Training of modules until both
modules tend to converge. Once the alternation training is
completed, the loss function of the two modules is propor-
tionally weighted to obtain the total loss function. The total
loss function is optimized by the Adam algorithm, and the
appropriate weights are set for the two loss functions. Finally,
the fusion network model can obtain the result of semantic
segmentation in only one calculation.

V. CONCLUSION
Since the existing semantic segmentation algorithm has the
problem of inconsistent segmentation result for segmenta-
tion of Liver, this paper proposed a multi-scale adversarial
network semantic segmentation algorithm combined with a
weighted loss function. This algorithm introduced Pix2pix
network as a generative adversarial network model on the
basis of the basic framework of DeepLab v3 so as to achieve
multi-scale confrontation network semantic segmentation.
In order to increase the generalization ability and training
precision of the model, it proposed to combine the tradi-
tional multi-class cross entropy loss function with the content
loss function of the generator output and the adversarial-loss
function of the discriminator output to construct a weighted
loss function. A large number of qualitative and quantitative
experiments show that the deep network architecture pro-
posed in this paper can stably improve the performance of
the semantic segmentation model. In future work, we will
optimize the algorithm and embed the module into the med-
ical equipment to feedback the diagnosis results in real time
and accurately so as to improve the automation level of Liver
cancer examination.
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