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ABSTRACT In underwater acoustic-orthogonal frequency division multiplexing (UWA-OFDM) systems,
the performance of channel estimation is significantly affected by pilot allocation in the framework of
compressed sensing (CS). However, for optimizing the pilot allocation, an exhaustive search method over all
possible allocations is computationally prohibitive and random search method may not ensure convergence
accuracy. In this paper, the meta-heuristic algorithm of the whale optimization algorithm (WOA) is employed
to address this issue. For reinforcing the capability of balancing exploration and exploitation, an enhanced
variant of WOA termed EWOA is presented with four optimization strategies. After that, a joint algorithm
combining CS with EWOA (CS-EWOA) is proposed for pilot allocation in UWA-OFDM systems. Through
extensive simulations, the improvement of EWOA is demonstrated on the majority of benchmark functions
over other well-known meta-heuristic algorithms. With regard to bit error rate (BER) and mean square
error (MSE) for channel estimation, the proposed CS-EWOAalgorithm outperforms the equispaced, random,
genetic algorithm (GA), particle swarm optimization (PSO), and WOA-based pilot allocation methods.
Moreover, it is robust with varying system subcarriers and channel models. Furthermore, the CS-EWOA
exhibits superior convergence performance without increasing the computational complexity compared with
the GA-, PSO-, and WOA-based methods in the iteration process of pilot allocation optimization. It can be
concluded from the simulation results that the proposed CS-EWOA algorithm is competitive to optimize
pilot allocation for channel estimation in UWA-OFDM systems.

INDEX TERMS Compressed sensing, OFDM, whale optimization algorithm, underwater acoustic commu-
nication, channel estimation, pilot allocation.

I. INTRODUCTION
In recent years, orthogonal frequency division multiplexing
(OFDM) has been drawing attention in the field of underwater
acoustic (UWA) communication, which is usually regarded
as one of the most complicated communication mediums
[1]–[3]. By transforming the channel bandwidth into par-
allel orthogonal narrowband subcarriers, OFDM technique
can effectively alleviate the various channel distortions and
interferences, such as multipath fading effect, Doppler fre-
quency shift, and inter symbol interference (ISI). The spe-
cial modulation mechanism ensures the OFDM system with
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high-speed transmission and high spectrum efficiency over
UWA multipath channels.

For UWA-OFDM systems, the communication quality
often depends on the performance of channel estimation,
in which the channel state information (CSI) can be attained.
Since the transmitted signal is generally distorted when pass-
ing through the UWA channel, CSI is indispensable for data
detection and demodulation at the receiver. In channel esti-
mation, the most common methods to obtain CSI are assisted
by pilot symbols. Except for least square (LS) and minimum
mean square error (MMSE) [4], compressed sensing (CS) [5]
has also been adopted to handle the channel estimation prob-
lem in OFDM systems recently [6]–[10]. Since the UWA
multipath channel is usually considered as sparse, CS is
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especially applicable to solve such reconstruction problem
by exploiting the inherent sparsity in the channel impulse
response (CIR) of UWA channel. Through extensive investi-
gation, CS has demonstrated its advantages in both ameliorat-
ing estimation accuracy and reducing system overhead than
the conventional LS and MMSE methods.

In CS-based channel estimation, the main challenge is to
optimize the pilot allocation, which is usually determined
by constructing a suitable measurement matrix to satisfy the
restricted isometry property (RIP) condition [5] for improv-
ing the reconstruction probability of CSI. Reference [11]
revealed that the smaller the mutual coherence is, the more
the measurement matrix matches RIP. In theory, the optimal
measurement matrix can be selected by exhausting all the
possible pilot allocations. Nonetheless, it is impracticable
in real UWA-OFDM systems due to the huge amount of
computation caused by the large number of system subcar-
riers and pilot symbols. Therefore, it is necessary to search
the optimal pilot allocation as accurately and quickly as
possible. To tackle this problem, [12] focused on a ran-
dom search method within the specified subsets by mini-
mizing the mutual coherence of the measurement matrix.
In [13]–[15], the methods of cross-entropy optimization,
modified discrete stochastic approximation and its variants
were used to optimize the pilot placement. However,
the aforementioned methods may suffer from difficulties in
convergence time and convergence accuracy when searching
the optimal pilot allocation.

A. RELATED WORK
In the past few decades, meta-heuristic algorithms have
become increasingly popular in many optimization problems
with the advantages of rather simple concept, easy imple-
mentation, and no need for gradient information. They are
essentially regarded as iterative systems, in which the goal of
global optimization can be achieved by initializing the popu-
lation, calculating the fitness of each individual, generating
new individuals, updating the population in each iteration,
and selecting the best individual through appropriate strate-
gies. The typical representatives of these algorithms include
genetic algorithm (GA) [16], particle swarm optimization
(PSO) [17], artificial bee colony (ABC) [18], bat-inspired
algorithm (BA) [19], grey wolf optimizer (GWO) [20], and
more recent whale optimization algorithm (WOA) [21]. With
the development of meta-heuristic algorithms, they have been
applied in wide ranges of complex optimization problems and
engineering applications [22]–[24].

It is noteworthy that pilot allocation for channel estimation
in UWA-OFDM systems is also a combinatorial optimization
problem. Naturally, many meta-heuristic algorithms have
been attracted great research interests to deal with such issue.
In [25]–[28], the GA and PSO algorithms were adopted to
optimize pilot allocation for channel estimation in OFDM
systems, as well as ABC [29], GWO [30], and firefly
algorithm (FA) [31]. Moreover, a few hybrid techniques
with various basic algorithms have been proposed to obtain

better performance, such as cooperative PSO (CPSO) [32],
modified adaptive GA (MAGA) [33], PSO-GA [34], and
GWO-GA [35]. However, almost all these studies are based
on LS algorithm by minimizing the estimation error of mean
square error (MSE) criterion. Inevitably, these algorithms do
notmake full use of the significant sparsity of UWAmultipath
channels to improve the spectral efficiency of the communi-
cation system. In this paper, we attempt to solve the pilot
allocation optimization problem more efficiently by virtue of
the advantages of CS theory and meta-heuristic algorithms.

WOA is a novel meta-heuristic optimization algorithm
proposed in 2016 [21]. This algorithm takes inspiration
from the foraging behavior of humpback whales, called
bubble-net feeding method [36]. Compared with other pop-
ular meta-heuristic algorithms such as GA and PSO, the
WOA algorithm is simple in concepts but powerful to explore
global solutions. Currently, some variants of the WOA algo-
rithm have emerged in literatures to further improve the
performance, since WOA is also not perfect. The competitive
performance of WOA and its variants have been successfully
demonstrated to the solution of complex optimization prob-
lems. In [37] and [38], WOA was optimized to accurately
extract the parameters of solar cells and photovoltaic mod-
ules. In [39], chaotic whale optimization algorithm (CWOA)
was demonstrated to be well capable for the transient stability
constrained optimal power flow problem of power system.
Reference [40] adopted the CWOA to optimize the Elman
neural network soft-sensor model of conversion velocity in
polymerization process. Reference [41] improved the WOA
based on a Lévy flight trajectory, resulting faster and more
robust convergence. Furthermore, a hybrid algorithm was
combined WOA with maximum person maximum distance
algorithm for feature selection and classification in [42].
In [43], a hybridWOAwas proposed with the aid of modified
differential evolution (DE) for global optimization problems.
Similarly, [44] combined WOA with PSO for image segmen-
tation. However, these variants of the WOA algorithm are
usually optimized only for one or two aspects, slightly lacking
in comprehensive and systematic consideration.

B. OUR CONTRIBUTION
As stated previously, although WOA and its variants have
already been applied to various fields, there is no study related
to the optimization problem of pilot allocation for chan-
nel estimation in UWA-OFDM systems. Therefore, we are
devoted to employing the essence ofWOA to bear on the pilot
allocation problem. At first, in this work, an enhanced WOA
algorithm (EWOA) is improved with four different strate-
gies to accomplish a better tradeoff between the exploration
and exploitation of the algorithm. A joint CS and EWOA
algorithm termed as CS-EWOA is then proposed to chase
the optimal pilot allocation for channel estimation. Through
numerical simulations, the proposed EWOA algorithm is
tested on solving benchmark functions and compared with
representative meta-heuristic optimization algorithms math-
ematically. Moreover, the channel estimation performance of
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FIGURE 1. Simplified block diagram of UWA-OFDM system model including three parts of transmitter, receiver, and channel model. To improve the
system performance, assisted pilot symbols are inserted at the transmitter via CS-based pilot allocation optimization algorithms and then utilized
for channel estimation at the receiver to evaluate the characteristics of channel model.

the joint CS-EWOA pilot allocation algorithm is evaluated in
terms of BER and MSE, convergence speed, and computa-
tional complexity.

The primary contribution of our work can be summarized
as follows:

1) We ameliorate a novel variant of the WOA algorithm
as EWOA to further improve the performance through
four optimization strategies, which differ from the
existing research as here they have been tailored to suit
the application framework of the algorithm.

2) We propose a joint CS-EWOA algorithm, combining
the advantages of both, to address the pilot allocation
optimization for channel estimation in UWA-OFDM
systems.

3) We perform extensive simulations to validate the
improvement of EWOAover classical benchmark func-
tions and compare the channel estimation performance
of CS-EWOA with the equispaced, random, GA, PSO,
and standard WOA based pilot allocation methods in
different conditions.

According to the statistic results on benchmark functions,
the EWOA algorithm is verified with a better optimiza-
tion capability than other considered meta-heuristic algo-
rithms. For channel estimation performance, the robustness
and effectiveness of the proposed CS-EWOA algorithm are
demonstrated by maintaining consistent performance supe-
riority with respect to BER and MSE for different system
subcarriers and channel models. Additionally, simulation
results confirm that our proposal retains almost the same
computational complexity but yields better convergence per-
formance than the GA, PSO, and WOA based methods in
optimizing pilot allocations.

The remaining portion of this paper is organized as
follows. In Section II, the UWA-OFDM system model and
CS-based channel estimation problem are described briefly.
In Section III, the standard WOA, the ameliorative EWOA,
the proposed CS-EWOA algorithm and its application in

pilot allocation for channel estimation are presented in detail.
In Section IV, simulations and results of the considered meth-
ods are given and analyzed. Finally, Section V is devoted to
conclusions.

II. PROBLEM FORMULATION
A. CHANNEL ESTIMATION IN UWA-OFDM SYSTEMS
A simplified block diagram of the UWA-OFDM system [45]
for wireless communication is shown in Fig. 1.

UWA multipath channels are usually sparse by exhibit-
ing that only a small number of channel taps are non-
zero whereas most of them are either zero or nearly zero.
It means that the channel impulse response (CIR) will be
contributed with these significant non-zero taps [7], [8].
Therefore, a time-varying UWA channel, whose coherence
time is much larger than the period of an OFDM symbol, can
be modeled as [46], [47]:

h (t, τ ) =
L∑
i=1

αiδ (τ − (τi − εi · t)) (1)

where L is the total number of paths, αi and τi refer to the
real amplitude and time delay of the i-th path. In this model,
the path amplitude and delay are supposed slowly changing
over the duration of an OFDM symbol. According to [7],
[8], [48]–[50], the Doppler spread in underwater environment
can be reasonably characterized as a non-uniformmodel with
dynamic Doppler scaling factors εi for different paths.
Consider a UWA-OFDM system consists of N subcarriers,

and P(P ≤ N ) subcarriers out of them are allocated as pilot
symbols to assist for channel estimation. It is assumed that
the set of pilot positions is 3 = {31,32, . . . , 3P}(1 ≤
31 < . . . < 3P ≤ N ). At the transmitter, pilot symbols are
usually embedded in data symbols before transmission. With
the operation of inverse fast Fourier transform (IFFT), assume
the transmitted signal, including the modulated data and
pilot symbols, is represented as xi(i = 1, 2, . . . ,N ) in time
domain. Through the UWA multipath channel, the received
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signal in time domain yi(i = 1, 2, . . . ,N ) can be obtained
at the receiver. Then, after fast Fourier transform (FFT),
the frequency domain signal of yi is denoted as:

Y = XH+ n = XFh+ n (2)

where X = diag(x1, x2, . . . , xN ) is a N × N diago-
nal matrix containing the transmitted signal, h = [h(1),
h(2), . . . , h(L)]T is an L × 1 CIR vector of the K -sparse
(K � N ) channel, H = Fh is the N × 1 channel frequency
response (CFR) vector, and n is the N × 1 additive white
Gaussian noise (AWGN) vector. Besides, F stands for the
N×L partial Fourier matrix, which consists of only the first L
columns from the N × N standard Fourier transform matrix,
given by:

F=
1
√
N


f1,1 f1,2 . . . f1,L
f2,1 f2,2 . . . f2,L
...

...
. . .

...

fN ,1 fN ,2 · · · fN ,L

 (3)

where f = e−j2π/N .
Defining a P × N selection matrix Q is generated by the

positions of P pilot symbols corresponding to the rows of the
identity matrix. Thus, the transmitted pilot symbols are:

Xp = QXQT (4)

where Xp is a P×P diagonal matrix. Similarly, based on (2),
the received pilot symbols are given by:

Yp = QY = XpFph+ np (5)

where np = Qn is a P × 1 noise vector, and Fp is a
P × L Fourier sub-matrix constituted by the P pilot indexes,
defined as:

Fp = QF (6)

Let the P× L sized measurement matrix be:

D = XpFp

=
1
√
N


x31 f31,1 x31 f31,2 . . . x31 f31,L
x32 f32,1 x32 f32,2 . . . x32 f32,L

...
...

. . .
...

x3p f3p,1 x3p f3p,2 · · · x3p f3p,L

 (7)

so (5) can be rewritten as:

Yp = Dh+ np (8)

It is clearly from (8) that the received pilot symbols Yp
and the measurement matrix D are known to the receiver
for channel estimation. Specifically, if a suitable measure-
ment matrix could be designed, the sparse CIR vector h can
be evaluated accurately in noisy environment by exploiting
CS-based greedy reconstruction algorithms, such as orthog-
onal matching pursuit (OMP) [51], compressive sampling
matching pursuit (CoSaMP) [52], etc. Therefore, the channel
estimation problem in UWA-OFDM systems can be trans-
formed to design the measurement matrix in the framework
of CS theory.

B. CS-BASED PILOT ALLOCATION OPTIMIZATION
According to the CS theory, the measurement matrix D is
required to obey the RIP condition to ensure a high prob-
ability of reconstructing the sparse vector h [53]. However,
it is difficult to calculate and check whether a measurement
matrix satisfies the RIP condition because of the high com-
putational complexity involved. A widely used alternative
condition, called the mutual coherence of the measurement
matrix, was proposed for reducing the computational com-
plexity [54]–[56]. More intuitive and practical than RIP, this
criterion is defined as the largest absolute inner product
between two different normalized columns of the measure-
ment matrix D [57], as follows:

µ(D) = max
1≤m,n≤L,m6=n

{ ∣∣〈dHmdn〉∣∣
‖dm‖2 · ‖dn‖2

}
(9)

where dm and dn are the normalized column vectors of D,
superscript H refers to the complex conjugate transpose, and
‖·‖2 denotes the 2-norm. If (7) is substituted to (9), it can be
obtained:

µ(D) = max
1≤m,n≤L,m6=n

∣∣∣∣ P∑
i=1
|x3i |

2e−j2π (n−m)3i/N
∣∣∣∣

P∑
i=1
|x3i |

2

(10)

Clearly, (10) reveals that the mutual coherence of measure-
ment matrixD is determined by pilot symbol values and pilot
allocation positions simultaneously. In this paper, we only
focus on the effect of pilot allocation positions for CS-based
channel estimation so that all the values of pilot symbols
are assumed to |x3i | = 1(i = 1, 2, . . . ,P) to simplify the
optimization problem. Then (10) can be rewritten as:

µ(D) = max
1≤m,n≤L,m6=n

1
P

∣∣∣∣∣
P∑
i=1

e−j2π (n−m)3i/N
∣∣∣∣∣ (11)

Since minimizing the mutual coherence of measurement
matrix has been proven an effective approach to improve
the reconstruction performance [7], it is feasible to design
a measurement matrix with mutual coherence as small as
possible. Under the assumption of ignoring the effect of pilot
symbol values, now the core of this optimization problem
is how to select P subcarriers as pilot symbols from N
subcarriers in UWA-OFDM systems to achieve the minimal
mutual coherence. Therefore, the problem of pilot allocation
optimization can be defined as:

3opt=argmin
3
{µ (D)} ,

s.t.3={31,32, . . . , 3P},

1≤31 < . . . < 3P ≤ N . (12)

where 3opt is the set of optimal pilot allocation.
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C. DISCUSSION
Unfortunately, the problem in (12) is hard to solve, since we
need to exhaust as many asC(N ,P) different combinations to
search for the global optimum solution. For example, assume
P = 24 identical pilot symbols are randomly located in a
UWA-OFDM system with N = 512 subcarriers, the number
of exhaustive search is a combination value C(512, 24) ≈
9.81737×1040. Even when P = 16, N = 128, the result will
up to C(128, 16) ≈ 9.33430× 1019, which is also unaccept-
able for practical calculations due to the high computational
complexity and huge time consumption. Therefore, using a
method superior to exhaustive search to obtain the optimal
pilot allocation quickly is a problem worth investigating.

III. PROPOSED METHODS
The successful application of meta-heuristic optimization
algorithms in many fields provides a new approach to solve
such optimization problem in (12). In this section, the stan-
dard WOA algorithm is modified as a novel variant, namely
EWOA. Then, a joint algorithm based on the CS theory and
the EWOA algorithm is proposed to optimize pilot allocation
for channel estimation in UWA-OFDM systems.

A. PRELIMINARY OF WHALE OPTIMIZATION
ALGORITHM (WOA)
In general, the WOA algorithm is composed of three main
processes with encircling the prey, bubble attacking of the
prey (including shrinking encircling mechanism and spiral
updating position), and randomly searching for the prey [21].

In the beginning of WOA, each humpback whale in initial
population is set as a search agent, and the target prey is
assumed as the current best candidate solution. Once the
best search agent is established, the other search agents will
approach toward the best one by updating their positions.
Define that W is the position vector of a whale individual,
and W∗ denotes the position vector of the target prey. The
mathematical model of WOA can be represented by the fol-
lowing equations:

S =
∣∣C ·W∗(t)−W(t)

∣∣ (13)

W(t + 1) = W∗(t)− A · S (14)

where t denotes the current iteration. A and C refer to coeffi-
cient vectors defined respectively by:

A = 2 · a0(t) · r1 − a0(t) (15)

C = 2 · r2 (16)

where r1 and r2 are random vectors uniformly distributed
in the range of (0,1). a0 is a controlling coefficient linearly
decreased from 2 to 0 with iteration times, i.e.

a0(t) = 2
(
1−

t
tmax

)
(17)

where tmax denotes the maximum number of iterations.
Noting that W∗ will be updated in each iteration if there is
a better solution.

To describe the bubble-net behavior of humpback whales
mathematically, the WOA algorithm achieves the goal of
local optimization by shrinking the encircling mechanism
and spiral updating position, whose schematic diagrams are
illustrated in Fig. 2 and Fig. 3 respectively. Since humpback
whales encompass the prey within a shrinking circle and
along a spiral-shaped path simultaneously, suppose that there
is the same probability of 0.5 to switch between the shrinking
of encircling mechanism and the spiral approach to update
the position of whales over the iterations when |A| < 1. This
process is formulated as follows:

S∗ =
∣∣W∗(t)−W(t)

∣∣ (18)

W(t + 1) =

{
W∗(t)− A · S, λ0 < 0.5
S∗ · ebl · cos(2π l)+W∗(t), λ0 ≥ 0.5

(19)

where S∗ indicates the distance of the current whale to the
prey, b is a constant for defining the spiral logarithmic shape,
l is a random value in [−1,1], and λ0 is a random switching
probability lies in the range of (0,1).

FIGURE 2. Sketch map of shrinking encircling mechanism in WOA.
(W ∗, U∗) is the position of the current best search agent when

∣∣A∣∣ < 1.
It can be achieved from the search agent (W , U) towards (W ∗, U∗) by
adjusting the values of A and C [21].

FIGURE 3. Sketch map of spiral updating position in WOA. This approach
first calculates the distance between the search agent located at (W , U)
and the current best search agent located at (W ∗, U∗). A spiral movement
is then imitated along a spiral-shaped path between the position of
(W , U) and (W ∗, U∗) [21].
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FIGURE 4. Sketch map of randomly search for the prey in WOA. When∣∣A∣∣ ≥ 1, the position of the search agent (W , U) can be replaced by a
randomly selected search agent (Wr , Ur ) from the current population to
update the current best search agent [21].

In fact, the whales can also search for the prey randomly
according to the position of each other. Therefore, as shown
in Fig. 4, when |A| ≥ 1, a random search agent is chosen to
instead of the best search agent obtained so far to perform a
global search, as follows:

Sr = |C ·Wr (t)−W(t)| (20)

W(t + 1) = Wr (t)− A · Sr (21)

where Wr represents a random position vector chosen from
the current population.

From the aforementioned description, the WOA algorithm
can be considered as a global optimizer, since adaptively
tuning of the vectors A and C allows WOA to carry out
a global search by exploitation (|A| < 1) and exploration
(|A| ≥ 1). Specifically, only two internal parameters need
to be adjusted in the iteration process, which makes WOA a
noticeable optimization algorithm.

B. ENHANCED WHALE OPTIMIZATION
ALGORITHM (EWOA)
It is similar to many other meta-heuristic algorithms that,
WOA may encounter entrapment in local optimum and
slow convergence speed when solving practical problems.
Therefore, to improve the performance of WOA, a novel
algorithm of EWOA is proposed with comprehensive mod-
ifications in four perspectives.

1) GOOD POINT SET-BASED INITIALIZATION
Generally speaking, the distribution of the initial population
is directly related to the scope of feasible solutions, whichwill
crucially impact on the convergence, search efficiency and
stability ofWOA.However, the initialization process inWOA
is randomly distributed and its coverage space shows great
uncertainty. In the case of a limited number of individuals,
it may not be able to represent the characteristics of solution
space scientifically and adequately, resulting the iterations are
easily fell into prematurity.

Good point set (GPS) [58], as a concept of number theory,
has been applied in some meta-heuristic algorithms, such
as mending the crossover operator in GA algorithm [59],
updating the velocity formula for PSO algorithm [60], etc.
However, in this work, the method of GPS is adopted to
initialize the population and strengthen the ability of individ-
uals for representing the information of solution space. For a
R-sized and m-dimensional population, the whale individual
Wi =

{
w1
i ,w

2
i , . . . ,w

m
i

}
(1 ≤ i ≤ R) is initialized by:

ρ ≥ 2m+ 3 (22)

r(j) = 2 cos
(
2π j
ρ

)
, 1 ≤ j ≤ m (23)

wji = lbji + mod {r(j)i} (ubji − lb
j
i), 1 ≤ i ≤ R (24)

where ρ is the minimum prime number subject to (23),
mod {·} denotes the function of modulo 1, lb and ub are the
lower and upper bounds of search space. As a result, Wi can
be regarded as a GPS.

Fig. 5 depicts a two-dimensional example of initialization
population by the random and GPS-based methods respec-
tively. Evidently, the population distribution generated by
the random method is disorderly and some points overlap
markedly. However, the initial population produced by the
GPS-based method distributes evenly in the overall solu-
tion space without overlapping points and fully character-
izes individual diversity to approximate the optimal solution.
Furthermore, the construction of GPS is independent with the
dimension of solution space, so that it can be well adapted to
high-dimensional optimization problems.

FIGURE 5. Population initialization for a two-dimensional example.
(a) Random method. (b) GPS-based method.

2) CHAOTIC SWITCHING PROBABILITY
According to (19), a search agent updates its position with the
switching probability λ0 by choosing between the shrinking
encircling method and the spiral model for each iteration in
basic WOA algorithm. However, the randomization of λ0 is
usually achieved by using uniform or Gaussian distribution,
which may not ensure the each value in the interval of (0,1),
especially the boundary values.

Different from WOA, in this paper, an ameliorative
switching probability λ is generated by chaotic
maps [40], [61], [62] for the randomness, unique ergodicity
and non-repetition properties to prevent the search process
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from falling into a local minimum. Particularly, the Fuch
function, one of chaotic maps, is introduced to implement
the switching probability as:

λt+1 = cos
(

1

λ2t

)
(25)

where λt ∈ (0, 1). The reason for choosing the Fuch function
is that, it has stronger chaotic characteristics and more bal-
anced ergodicity than other chaotic functions, e.g., Logistic,
Tent, and Chebyshev functions. Since the intervals of chaotic
functions and optimization problems are often inconsistent,
it is necessary to apply functional transformations and inverse
transformations to realize the traversal search of chaotic vari-
ables and the calculation of the objective solution values.
However, these is no need of functional transformations and
inverse transformations for Fuch, which is advantageous to
improve the search efficiency in search space. Furthermore,
the Fuch function is sensitive to the initial value so that
its output will be completely different even given a small
change in the initialization. This feature facilitates the Fuch
function to avoid trapping into local optimum if the initial
setting is improper. Thus, replacing the random distribution
of switching probability with the Fuch function helps the
EWOA algorithm explore the search space more effectively
and globally.

3) NONLINEAR CONTROL PARAMETER
In standard WOA algorithm, the ability to coordinate the
exploration and exploitation is of great significance for
achieving good searching performance. As mentioned in
(19) and (21), the search vector |A| ≥ 1 is concentrated on
exploring the search space (exploration) and |A| < 1 is dedi-
cated to attacking forward the prey (exploitation). According
to (15), the value ofA is determined by the variation of control
parameter a0. Therefore, it can be derived that the balance
ability between exploration and exploitation depends on the
value of a0 in fact, which is decreased linearly from 2 to 0 for
WOA over the course of iterations.

However, the linear variation cannot appropriately reflect
the complicated search process of theWOA algorithm, which
may result in low convergence accuracy or prematurity easily.
Many studies have indicated that in the early stage of the algo-
rithm, a rapidly changing value of a0 is beneficial to global
search, whereas a slowly changing value is more conducive
to local search in the latter stage. For optimizing the control
parameter, a number of strategies have been proposed based
on the cosine function [63], [64], and chaotic maps [62], etc.
Different from these studies, a nonlinear control parameter
motivated by the activation function of tanh in neural network
[65], [66] is adopted to update the decay during iterations,
as given:

a(t) = 2
[
1− tanh

(
3t
tmax

)]
(26)

where t and tmax denote the current and maximum number
of iterations respectively. In this time, the control parameter

varies with a nonlinear way from 2 to 0 for balancing the
searching ability more effectively in the iteration process.

4) OPPOSITION-BASED LEARNING STRATEGY
As an optimization strategy, opposition-based learning
(OBL) [67] has been proved promising to increase the quality
of initial population and enhance the performance for meta-
heuristic algorithms. The main idea of OBL mechanism is to
examine the current solution and its opposite simultaneously
for increasing the probability to approach the global best
solution [68]. For this work, the OBL strategy is utilized over
the iterative process, rather than in the initialization process.

Assume the opposite of the current solution Wi is defined
as W̃i =

{
w̃1
i , w̃

2
i , . . . , w̃

m
i

}
(1 ≤ i ≤ R). Thus, each element

in W̃i will be determined according to the OBL strategy:

w̃ji = ubji + lb
j
i − w

j
i, 1 ≤ i ≤ R, 1 ≤ j ≤ m (27)

where wji ∈ [lbji, ub
j
i]. In each iteration, the current best

solution can be attained after all the search agents update their
positions. Then, OBL is employed to generate the opposite of
this current best solution in this work. To select the global best
solution, the fitness value of the current best solution and its
opposite in the search space will be calculated by:

W∗ =

{
Wi, if F(Wi) ≤ F(W̃i)
W̃i, if F(Wi) > F(W̃i)

(28)

where F(·) is the fitness function. Therefore, introducing
OBL strategy is advantageous to expand the diversity of the
search population and optimize the search process, so that the
evolutionary search agent can converge to the global optimal
solution more quickly.

Comprehensively, the proposed EWOA benefits from the
GPS-based initialization, chaotic switching probability, non-
linear control parameter, and OBL strategy for achieving
better performance on solution accuracy, searching reliability,
and convergence speed. Moreover, it is worth noting that
EWOA retains the framework of the standardWOAalgorithm
and it does not introduce additional parameters that need to
be adjusted in the iteration process. The flowchart of the
proposed EWOA algorithm is presented in Fig. 6.

C. JOINT CS-EWOA METHOD
In traditional optimization methods, random search is
routinely used to seek the optimal pilot allocation based
on the CS theory for channel estimation in UWA-OFDM
systems. This study replaces the random search method with
the proposed EWOA algorithm to address the pilot allocation
problem more efficiently.

To adapt to the optimization problem of pilot allocation,
it is necessary to specifically redefine the relevant param-
eters in EWOA. Each whale individual (search agent) in
R-sized initial population is denoted by m-dimensional posi-
tion vector as Wi =

{
w1
i ,w

2
i , . . . ,w

m
i

}
(1 ≤ i ≤ R). The

vector dimensions from 1 to m correspond to the positions
of pilot symbols, where the value of m equals the number
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FIGURE 6. The flowchart of the proposed EWOA algorithm.

of pilot symbols P numerically. Consequently, optimizing
pilot allocation is essentially to optimize the dimensions of
position vectors. In this paper, the values of each position
vector are restricted with non-repetitive positive integers in
the range of [1,N ], whereN is the number of total subcarriers
in UWA-OFDM systems. Position values of each search
agent will be rounded to the nearest integers if necessary.
After each update, if a search agent goes beyond the bound-
aries of the search space or contains duplicate integers in its
position vector, the CS-EWOA algorithm will replace this
illegal search agent with a new random one. On the one hand,
randomly selecting a new search agent equals to performing
a random search for the prey as shown in Fig. 4, which
conforms to the search mechanism of EWOA algorithm;
on the other hand, this operation increases the diversity
of individuals in a manner, which is conducive to global
search for the best solution. Moreover, it introduces almost
no additional time and resource consumption. The fitness

function of this optimization problem is defined to calculate
the mutual coherence in (11):

Ffitness = µ(D) (29)

In this paper, a joint algorithm termed CS-EWOA is
proposed for pilot allocation optimization, combining the
CS theory with the EWOA algorithm. The pseudo code of
CS-EWOA is described in Algorithm 1. As shown, it is
comprised of three phases, successively as initialization
(Phase-I), pilot allocation optimization (Phase-II), and per-
formance evaluation (Phase-III). First of all, the simulation
parameters, such as the numbers of subcarriers N and pilot
symbols P for UWA-OFDM systems, the population size R,
vector dimension m and the maximum iteration number tmax
for the EWOA algorithm, are initialized in Phase-I as well
as the generation of whales population. Later on, the opti-
mization problem of pilot allocation as indicated in (12) is
handled by the iterations of whale population. During the
main loop, it starts with evaluating the fitness function in (29)
and terminates by tmax to select the global best solutionW∗ as
the optimal pilot allocation for UWA-OFDM systems. In the
last phase, after generating the measurement matrix with the
aid of W∗, the performance of this joint algorithm will be
measured based on the CS framework in view of BER and
MSE versus signal to noise ratio (SNR) quantitatively.

IV. SIMULATION RESULTS AND ANALYSIS
In this section, extensive simulations are performed to vali-
date the proposed EWOA algorithm as well as evaluate the
performance of the joint CS-EWOA pilot allocation algo-
rithm for channel estimation in UWA-OFDM systems. All
simulations are implemented in MATLAB R2018a and run
on Windows 7 operative system with 64-bit support using an
Intel Core i7 CPU at 3.60 GHz and 8 GB of RAM.

A. BENCHMARK TESTING FOR EWOA
To verify the improvement of the proposed EWOA algorithm
on optimization capability over the standardWOA algorithm,
twelve classical benchmark functions in [20] are selected at
first to examine the performance mathematically. In general,
these benchmark functions are designed to test meta-heuristic
methods from various perspectives. As shown in Table 1,
functions F1 to F6 are high-dimension unimodal used to test
the ability of exploitation and convergence, whereas F7 to
F12 are high-dimension multimodal used to test the abil-
ity of exploration and evading local optimum. Here, Dim,
Range, and Fmin refer to the dimension, boundary of search
space, and theoretical minimum for each benchmark function
respectively.

Meanwhile, six representative meta-heuristic algorithms
are also compared with WOA and EWOA algorithms, which
are GA [26], PSO [32], moth-flame optimization algorithm
(MFO) [69], hybrid PSO and gravitational search algorithm
(PSOGSA) [70], BA [19], and ABC [18]. The parame-
ters of these considered meta-heuristic algorithms are given
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Algorithm 1 Proposed CS-EWOA Pilot Allocation Algorithm
1: % Phase-I: initialization
2: Define the simulation parameters for the UWA-OFDM system with N , P, and also for the WOA algorithm with R, m, tmax ,

where m = P.
3: Initialize the whales population by GPS-basedmethod in (24), and the elements of each whaleWi are non-repetitive positive

integers belonging to the lower and upper bounds of [1,N ].
4: % Phase-II: pilot allocation optimization
5: Calculate the fitness value defined in (29) for each search agent.
6: Record the optimal fitness value and the corresponding search agentW∗ as the best search agent.
7: t = 0.
8: while (t < tmax)
9: for i = 1 to R do

10: Update the parameters A,C, l, λ by (25) and a by (26).
11: if (λ < 0.5)
12: if (|A| < 1)
13: Update the position of the current search agent by (13) and (14).
14: else if (|A| ≥ 1)
15: Select a random search agentWr .
16: Update the position of the current search agent by (20) and (21).
17: end if
18: else if (λ ≥ 0.5)
19: Update the position of the current search agent by (18) and (19).
20: end if
21: end for
22: Check the position of each search agent in current population.
23: if (the search agent goes beyond the boundaries of the search space or exists duplicate positive integers)
24: Replace it with a new random search agent.
25: else
26: Retain the original search agent.
27: end if
28: Calculate the fitness value for each updated search agent to obtain the current best solution.
29: Generate the opposite W̃i of the current best solution by the OBL strategy in (27).
30: Update theW∗ if there is a better solution by (28).
31: t = t + 1.
32: end while
33: Return the global optimal value of fitness function and the corresponding search agentW∗ that is also the optimal solution

to the optimization problem in (12).
34: % Phase-III: performance measurement
35: Generate the measurement matrix D in (7) based onW∗.
36: Recover the sparse CIR vector h in (8) with greedy reconstruction algorithms by the CS theory.
37: Evaluate the channel estimation performance for UWA-OFDM systems on BER and MSE versus SNR criteria.

in Table 2, wherein part of them are derived from the lit-
erature [41]. For the sake of fairness, all algorithms are set
with the same population size of 20 and maximum iteration
number of 1000. A number of 30 repetitive runs are conducted
independently to eliminate the impact of contingency.

As reported in Table 3 and Table 4, the statistical results
are obtained in terms of Best , Worst , Mean, and Std for
12 benchmark functions, denoting the best value, the worst
value, the average value and the standard deviation of overall
results in 30 runs, respectively. For each benchmark function,
the optimal values of Mean attained by different algorithms
are highlighted in bold. It can be observed from Table 3

and Table 4 that the EWOA algorithm can provide quite
competitive performance on these 12 benchmark functions.
On the one hand, for the unimodal functions from F1 to F6,
it outperforms all other seven algorithms with far less values
of Mean. On the other hand, EWOA shows better optimiza-
tion results than the others for the multimodal functions from
F7 to F11, except for F12 in which the BA algorithm gets
the best solution. Especially, the proposed EWOA algorithm
achieves the theoretical optimal value of zero for F8 and
F10 functions.

In addition, T-test is established to measure the sig-
nificance different between the proposed EWOA and the
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TABLE 1. Details of classical benchmark functions.

others algorithms. The marks of plus (+), minus (−) and
equal sign (=) indicate that the result obtained by EWOA
algorithm is better than, worse than, or equivalent to that
obtained by the corresponding algorithm in the double-tailed
T-test with significance level of 5% respectively. Then, Score
represents the number of benchmark functions in which
EWOA is significantly superior to the corresponding algo-
rithm. It is, namely, the subtraction of the plus and minus
signs. This statistical test is critical to prove that the pro-
posed EWOA algorithm achieves a significant improvement
compared to other meta-heuristic algorithms. According to
the Score of T-test from Table 4, EWOA offers the best
global solutions on 10 out of 12 functions for GA, PSO, BA
algorithms, 11 out of 12 functions for WOA algorithm, and
12 out of 12 functions for MFO, PSOGSA, ABC algorithms.
It obviously illustrates that the proposed EWOA algorithm
performs better than the others regarding convergence accu-
racy and local optimum avoidance on the majority of the
benchmark functions. Specifically, EWOA shows similar per-
formance for F9 and superior performance for all the remain-
ing benchmark functions in comparison with the standard
WOA algorithm. From these analysis results, it can be con-
firmed that the EWOA algorithm is effectively improved by
our optimization strategies on the ability of exploration and
exploitation.

B. PERFORMANCE FOR CHANNEL ESTIMATION
In this subsection, our proposed joint CS-EWOA pilot allo-
cation algorithm is applied to UWA-OFDM systems and
compared with the equispaced, random, GA, PSO and WOA
based methods for channel estimation performance on BER
and MSE versus SNR criteria.

To imitate the underwater communication environment
more realistically, the BELLHOP ray model [71]–[73] is
employed to establish the UWA multipath channel with
actual ocean data. The considered underwater region is in
the South China Sea, located at a latitude and longitude
of 24.2874 and 119.3469 degree, respectively. BELLHOP
takes account of the sound speed profile (SSP), boundaries
of sea surface and bottom, interface reflecting and scattering,
and geometry of the transmitter and receiver. As shown
in Fig. 7(a), the water depth is approximately 100 meters, and
the transmitter and receiver are placed 1000 meters apart at
the same depth of 30 meters. In our simulations, the sea sur-
face and bottom are modeled with the real data obtained from
AVISO+ [74] and Google Map API [75], respectively. As a
function of water temperature, salinity and depth, the actual
SSP data in Fig. 7(b) are measured on June 21, 2013 from
the database of World Ocean Atlas 2013 (WOA13) [76],
decreasing from 1540 m/s at the water surface to 1512 m/s
at the bottom. Moreover, the attenuation coefficient and
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TABLE 2. Parameterization for the considered meta-heuristic algorithms.

density of the sediment layer are 0.8 dB/λ and 1.9 g/cm3,
respectively. After all these environmental profiles are input
to BELLHOP model, it produces a variety of useful outputs
such as eigenrays, transmission loss, arrival time-series and
amplitudes, etc. Fig. 7(c) predicts the transmission loss with
respect to different depths and ranges. In particular, the CIR,
showing in Fig. 7(d), is clustered by six taps with dominated
powers at the receiver. The multipath delays and gains are
[0, 1, 2, 3, 21, 23] ms and [-34.6, −32.8, −35.1, −31.9,
−30.7, −33.5] dB for each tap respectively. Taking the
obtained CIR vector as an initial value, a time-varying fading
channel is modeled as obeying the statistical characteristics
of Rayleigh distribution [77]. Meanwhile, in this so-called
specific channel model, the Doppler scaling factors associ-
ated with different paths are chosen randomly from a zero
mean uniform distribution within [−0.003, 0.003] accord-

FIGURE 7. BELLHOP ray model of a shallow UWA multipath channel in
South China Sea. (a) Schematic diagram of eigenray propagation.
(b) Measured SSP values versus depths. (c) Predicted transmission loss
versus depths and ranges with a source at 30 m depth. (d) Deterministic
CIR for a multipath sparse channel.

ing to [78]. As stated above, the UWA channel is accom-
plished by combining BELLHOP with statistical character-
istics of the measured channels. Similar channel models have
been widely researched and applied in many literatures [7],
[46]–[50], [79]. Consequently, the simulated UWA channel
is able to support the reliability and stability of our proposed
algorithm with different conditions in underwater communi-
cation environments.

For the following emulations, a UWA-OFDM system with
N = 256 subcarriers is simulated to estimate the performance
of various pilot allocation methods. The system parameters
are appointed in Table 5. Note that, the number of pilot
subcarriers in UWA-OFDM system is set to P = 24, which
is four times the channel sparsity of K = 6 according to the
measurement requirements of CS theory [80]. Here, quadra-
ture phase shift keying (QPSK) constellation modulates the
transmission signal and the widespread OMP algorithm [51]
is applied to reconstruct the sparse CIR vector for these pilot
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TABLE 3. Performance comparisons of optimization algorithms on benchmark functions (F1 to F10).
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TABLE 4. Performance comparisons of optimization algorithms on benchmark functions (F11 to F12).

TABLE 5. Simulation parameters of the UWA-OFDM system.

allocation methods. It is assumed that the Doppler spreads
for each path are perfectly evaluated and compensated at
the receiver. Furthermore, parameterizations of the selected
CS-GA, CS-PSO, CS-WOA, and the proposed CS-EWOA
optimizers are the same as defined in Table 2, except for the
numbers of population size and iteration time. In this case,
these two parameters are set to R = 100 and tmax = 200
respectively. Working with the same conditions aims to coun-
teract the unnecessary effects caused by different parameter
values in performance comparisons.

Through 1500 Monte Carlo trials, BER and MSE of dif-
ferent pilot allocation methods over the specific channel
model for 256 subcarriers are presented in Fig. 8(a) and 8(b),
respectively. It can be seen that our proposed CS-EWOA
algorithm outperforms the other considered pilot alloca-
tion methods by achieving both the best BER and MSE
performance. Contrarily, the equispaced method shows the
worst performance, in which its BER and MSE curves
hardly decrease with the increase of SNR. Since pilot alloca-
tions directly determine the composition of the measurement

FIGURE 8. Performance comparisons on BER and MSE versus SNR for
various pilot allocation methods over the specific channel model.
(a) BER for N = 256. (b) MSE for N = 256. (c) BER for N = 512.
(d) MSE for N = 512.

matrix, equispaced pilots produce a measurement matrix
with a large value of mutual coherence, resulting to a poor
sensing property by the strongly correlated matrix entries.
Unfortunately, this measurement matrix cannot fit well with
the RIP condition, which seriously degrades the estimation
accuracy of the reconstruction algorithm [8], [12], [78].
In the CS-EWOA algorithm, however, the measurement
matrix is generated with a very small mutual coherence
through evolutionary iterations. As a result, it makes the
CS-EWOA algorithm obtain much better channel estimation
performance. Therefore, the equispaced pilot allocation is
no longer applicable to the CS-based channel estimation

VOLUME 7, 2019 95791



R. Jiang et al.: Joint CS and Enhanced WOA for Pilot Allocation in UWA-OFDM Systems

whereas it is actually optimal in traditional estimation meth-
ods, such as LS, MMSE. For the random method, the BER
and MSE performance are slightly better than the equispaced
one. Three meta-heuristic based optimization algorithms,
CS-GA, CS-PSO, and CS-WOA, are superior to the equi-
spaced and random ones, but still inferior to the proposed
CS-EWOA algorithm. Although the performance advantage
of CS-EWOA algorithm over other methods is not particu-
larly prominent at lower SNR values between 0 dB and 10 dB,
it becomes more and more apparent as the SNR increases
from 15 dB to 30 dB. For instance, in Fig. 8(a), at the SNR
value of 30 dB, BERs of the equispaced, random, CS-GA,
CS-PSO, CS-WOA, and CS-EWOAmethods are 4.9×10−1,
1.4×10−1, 4.2×10−2, 2.5×10−2, 2.2×10−3, and 5.0×10−4,
respectively. In Fig. 8(b), we can observe that the trend of
MSE performance is consistent with that of BER for each
considered method. As shown, the performance difference of
MSE between CS-EWOA with 4.0 × 10−4 and its closest
CS-WOA with 3.1 × 10−3 is approximately 10−1 at
30 dB SNR.

To investigate the effect of a higher number of subcarriers
on system performance, the simulations are also carried out
for 512 subcarriers with 24 pilot symbols. Fig. 8(c) and 8(d)
depict the performance comparisons among the considered
pilot allocation methods in terms of BER and MSE criteria
over the specific channel model, respectively. Clearly observ-
ing from the figures, the proposed CS-EWOA algorithm
maintains the accordant performance of BER and MSE as
obtained in Fig. 8(a) and 8(b) for 256 subcarriers. It means
even though the number of system subcarriers is escalated
from 256 to 512, CS-EWOA does not lose its performance
superiority on both BER and MSE.

Furthermore, to validate the robustness of our proposed
CS-EWOA algorithm over different UWA channels,
we model a series of UWA multipath channels as previously,
termed as the dynamic channel model. The sparsity level is
fixed to K = 6, but the positions of the non-zero taps are
random for each channel. it is hypothesized that the arrival
time intervals of multipaths distribute exponentially with a
mean of 1 ms, and the amplitudes are Rayleigh distributed
with the average power, which decays exponentially with
the time delay [8], [78]. Similar to the specific channel
model, UWA-OFDM systems with 256 and 512 subcarriers
are implemented with 1500 Monte Carlo trials respectively
in this case. The BER and MSE curves of channel estimation
performance for each pilot allocation method are exhibited
in Fig. 9. According to the figure, the proposed CS-EWOA
algorithm keeps its strong robustness by still presenting the
best performance on BER and MSE in comparison with
the equispaced, random, CS-GA, CS-PSO, and CS-WOA
methods, for both different system subcarriers. The result
reveals that the proposed CS-EWOA algorithm is robust
against different UWA channel environments.

Comparing to the Fig. 8 and 9, the performance on BER
and MSE of six pilot allocation methods are examined in
different system subcarriers and types of channel models.

FIGURE 9. Performance comparisons on BER and MSE versus SNR for
various pilot allocation methods over the dynamic channel model.
(a) BER for N = 256. (b) MSE for N = 256. (c) BER for N = 512.
(d) MSE for N = 512.

The robusticity and validity of the proposed CS-EWOA algo-
rithm are demonstrated by its consistent and superior perfor-
mance over other considered methods in each simulation.

C. CONVERGENCE ANALYSIS
The convergence performance of CS-EWOA is compared
with three meta-heuristic algorithms of CS-GA, CS-PSO,
and CS-WOA. Based on the simulations in the previous
subsection, the curves of fitness value for the specific chan-
nel model with 256 and 512 subcarriers are illustrated
in Fig. 10(a) and 10(b), as well as that for the dynamic
channel model with 256 and 512 subcarriers are illustrated
in Fig. 10(c) and 10(d), respectively.

With a view to convergence accuracy, as it can be seen
from each figure, the iterative convergence of the CS-EWOA
algorithm outperforms the CS-GA, CS-PSO, and CS-WOA
algorithms with lower fitness value when the maximum
iteration is finished. CS-WOA follows the CS-EWOA, and
CS-PSO is inferior to CS-WOA but superior to CS-GA.
More intuitively, the final fitness values of the considered
pilot allocation methods for different simulation scenarios are
recorded in Table 6. For instance, if the attention is paid to
the dynamic channel model with 512 subcarriers in Table 6,
the meta-heuristic based algorithms CS-EWOA, CS-WOA,
CS-PSO, and CS-GA achieve better fitness values than the
equispaced method with 0.8751 and the random method with
0.6414, whereas such value of CS-EWOA is as low as 0.2141,
superior to CS-WOA with 0.2153, CS-PSO with 0.2267 and
CS-GA with 0.2770.

For convergence speed, if we observe the convergence
curve in Fig. 10 carefully, it can be found that the CS-GA and
CS-PSO algorithms perform poorly because they are easy to
suffer from premature phenomena, especially in Fig. 10(b).
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FIGURE 10. Convergence curves of various optimization algorithms in
different conditions. (a) The specific channel model with N = 256. (b) The
specific channel model with N = 512. (c) The dynamic channel model
with N = 256. (d) The dynamic channel model with N = 512.

TABLE 6. Final fitness values of various pilot allocation methods.

The reason is that, only one formula is generally utilized
for CS-GA and CS-PSO to update the positions in each
iteration, resulting to reduce the diversity of individuals in the
population and increase the occurrence possibility of being
trapped locally. However, CS-WOA and CS-EWOA outper-
form CS-GA and CS-PSO by displaying faster convergence
curves, especially at the very beginning of the iteration pro-
cess. Due to the distinctive position updating mechanism of
search agents, it endows the CS-WOA and CS-EWOA algo-
rithms with a better equilibrium ability for local exploitation
and global exploration. Meanwhile, the optimization strate-
gies further reinforce the convergence performance for the
proposed CS-EWOA algorithm over CS-WOA. As shown,
CS-EWOAdeclines throughout the overall iterations to effec-
tively avoid falling into local optimum and accelerates the
convergence process to ensure better global solutions.

D. COMPUTATIONAL COMPLEXITY ANALYSIS
In this part, rough computational complexities of the meta-
heuristic based algorithms CS-GA, CS-PSO, CS-WOA,
and CS-EWOA are investigated to evaluate the system

performance. Since all these four algorithms work with the
same fitness function of (29) in the framework of CS theory,
we only compare the computational complexity of the opti-
mization process for pilot allocation. The analysis is made
with the population size R, the dimension m, and the number
of iterations tmax for convergence.
In CS-WOA algorithm, the computational complexity is

mainly reflected in the population initialization and iteration
process. First of all, the complexity order of population ini-
tialization isO(R·m). Then, during the main iteration process,
all search agents in population are required to update their
current position and compare their current fitness value with
the individual best as well as the global best, resulting in a
complexity order ofO(R·m·tmax). According to the derivation
rules of complexity, therefore, the computational complexity
of CS-WOA algorithm can be recorded asO(R·m·tmax). Simi-
larly, the computational complexities of CS-GA and CS-PSO
areO(R·g·tmax) andO(R·d ·tmax) respectively, where g and d
denote the length of genotypes and the number of additional
operations for adjusting the position of particles [25], [28].
As described above, the proposed CS-EWOA algorithm
preserves the framework of CS-WOA from increasing its
computational complexity, so that it remains the same order
of complexity asO(R·m·tmax). In our work, the parameters of
m, g and d are defined as a constant equaling to the number
of pilot symbols P. Consequently, it makes the computational
complexity on the same order of magnitude when the same
population size R and iteration number tmax are applied for
each algorithm.

From the result analysis, it reveals that, although the four
intelligent algorithms have almost the same order of com-
putational complexity, the proposed CS-EWOA algorithm
outperforms CS-GA, CS-PSO, and CS-WOA by providing
superior performance on BER, MSE, and convergence for
pilot allocation optimization.

V. CONCLUSIONS
In this paper, an enhanced WOA algorithm, EWOA, is pro-
posed based on four optimization strategies to effectively bal-
ance the exploitation and exploration. Subsequently, EWOA
is associated with the CS theory, termed as CS-EWOA,
to handle the optimization problem of pilot allocation for
channel estimation in UWA-OFDM systems. According to
the simulation results, the improvement of EWOA is verified
with the best global solutions for the majority of testing on
classical benchmark functions over other well-known meta-
heuristic algorithms. Our proposed CS-EWOA algorithm
outperforms the equispaced, random, GA, PSO, and WOA
based pilot allocation methods with both superior BER and
MSE performance. Meanwhile, the robustness of CS-EWOA
is demonstrated through the simulations by maintaining
the consistent performance advantage over other considered
methods for various situations and conditions, such as differ-
ent types of channel models and varying subcarrier numbers
in UWA-OFDM systems. Moreover, the convergence per-
formance and computational complexity of CS-EWOA are
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compared with CS-GA, CS-PSO, and CS-WOA in the iter-
ation process of pilot allocation optimization. CS-EWOA
keeps almost the same order of computational complexity
with others, however, it yields strong performance on search-
ing the optimal solution with higher convergence accuracy
and faster convergence speed due to the outstanding tradeoff
ability of exploitation and exploration. Additionally, since
optimizing pilot allocation is accomplished in the design
stage of UWA-OFDM systems, CS-EWOA does not sacrifice
the real-time performance or introduce extra consumption.
From these analyses, it can be concluded that our proposed
CS-EWOA algorithm is a promising approach to optimize
pilot allocation for channel estimation with superior per-
formance of BER, MSE, and convergence in UWA-OFDM
systems. The ensuing work will focus on employing the pro-
posed CS-EWOA algorithm and its multi-objective variant to
address the optimization problem of associative pilot symbol
values and pilot allocation positions.
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