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ABSTRACT In this paper, a new observer, named as the higher-order observer, is proposed for simulta-
neously estimating the system state and disturbance. When the usual assumptions on the disturbance are
satisfied, the magnitudes of the state and disturbance estimate errors of the system are proved to be on
the order of O(T 3), which is much less than O(T 2) produced by the proportional-integral-observer (PIO).
The simulation results also show the effectiveness and superiority of the proposed method.

INDEX TERMS Discrete-time, higher-order observer, state and disturbance estimate, linear system.

I. INTRODUCTION
Observers, also known as estimators or filters are an integral
part of control theory and engineering. The function of them
is estimating immeasurable variables by using measurable
input and output data. Over the years, observers have been
widely used to design controllers and control systems [1]–[3],
which can be divided into two branches. One is state
observers, the other is disturbance observers.

A state observer provides the estimates of the internal
states of a system, which is implemented based on the system
model. Since the 60s of last century, many design methods
of state observers have been reported, among which Luen-
berger observers [4], Kalman observers [5], proportional-
integral-observers (PIO) [6] and unknown-input-observers
(UIO) [7] are most widely used and extended. For exam-
ple, in [8], Luenberger observer-based H∞-compensators
were proposed for different nonstandard cases by using
the bounded real lemma; in [9], an extended Luenberger
observer was designed by using a transformation into the
nonlinear observer canonical form and an extended lin-
earization; in [10], a nonlinear Luenberger observer for an
extended nonlinear system resulting from a parameterized
linear single-input-single-output (SISO) system was studied;
in [11], the generalized Luenberger observer was applied
to the problems of failure detection and failure diagnosis;
in [12], an optimizing Kalman optimal observer for state
affine systems was proposed by input selection; in [13], a
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strong tracking extended Kalman observer was designed for
nonlinear discrete-time systems; in [14], a new nonlinear state
estimate approach combining classical Kalman filter theory
with Takagi-Sugeno modeling was proposed; in [15], a new
PIO was designed and applied to a robust controller; in [16],
an adaptive PIO design method with σ -modification was
proposed; in [17], a proportional multi-integral observer was
proposed and used to reconstruct actuator and sensor faults;
in [18]–[20], observers were designed for linear systems with
unknown inputs.

A disturbance observer gives the estimates of the unknown
inputs or uncertainties of a system. There are two kinds of dis-
turbance observer design methods, i.e., the transfer-function-
based method and the state-space-based method. Since a
transfer-function-based disturbance observer is designed for
a SISO system, it cannot be applied to an multi-input-multi-
output (MIMO) system directly, whereas a state-space-based
method can do. Therefore, the latter method has been exten-
sively studied until now. For example, in [21] and [22],
output-based disturbance observers with reduced order were
presented respectively for a class of continuous-time linear
systems and discrete-time linear systems; in [23], the reduced
order disturbance observer was further studied by formulating
it as a functional observer design problem; in [24], a PIO was
designed for single-output uncertain linear systems which
could attenuate either measurement noise or modeling errors.
There also exist other methods for estimating disturbances or
uncertainties, such as neural networks [25], fuzzy inferring
systems [26], etc.
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As amatter of fact, the abovementioned observers can only
estimate either states or external disturbances. To overcome
this limitation, the extended state observer (ESO), which
regards the external disturbance as an extended state, and esti-
mates the state and disturbance simultaneously, was proposed
in [27]. The ESO is actually extracted from an active distur-
bance rejection control scheme [28], [29]. Until now, most of
ESOs were designed for continuous-time systems [30], [31].
The existing discrete-time ESOs were designed either for a
lower-order linear system, such as [32], or for a particular
nonlinear system, such as [33]. For a general linear system,
an ESO, also named as PIO, was presented in [34] to simulta-
neously estimate the system state and unknown disturbance.

This paper proposes a new observer, named as higher-
order observer, which can also estimate the system state and
disturbance simultaneously. The proposed method is actually
the extension of the PIO in [34]. It is proved in [34], the
magnitudes of the state and disturbance estimate errors of the
system are on the order of O(T 2), where T is the sampling
interval. In this paper, the higher-order observer produces the
order O(T 3), which is much less than O(T 2) as long as T is
sufficiently small.

The remainder of this paper is organized as follows: The
problem description is presented in Section II. Section III
shows the higher-order observer design and the theoreti-
cal results. In Section IV, the simulation results are given
to demonstrate the effectiveness of the proposed observer.
Finally, some conclusions and future works are presented in
Section V.
Notation: The symbol Rm×n denotes the set of m by

n real-valued matrices, Rn denotes Rn×1, |x| denote the
Euclidean norm of a vector x and det{A} denote the deter-
minant of a matrix A.

II. PROBLEM DESCRIPTION
Consider a continuous-time MIMO linear system with
unknown state and disturbance described by

ẋ(t) = Hx(t)+ Du(t)+ Ff (t) (1)

y(t) = Cx(t) (2)

where x ∈ Rn is the system state vector, y ∈ Rl is the system
output vector, u ∈ Rm and f ∈ Rp are the control input
vector and disturbance input vector respectively; H ∈ Rn×n,
D ∈ Rn×m, F ∈ Rn×p and C ∈ Rl×n are constant matrices.
Same as [34], it is supposed that the sampling interval is T and
a zero-order-holder is adopted for Eq. (1). Denoting x(k) =
x(kT ), y(k) = y(kT ), u(k) = u(kT ) and d(k) = d(kT ), then
the discrete-time model can be derived as

x(k + 1) = Ax(k)+ Bu(k)+ d(k) (3)

y(k) = Cx(k) (4)

where A = exp(HT ) ∈ Rn×n, B =
∫ T
0 exp(Hτ )Ddτ ∈ Rn×m,

and d(k) =
∫ T
0 eHτFf ((k + 1)T − τ )dτ ∈ Rn.

In order to proceed further, the definitions of Equivalence
and Large order are introduced:

Definition 1[35] (Equivalence): If there exist positive con-
stants Mi(i = 1, 2) and k0 such that

| χ (k) | ≤ M1max
τ≤k
| φ(τ ) | +M2,∀k ≥ k0 (5)

| φ(k) | ≤ M1max
τ≤k
| χ (τ ) | +M2,∀k ≥ k0 (6)

where χ (k) and φ(k) are scalar functions or vector valued
functions of discrete time k , then we refer to χ (k) and φ(k)
as being equivalent and denote it as χ (k) ∼ φ(k). It follows
directly that this equivalence relation is reflexive, symmetric
and transitive, so that the symbol∼ represents an equivalence
class.
Definition 2[36] (Large Order): The magnitude of a vari-

able υ(k) is said to beO(TN ), i.e., υ(k) = O(TN ), if and only
if there exists a constant C0 > 0 such that for any sufficiently
small sampling interval T ∈ (0, 1), the following inequality
holds

| υ(k) |≤ C0TN

where N ∈ Z with Z being an integer set. Note that O(TN )
can be viewed as a scalar function or a vector valued function.
Remark 1: According to Definition 1, Eq. (5) represents

χ (k) does not grow faster than φ(k), and Eq. (6) represents
φ(k) does not grow faster thanχ (k). Thenχ (k) ∼ φ(k) means
that χ (k) grows at the same rate as φ(k).
Remark 2: According to Definition 2, υ(k) = O(TN )

means that υ(k) is on the order of O(TN ). In fact, if
υ1(k) = O(TN ) and υ2(k) = O(TN+1), then there exist two
positive constants C1 and C2 such that | υ1(k) |≤ C1TN and
| υ2(k) |≤ C2TN+1. In this case, as long as T �

C1
C2
, we have

C2TN+1 � C1TN and consequently υ2 � υ1. Moreover, the
following relations also hold

O(TN )+ O(TN+1) = O(TN )

O(TN )+ O(1) = O(TN )

O(TN ) · O(T−M ) = O(TN−M )

where N and M ∈ Z with Z being the integer set.
To design the higher-order observer, same as [34] and [36],

the following assumptions are made.
Assumption 1: The disturbance f (t) is smooth and

bounded.
Assumption 2: The sampling interval T∈(0, 1) is suffi-

ciently small such that the disturbance do not vary too much
between two consecutive sampling instant.
Remark 3: From the above assumptions and the formula-

tion of d(k), it can be shown that the magnitude of d(k) is on
the order of O(T ), i.e., d(k) = O(T ) (See Appendix A).
Lemma 1: If the disturbance input f (t) in Eq. (1) satisfies

Assumption 1 and the sampling interval T satisfies
Assumption 2, then the magnitude of 12 d(k) is in the small
region of O(T 3), i.e.,

12d(k) = O(T 3)

where 1 = 1 − z−1 is a first order difference operator
with z−1 being the backward shift operator, and
then 12d(k) = d(k)− 2d(k − 1)+ d(k − 2).
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Proof: See Appendix A.
The purpose of this paper is to design a higher-order

observer such that the estimate errors of states and distur-
bances can be constrained in the small region of O(T 3).

III. HIGHER-ORDER OBSERVER DESIGN
The higher-order observer is designed as

x̂(k + 1) = Ax̂(k)+ Bu(k)+ P0[y(k)− ŷ(k)]

+ d̂(k) (7)

d̂(k + 1) = d̂(k)+ L0[y(k)− ŷ(k)]+1d̂(k)

+L1[1y(k)−1ŷ(k)] (8)

ŷ(k) = Cx̂(k) (9)

where x̂(k), ŷ(k) and d̂(k) are respectively the estimates of
x(k), y(k) and d(k) at time k; 1y(k) = y(k) − y(k − 1),
1d̂(k) = d̂(k) − d̂(k − 1) and 1ŷ(k) = ŷ(k) − ŷ(k − 1) are
respectively the differences of y(k), d̂(k) and ŷ(k) at time k;
P0 ∈ Rn×l and Lj ∈ Rn×l , j = 0, 1 are constant matrices
which will be designed in the sequel.
Remark 4: Since when L1 = 0 and4d̂(k) = 0, Eqs. (7)-(9)

degrades to the PIO proposed in [34], PIO can be viewed as
an special case of the higher-order observer Eqs. (7)-(9).
Theorem 1: If Assumptions 1 and 2 are satisfied, and there

exist constant matrices P0 ∈ Rn×l and Lj ∈ Rn×l , j = 0, 1,
such that for any | z |≥ 1,

det{[1− z−1G(z−1)][In − (A− P0C)z−1]

+ z−2Q(z−1)C} 6= 0 (10)

where

G(z−1) = 1+1 (11)

Q(z−1) = L0 + L11 (12)

then the state observe error and disturbance observe error
satisfy

e(k) = O(T 3)

q(k) = O(T 3)

where e(k) = x(k)− x̂(k), q(k) = d(k)− d̂(k).
Proof: From Eq. (3) and Eq. (7), it yields that

e(k + 1) = Ae(k)+ q(k)− P0Ce(k) (13)

i.e.,

q(k − 1) = [In − (A− P0C)z−1]e(k) (14)

For any disturbance d(k), it can be rewritten as

d(k) = d(k − 1)+1d(k − 1)+12d(k)

= (1+1)d(k − 1)+12d(k) (15)

From Eqs. (8), (9), (11), (12) and (15), we obtain that

q(k) = d(k)− d̂(k)

= (1+1)d(k − 1)+12d(k)− (1+1)d̂(k − 1)

− (L0 + L11)[y(k − 1)− ŷ(k − 1)]

= (1+1)q(k − 1)− (L0 + L11)Ce(k − 1)

+12d(k)

= G(z−1)q(k − 1)− Q(z−1)Ce(k − 1)

+12d(k) (16)

Substituting Eq. (14) into Eq. (16), it yields

{[1− z−1G(z−1)][In − (A− P0C)z−1]

+ z−2Q(z−1)C}e(k) = 12d(k − 1) (17)

Since P0, L0 and L1 can be found such that Eq. (10) is
satisfied, according to the Key Technical Lemma (See
Appendix B), it can be concluded that there exist constants
0 < Ci <∞(i = 3, 5) and 0 ≤ Cj <∞(j = 4, 6) satisfying

| e(k) | ≤ C3 max
0<τ<k

| 12 d(τ − 1) | +C4, ∀k > 0

| 12 d(k − 1) | ≤ C5 max
0<τ<k−1

| e(τ ) | +C6, ∀k > 0

According to Definition 1, we have e(k) ∼ 12 d(k − 1).
From Lemma 1, we know 12 d(k − 1) = O(T 3),
then e(k) = O(T 3). Similarly, for Eq. (14), there exist
0 < C7 <∞ and 0 ≤ C8 <∞ such that

| q(k − 1) |≤ C7 max
0<τ<k−1

| e(τ ) | +C8, ∀k > 0.

According to Definition 1, q(k − 1) does not grow faster
than e(k). Since e(k) ∼ 12d(k − 1), q(k − 1) does not grow
faster than 12 d(k − 1). Therefore, q(k − 1) = O(T 3).
Since limk→∞ | 1

2 d(k − 1) |= 0, according to Eq. (14)
and Eq. (17), e(k) and q(k) will both equal to 0 when k tends
to∞.

IV. SIMULATION RESULTS
Consider the following system without the control input as
in [34],

x(k + 1) = Ax(k)+ d(k)

y(k) = Cx(k)

where

A =

 0.9630 0.0181 0.0187
0.1808 0.8195 −0.0514
−0.1116 0.0344 0.9586

,
C =

[
1 0 −1
−1 1 1

]
, d(k) = Ed∗(k),

d∗(k) =
[
0.3 sin(0.1k)+ 0.5 cos(0.03k)

0.2 cos(0.05k)+ 2

]
,

E =

 0.0996 0.0213
0.0050 0.1277
0.1510 0.0406

.
According to Eq. (17), by assigning the poles of the error

system at the same points as in [34], i.e., {0.1, 0.2, 0.3 ±
0.5j, 0.4}, the constant gain matrices P0, L0 and L1 are
obtained such that Eq. (10) is satisfied.

P0 =

 1.1902 0.0181
2.1356 2.0195
−1.3507 0.0344

,
102814 VOLUME 7, 2019
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FIGURE 1. Estimate errors of the three states by using the two methods.

FIGURE 2. Change rates of the estimated states by using the two
methods.

L0 =

 0.3700 0
0.3600 0.3600
−0.3600 0

,
L1 =

 0.7000 0
1.2000 1.2000
−0.8500 0

.
For comparison, the PIO proposed in [34] is given as

x̂(k + 1) = Ax̂(k)+ Bu(k)+ P′0[y(k)− ŷ(k)]+ Eq̄(k)

q̄(k + 1) = q̄(k)+ L ′0[y(k)− ŷ(k)]

where q̄ is the estimate of the disturbance d∗(k), and the gain
matrices are

P′0 =

 31.7392 19.6384
1.8918 1.7307
29.3767 19.9849

,
L ′0 =

[
51.1873 34.5803
−21.3249 −10.6399

]
.

FIGURE 3. Euclidean norm of the state estimate errors by using the two
methods.

FIGURE 4. Estimate errors of the three disturbances by using the two
methods.

Same as [34], the initial state

x(0) =
[
0 1 0

]T
, x̂(0) =

[
0 0 0

]T
,

x(−1) =
[
0 0 0

]T
, x̂(−1) =

[
0 0 0

]T
,

and the initial disturbance

d∗(0) =
[
0 0

]T
,

d̂∗(0) =
[
0 0

]T
,

d̂∗(−1) =
[
0 0

]T
,

are chosen.
In order to evaluate the performance of the proposed

observer, simulations without and with measurement noise
are both conducted by using the proposed observer and the
PIO in [34].

Figs. 1-8 are the results without noise. Fig. 1 shows the
magnitudes of the observation errors of the three states for
0 ≤ k ≤ 50. Fig. 2 shows the change rates of the three
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FIGURE 5. Change rates of the estimated disturbances by using the two
methods.

FIGURE 6. Euclidean norm of the disturbance estimate errors by using
the two methods.

FIGURE 7. True and estimate values of the three states by using the two
methods.

estimated states. Fig. 3 is the Euclidean norm of the state esti-
mate errors. Fig. 4 illustrates themagnitude of the observation

FIGURE 8. Given and estimate values of the three disturbances by using
the two methods.

FIGURE 9. True and estimate values of the three states under
measurement noise by using the two methods.

errors of the three kinds of disturbances for 0 ≤ k ≤ 50.
Fig. 5 shows the change rates of the three estimated dis-
turbances. Fig. 6 is the Euclidean norm of the disturbance
estimate errors. Fig. 7 shows the responses of the estimated
states and the true states for 50 ≤ k ≤ 200. Fig. 8 shows
the responses of the estimated disturbances and the given
disturbances for 50 ≤ k ≤ 200. It can be seen from
Figs. 1-6, the responses and the disturbance attenuation prop-
erties at transient state obtained by using the proposedmethod
are evidently better than those obtained by using PIO in [34].
Meanwhile, it can also be seen from Figs. 2 and 5 that the
change rates of the estimated states and disturbances of the
higher-order observer are less than those of PIO. As can be
seen from Figs. 7 and 8, the responses and the disturbance
attenuation properties at steady state obtained by using the
proposedmethod are also evidently better than those obtained
by using PIO in [34].

Figs. 9 and 10 are respectively the estimated states and dis-
turbances obtained by considering the measurement gaussian
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FIGURE 10. Given and estimate values of the three disturbances under
measurement noise by using the two methods.

white noise with the magnitude 0.001. From Figs. 9 and 10 it
can be seen that the estimated states and disturbance obtained
by using the proposed higher-order observer are less affected
by noise than those obtained by PIO in [34].

V. CONCLUSION
In this paper, for a class of linear systems with unmeasurable
state and disturbance inputs, a new higher-order observer
simultaneously estimating the system state and disturbance
is proposed. It can be viewed as the extension of the PIO
reported in the literature. It is provedwithout adding any other
assumptions that the magnitudes of the state and disturbance
estimate errors of the system are on the order ofO(T 3), which
is much less thanO(T 2) produced by the PIO. Simulations are
conducted and the results show the effectiveness and superior
of the proposed method.

The higher-order observer is designed without considering
the issues such as unknown parameters and unmodeled
dynamics, which are always suffered by practical sys-
tems [37]. Those issues will be further considered in the
future research. Moreover, since practical systems are always
nonlinear, designing higher-order observers for nonlinear
systems will be our future direction.

APPENDIX A
Proof: From Eq. (3), the disturbance d(k) is

d(k) =
∫ T

0
eHτFf ((k + 1)T − τ )dτ (18)

As the function f is smooth and bound, the function
f ((k+1)T−τ ) can be expanded as following through Taylor’s
series at kT .

f (kT + T − τ ) = f (kT )+
df (t)
dt
|t=kT (T − τ )

+
1
2!
d2f (t)
dt2

|t=kT (T − τ )2

+
1
3!
d3f (t)
dt3

|t=kT (T − τ )3

+ · · · +
1
n!
dnf (t)
dtn

|t=ξ (T − τ )n (19)

where ξ ∈ (kT , kT + T ).
Assuming that

Vm
t =

1
m!

dmf (t)
dtm

where m = 1, 2, 3, · · · , n − 1, and Vm
t is also smooth and

bound. Then for any m, there exist constant Cm > 0 such that
| Vm

t |≤ Cm.

For simplicity, k is used to instead of kT . Then Eq. (19) is
rewritten as following
f (k + 1− τ ) = f (k)+ V 1

k (T − τ )+ V
2
k (T − τ )

2

+V 3
k (T − τ )

3
+ · · · + V n

ξ (T − τ )
n

where Vm
k = Vm

t |t=k .
Similar as in [36], we assume that τ = 0 and τ = 2T

respectively, we have
f (k + 1) = f (k)+ V 1

k T + V
2
k T

2
+ V 3

k T
3
+ · · ·

+V n
ξ T

n (20)

f (k − 1) = f (k)− V 1
k T + V

2
k T

2
− V 3

k T
3
+ · · ·

+ (−1)nV n
η T

n (21)

where η ∈ (k − 1, k).
Subtracting Eq. (21) from Eq. (20), we obtain
f (k + 1)−2f (k)+f (k−1)=V 2

k T
2
+V 4

k T
4
+· · ·+V ρδ T

ρ

where δ ∈ (η, ξ ), ρ ≤ n is even number.
Similarly, for the function V 1

t , there is
V 1
k+1 = V 1

k + V
2
k T + V

3
k T

2
+ V 4

k T
3
+ · · ·

+V n−1
ξ T n−2 (22)

V 1
k−1 = V 1

k − V
2
k T + V

3
k T

2
− V 4

k T
3
+ · · ·

+ (−1)n−2V n−1
ξ T n−2 (23)

and then

V 1
k+1 − 2V 1

k + V
1
k−1 = V 3

k T
2
+ V 5

k T
4
+ · · · + V ρ−1δ T ρ−2

As we have known

C =
∫ T

0
eHτFdτ = FT +

1
2!
HFT 2

+
1
3!
H2FT 3

+
1
4!
H3FT 4

+ · · ·

is constant matrix.
Substituting Eq. (19) into Eq. (18), and taking n = 2, then

we get

d(k) =
∫ T

0
eHτF[f (k)+ V 1

k (T − τ )+ V
2
ξ (T − τ )

2]dτ

=

∫ T

0
eHτFdτ f (k)+

∫ T

0
eHτF(T − τ )dτV 1

k

+

∫ T

0
eHτF(T − τ )2dτV 2

ξ
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where ∫ T

0
eHτFdτ f (k) = Cf (k)∫ T

0
eHτF(T − τ )dτV 1

k =
1
2
CV 1

k T +R

where

R = (
1
12
HFV 1

k +
1
8
H2FV 1

k T + · · · )T
3

According to Definition 2, there is

R = O(T 3)

So ∫ T

0
eHτF(T − τ )dτV 1

k =
1
2
CV 1

k T + O(T
3).

In the same way, there is∫ T

0
eHτF(T − τ )2dτV 2

ξ = O(T 3).

Therefore, we have

d(k) = Cf (k)+
1
2
CV 1

k T + O(T
3) (24)

According to Definition 2 and substituting C into the above
equality, the Cf (k) and 1

2CV
1
k T satisfy

Cf (k) = O(T )
1
2
CV 1

k T = O(T 2),

then

d(k) = O(T ).

And

d(k − 1) = Cf (k − 1)+
1
2
CV 1

k−1T + O(T
3) (25)

From Eq.(23) and Eq. (24), we have

d(k)− d(k − 1) = C(f (k)− f (k − 1))

+
1
2
C(V 1

k − V
1
k−1)T + O(T

3)

Combining to Eq. (20) and Eq. (22), there are

C(f (k)− f (k − 1)) = O(T 2),

C(V 1
k − V

1
k−1)T = O(T 3),

then

d(k)− d(k − 1) = O(T 2)

or

1d(k) = O(T 2).

Similarly, there are

d(k)− 2d(k − 1)+ d(k − 2)

= C(f (k)− 2f (k − 1)+ f (k − 2))

+
1
2
C(V 1

k − 2V 1
k−1 + V

1
k−2)T + O(T

3)

and

C(f (k)− 2f (k − 1)+ f (k − 2)) = O(T 3)
1
2
C(V 1

k − 2V 1
k−1 + V

1
k−2)T = O(T 4).

Then

d(k)− 2d(k − 1)+ d(k − 2) = O(T 3)

or

12d(k) = O(T 3).

APPENDIX B
Key Technical Lemma [38]: For the following system

A(z−1)y(k)=

 z
−d11B11(z−1) · · · z−d1rB1r (z−1)

...
. . .

...

z−dm1Bm1(z−1) · · · z−dmrBmr (z−1)

 u(k)
where A(z−1) and Bij(z−1)(i = 1, · · · ,m; j = 1, · · · , r)
denote scalar polynomials in the backward shift operator z−1,
and the factors z−dij represent pure time delays. With r = m,
the system subjects to

det

 zd11−d1B11(z) · · · zd1m−d1B1m(z)
...

. . .
...

zdm1−dmBm1(z) · · · zdmm−dmBmm(z)

 6= 0

for | z |≤ 1 where

di = min
1≤j≤m

dij i = 1, · · · ,m.

If

max
0 ≤ k ≤ T0
1 ≤ i ≤ m

| yi(k + di) |= m2,

then there exit positive constants m3 and m4 which are inde-
pendent of T0 with 0 ≤ m3 <∞, 0 < m4 <∞ such that

| ui(k) |< m2m4 + m3 0 ≤ k ≤ T0, i = 1, · · · ,m.
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