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ABSTRACT An unintentional hand drift adversely affects the typing performance of conventional virtual
keyboards. To overcome this, we proposed to utilize the typing patterns of skilled typists. First, as most
typists enter the keys in the same column with a predetermined finger only, we restricted these keys to be
typed by their corresponding fingers. Second, our investigation of skilled typists demonstrated that hand
poses vary when the typists touch different keys. Thus, rather than locating the touch point as in the case
of existing virtual keyboards, we attempted to use unique hand poses to infer the target key. Based on these
two techniques, we implemented a novel hand poses aware virtual keyboard that is tolerant of hand drift.
Our experimental studies yielded the following results: 1) most of the QWERTY-familiar typists who have
varying typing habits were easily adaptable to the proposed keyboard design and 2) the proposed keyboard
outperformed existing virtual keyboards in terms of typing speed and several error rates, and eventually
achieved a typing speed of approximately 56 WPM.

INDEX TERMS Eyes-free, hand drift, hands, text entry, touch typing, virtual keyboard, virtual reality.

I. INTRODUCTION
Despite the prevalence of touchscreens, ten-finger typing on
virtual keyboards is nevertheless slower and less accurate
than physical keyboards [8]. The decreased performance of
virtual keyboards primarily results from the absence of tac-
tile feedback [1], [3], [8], [32], [36], which occasionally
cause hand drifts: users unintentionally move their hands
while typing. To improve virtual keyboards, some stud-
ies attempted to compensate for the lack of tactile feed-
back [15], [19], [23], [36] and other studies proposed adaptive
keyboard layouts [9], [11], [32], [40]. Although these efforts
were able to improve the existing virtual keyboards to a
certain extent, the virtual keyboards have not yet reached to
their potential maximum typing performance (59 WPM) [8]

In conventional text entry [13], [30], [31] using physi-
cal keyboards, typing errors, i.e., a target key is mistakenly
replaced with the neighboring key, occurred 43% in the
horizontal and 15% in the vertical directions, respectively.
Owing to the hand drift, virtual keyboards may be more
vulnerable to these typing errors than physical keyboards.

The associate editor coordinating the review of this manuscript and
approving it for publication was An-An Liu.

Therefore, eliminating the horizontal and vertical typing
errors is crucial for improving virtual keyboards. To accom-
plish this, we focused on the typing patterns of skilled typists.

Figure 1 shows key allocation to each finger for skilled
typists. To reduce the horizontal typing errors, we propose
to permit each key to be entered by a pre-assigned finger
only, as shown in Figure 1. We referred to this technique as
Key Pre-allocation. As Key Pre-allocation is the same as the
common practice adopted by most skilled typists who have
typed on QWERTY over the past few decades [5], this tech-
nique accommodates most of the skilled typists without extra
training. Although some skilled typists type differently from
Key Pre-allocation [41], our experimental results showed that
67% of these typists can adapt to this technique in a short
time. As Key Pre-allocation limits each key to be entered with
the assigned finger only, it prevents most of the horizontal
typing errors in advance.

Furthermore, to interpret typists’ intentionsmore precisely,
we propose to infer a target key based on hand poses.
We referred to this technique as Key Inference based on
Hand Poses. Our experimental findings supported that when
touching a target key, the typist’s hand makes a unique pose.
Therefore, identifying the unique hand pose for a target key
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FIGURE 1. Key Pre-allocation that assigns each key column to its
corresponding finger. Each key can be entered with its allocated finger
only; therefore most horizontal typing errors can be eliminated in
advance.

can grasp the typists’ intention accurately. As hand pose
based inference is independent of where the hand is located,
this technique further allows the key inference to be tolerant
towards hand drift.

These two techniques allow us to implement a novel virtual
keyboard that reduces typing errors and tolerates hand drift
as well. Our experimental results showed that the proposed
keyboard outperformed existing virtual keyboards in terms of
typing speed and several error rates, and eventually reached
the typing speed of approximately 56 WPM. Furthermore,
we will discuss about the feasible applications of our novel
keyboard. We will also discuss how to apply our techniques
to other skilled typists who experience difficulty in adapting
to Key Pre-allocation.

II. RELATED WORK
In this section, we explore the studies on virtual keyboards
that inspired our work.

A. TEXT ENTRY ON TOUCHSCREENS
As touchscreen-based virtual keyboards imitate QWERTY
layouts without considering their underlying differences,
i.e., there is no tactile feedback, they are suffering from
decreased typing performance compared to physical key-
boards [3], [8], [33], [37]. However, Findlater et al. showed
that in an ideal condition where typing errors do not occur,
typing on virtual keyboards could be as fast as that on phys-
ical keyboards. In addition, they found that even without
a keyboard layout provided visually, skilled typists could
reach fairly high accuracy (approximately 90%). In conclu-
sion, they emphasized personalization—such as customizing
each key size and curved shape of the keyboard layout—
as an important factor for future keyboard design. Li and
Findlater et al. further observed the effect of hand drift on a
visible conventional keyboard and an invisible adaptive key-
board [18]. They found that unintentional hand drift occurred
on both keyboards and hands moved in the up and left
directions.

For improving the virtual keyboards, some researchers
suggested providing a modified QWERTY layout. They pro-
posed that the virtual keyboard has a layout adapted to either

the user’s typing patterns [9], [11] or their natural finger
positions on touchscreens [32]. Nevertheless, showing a visu-
ally adapted layout to users had a negative impact on perfor-
mance compared to showing a stable rectangular layout [9].
Shi et al. [40] tried to adjust the location and size of the layout
in real time based on successive touch inputs. They further
used relative locations between the inputs, but their keyboard
predicted a target word rather than a target character.

There have been other studies focusing on tactile feedback.
Weiss et al. [36] suggested putting a keyboard-shaped silicon
rubber on a touchscreen; however, performance evaluation
has not yet been reported. As alternatives to tactile feedback,
haptic and sound feedbacks were proposed as well [19], [23].
However, the auditory feedback did not improve perfor-
mance; the haptic keyclick feedback was found to be helpful
to improve typing speed and error rate.

In addition, Kim et al. suggested replacing tactile feed-
back by changing the text entry process on touchscreen
keyboards [15]. They noted that on physical keyboards a
character is entered through three stages of Touch-Press-
Release, while on conventional soft keyboards a character is
entered without the Press stage. To complement the missing
Press stage on the touchscreen, they proposed a keyboard,
TapBoard. The TapBoard has a certain threshold (< 300 ms)
between the Touch and Release stages and the touch gestures
released within the threshold were only allowed to enter char-
acters. It prevents users from noticing the difference between
the TapBoard and the existing virtual keyboards and at the
same time, it enables users to perform additional multi-touch
gestures, such as putting all fingers on the touchscreen for
resting.

B. TEXT ENTRY ON FLAT SURFACES
The tablet PC’s built-in cameras [25], [39] and infrared
touch sensing technologies [25] are making it possible to
use virtual keyboards on any flat surface beyond the touch-
screens. However, several well-known problems of image
processing—such as occlusion, lighting condition, etc.—
hinder the techniques from being prevalent. Thus, in order to
make virtual keyboards on flat surfaces feasible, studies for
accurate finger gesture recognition should be preceded. For
these reasons, detailed performance assessments of the state-
of-the-art gesture recognition based virtual keyboards were
not reported, or their performance was shown to be much
worse than that of the conventional touchscreen keyboards
(1.5–2.5 characters per second) [39].

C. USING FINGER IDENTITY FOR VIRTUAL KEYBOARDS
For providing a richer set of interaction, finger identification
on touchscreens has been receiving considerable attention
recently [22]. However, although several prototypes capable
of finger identification have been proposed, only a few tech-
niques have been applied to virtual keyboards, e.g., a proto-
type identifying two fingers [14], the other identifying fingers
in one hand [22]. It implies that the finger identification
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techniques are still premature to reliably identify ten fingers
in real time.

Rather than directly using finger identification, there have
been some approaches to use the mappings between fin-
ger identity and QWERTY layout for typing on touch-
screens [17], [32]. The 1-line keyboard [17] combines three
keys in the same column into a single soft buttonwhich results
in a total of 10 soft buttons on one line. Then, to solve ambigu-
ity, they suggested looking into the sequences of inputs from
the one line buttons to infer words that users want to enter.
On Liquid Keyboard [32], when users put their hands on the
touchscreen as they do on conventional physical keyboards,
each key column is placed according to the direction of
their hands and fingers, which is inferred from geometric
mappings between touch-points and finger identities. Never-
theless, their proposed keyboard designs were quite slow as
well (< 30 WPM) or not reported.
Meanwhile, Choi et al. tried to improve the virtual

keyboard considering two-dimensional positions of finger-
tips [4]. Through observing typing patterns of skilled typists,
they found that there were 2D positional correlations among
all fingers when typing. Based on the 2D positional correla-
tions, they tried to more accurately infer the target key that
users wanted to enter. However, their proposed keyboard was
slightly limited to showing the actual improvement in typing
performance (M = 31.618 WPM) for the following two
reasons. First, their keyboard was vulnerable to hand drift.
Second, their experimental setups had some unreliability,
such as an unintended touch recognition and lighting problem
of color marker detection.

In this study, we extend their work as follows. First,
we improved our experimental setup to detect the marker
positions on hands more precisely, which restricted the
detecting error to be less than 1 mm. Second, we tried to
infer a target key more precisely using hand poses which are
tolerant to hand drift. Third, our key inference system was
not affected by the difference in hand sizes between typists
and was approximately 9.5% more accurate than their key
inference models.

III. TOUCH SURFACE
For investigating the typing patterns of skilled typists,
we were first required to identify hand poses when they were
typing on virtual keyboards. To do this, we implemented
a touch surface capable of estimating hand poses during
typing.

A. APPARATUS
Figure 2(A) shows our experiment environment. To construct
a touch surface, we used seven infrared cameras, named
OptiTrack Flex13, and several reflective markers with a 2mm
radius. When the infrared cameras were connected to a hub,
the cameras were able to track the infrared reflective markers
with an error range of less than 1 mm. Users were requested
to sit in front of the touch surface and then enter the phrase
presented on display. Figure 2(B) shows the 3D coordinate

FIGURE 2. (A) Experimental setup for tracking hand poses. Seven infrared
cameras were connected to a hub that accurately tracks the infrared
reflective markers attached to the hands in real time. (B) 3D coordinate
system on our touch surface.

system on the surface. On the touch surface, the origin was
located at the center of the lower edge of the surface. With
respect to the origin, the positive directions of x-, y-, and
z-axis indicated the leftward, upper, and forward directions,
respectively.

All participants were requested to attach 18 reflective
markers on their hands. Figure 3(A) shows the nine markers
attached to the left hand. One marker was attached on the
wrist, and the other markers were attached on the fingertips
andmetacarpo-phalangeal (MCP) joints of each finger. As the
middle and ring fingers had nomarkers attached to their MCP
joints, we considered those positions to be virtually located at
regular spaces between the MCP joints of the index and little
fingers. To express the hand pose of one hand, two vectors
per finger were calculated. Based on the MCP joint,

−−→
MW n

and
−→
MFn vectors point at the wrist and fingertip, respectively.

Therefore, we expressed a hand pose of one hand with ten
vectors, as shown in Figure 3(B).

Figure 4 shows the user interface of our experimental
software on an external 19’’ monitor (1440×900 resolution).
At the top of the screen, the progress bar of the current
session, the presented phrase, and the user input stream were
displayed. Below them, the keyboard layout and the posi-
tions of the joints (red circles) and fingertips (orange circles)
were presented. In the right-hand side, User Information area
showed several conditions and performance results of the
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FIGURE 3. (A) Nine infrared reflective markers attached to the left hand
and (B) ten vectors for representing a hand pose. Metacarpo-phalangeal
(MCP) joints of the middle and ring fingers were estimated by locating at
regular spaces between the MCP joints of the index and little fingers.

FIGURE 4. Screenshot of the user interface for experiments. It shows
some information for typing, such as the progress of the current session,
presented phrase and input stream, keyboard layout and positions of
joints (orange circles), and fingertips (red circles), etc.

current session. Every time a touch event occurred, the soft-
ware recorded a set of data, including all the vectors repre-
senting the hand poses.

B. TYPING INTERFACE
In our typing interfaces, a touch gesture using one finger
was used to enter characters, including 26 English alphabets,
Space, and Enter. For better usability, we supported two
additional multi-touch gestures based on the results of some
previous studies.

First, for providing each participant with a personalized
keyboard layout, our interface requested an initialization step
at the start of each session. In the initialization step, a par-
ticipant puts his/her hands on the touch surface naturally
and then our interface generated a keyboard layout based

on the touch positions of all fingers. As shown in Figure 4,
the example of the generated keyboard layout was alsomostly
curved shaped. As fingers may often rest on the surface [8],
we permitted the keyboard to be regenerated whenever the
participants put their hands on the surface.

Second, to substitute for the backspace key, we supported
a backspace gesture to be performed by touching all fingers
of the right hand anywhere on the touch surface. Some of the
previous studies on virtual keyboards [4], [8] substituted a
right-to-left swipe of right hand for the backspace key. How-
ever, as our backspace gesture is performed with one-step
motion, we thought that it would contribute to the faster
typing speed than the two-stage motion of the swipe gesture.
For deleting multiple characters, users needed to repeat the
backspace gesture.

To support the multi-touch gestures, including the initial-
ization step and backspace gesture, the touch recognition of
TapBoard [15] was used for our typing interface. Whereas the
traditional virtual keyboards allow a character to be entered
whenever a touch event occurs, the TapBoard allows a char-
acter to be entered only if a finger touches and then releases
within a certain time threshold (< 300 ms). As this design did
not interfere with typing but enabled additional multi-touch
gestures, e.g., resting with all fingers touching on the touch
screen, we adopted it as the underlying touch recognition for
our typing interface.

IV. INVESTIGATION OF TYPING PATTERNS OF SKILLED
TYPISTS
As someQWERTY-familiar typists may type differently from
our Key Pre-allocation [41], we were first required to check
which typists could adapt well to Key Pre-allocation. To do
this, we requested 15 skilled typists to type on our touch
surface. Then, through observing the typing patterns of their
hands, we statistically verified that the use of hand poses to
infer a target key helps to improve the virtual keyboard typing
performance.

A. PARTICIPANTS
15 participants (5 females), with ages between 23 to 32 years
(M = 26.6), who had regularly typed on physical and
touchscreen keyboards with QWERTY layout were recruited.
To verify proficiency in English typing, we ran a simple
typing test with physical keyboards before the main exper-
iments, where they were requested to type the Mackenzie
phrases set [20]. As a result, they demonstrated fast typing
(M = 65.4WPM, SD= 21.6) and rarely glanced down at the
keyboard layout during typing; we regarded them as skilled
typists [5], [13].

B. KEYBOARD DESIGN
The participants were requested to type on two key-
boards: Key Pre-allocation-disabled and enabled ones. First,
the Key Pre-allocation-disabled keyboard was abbreviated
as NKP keyboard. The participants could type on the
NKP keyboard as they have previously typed on existing
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FIGURE 5. On the NKP and KP keyboards, typing speed (WPM) per session for (A) well-adapted typists and
(B) non-adapted typists.

QWERTY keyboards. The other keyboard was based on
Key Pre-allocation and therefore each finger could enter the
pre-allocated keys only. For abbreviation, we called this key-
board as KP keyboard.

We wanted to observe hand poses when the skilled typists
entered keys correctly. Therefore, on both the keyboards,
we requested the participants to use backspace gesture when
they made a mistake. In addition, on the KP keyboard, a char-
acter was entered only when the key was correctly typed by
the assigned finger. When mistakes occurred, the typing data
were ignored and a red warning window flickered on the
display. Therefore, we considered the collected typing data
as the data the typists thought they had entered correctly.

C. PROCEDURE
All the participants typed on the first keyboard and after at
least 3 days, they typed on the second keyboard. For each
keyboard, we requested the participants to complete 20 prac-
tice phrases on our touch surface to make them familiar with
the touch surface and keyboard design. After the practice,
they were requested to type 200 test phrases over 5 sessions
on each keyboard. Half of the test phrases were randomly
selected from the Mackenzie phrases set [20] and to consider
all letters in the alphabet, the other half consisted of English
pangrams. Each phrase of the pangrams contained all the let-
ters of the alphabet in one sentence, such as ‘‘the quick brown
fox jumps over the lazy dog.’’ Whenever the participants
wanted to change the keyboard layout or their hand positions,
we permitted them to regenerate the keyboard. Additionally,
we requested the participants to type naturally and accurately,
with their hands put on the surface.

D. RESULTS
Through the first typing experiment, 90,016 typing data
for the NKP keyboard and 90,123 typing data for the

KP keyboard were collected. To check the applicability of
Key Pre-allocation, we compared the two keyboards in terms
of typing speed over five typing sessions. Then, we statisti-
cally verified that hand poses became different for different
input keys.

1) APPLICABILITY OF KEY PRE-ALLOCATION
To measure typing speed, we calculated words per minute
(WPM) following Mackenzie [21]:

WPM =
|T | − 1
S
× 60×

1
5

(1)

where |T | is the length of the final transcribed string and S is
the elapsed time in seconds. For analysis, we used two-way
repeated measures analysis of variance (ANOVA) followed
by the Tukey post-hoc analysis. All significant findings are
reported in the 95% confidence interval.

As a result, we divided the participants into two groups.
Figure 5 shows a typing speed over the five sessions for each
group. As shown in Figure 5(A), the first group consisted
of 10 out of 15 participants and they had no difference
in typing speed between the two keyboards (F = 2.019,
p = 0.189). We called this group as well-adapted typists.
As shown in Figure 5(B), the other group consisted of 5
participants and they had the slower typing speed on the KP
keyboard (M = 37.82, SD= 10.284) than the NKP keyboard
(M = 55.94, SD = 9.720, F = 36.445, p < 0.05). We called
this group as non-adapted typists.

The well-adapted typists maintained their typing speeds
high on both keyboards since the first session (F = 6.324,
p < 0.05). There were only three typists in this group
whose finger-to-key mapping matched Key Pre-allocation.
The other seven well-adapted typists had several inconsistent
or different finger allocations from Key Pre-allocation. For
inconsistent finger allocation, i.e., an alphabetic key was
entered with multiple fingers, we found that on average,
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FIGURE 6. Angle (θ) variation of each finger for all input keys. Each figure shows average angles (cos θ) of each finger for input keys assigned to the
(A) left hand and (B) right hand. All finger angles varied for each input key.

each participant enters 4.28 keys with multiple fingers incon-
sistently (SD = 4.527). For different key allocations, i.e.,
an alphabetic key was entered with a different finger from
Key Pre-allocation, each participant entered an average of
0.71 keys (SD = 0.699) with a different finger.
The non-adapted typists were not adapted well to our Key

Pre-allocation within a limited session. Their typing speeds
on the KP keyboard increased over the sessions (F = 10.779,
p < 0.001); however, they appeared to require more time
for perfect adaptation. In the last session, their typing speeds
on the KP keyboard (M = 44.26 WPM, SD = 12.134) was
approximately 77% slower than those on the NKP keyboard
(M = 57.16 WPM, SD = 9.542). On average, they entered
inconsistently with multiple fingers for 12.0 keys (SD =
7.925) and entered 7.6 keys (SD = 5.004) with different
fingers.

As the non-adapted typists were adapting throughout each
session, it was expected that their typing data were erroneous
and noisy. Therefore, we did not use their typing data for
further analysis and keyboard configuration. Though, we will
discuss how our keyboard design can benefit a variety of
typists in Discussion section.

2) UNIQUE HAND POSES FOR EACH KEYS
The use of our hand joint vectors shown in Figure 3(B)
enabled us to estimate the unique pose of each finger.
By observing the poses of all fingers, we attempted to verify
the hypothesis that hand pose for entering each input key is
unique.

To estimate the pose of each finger, we measured the angle
(θ ) between the hand joint vectors as a representative metric.
It is indicative of the degree of finger bending. The angle was
calculated as a cosine function as follows.

cosθn =
−−→
MW n;

−→
MFn∥∥∥−−→MW n

∥∥∥× ∥∥∥−→MFn∥∥∥ , n ∈ {all fingers} (2)

Each finger was associated with its
−−→
MW n and

−→
MFn vectors.

In our case, the cosθ had a range of [-1, 0]. When the cosθ
for a finger is -1.0, the finger is spread out such that its EMFn
vector is in line with its

−−→
MW n vector. As the cosθ for a finger

increases, the finger becomes more bent.
The analysis was carried out as follows. First, we con-

firmed that the correlations between the finger angles exist
by Pearson’s linear correlation analysis (p < 0.05). There-
fore, a detailed analysis should be carried out to suppress
the effect on the correlations when checking whether the
finger angles varied depending on input keys. To do this,
we used the one-way multivariate analysis of variance (one-
way MANOVA) with Pillai’s trace criterion. If the results of
MANOVA are significant, then one-way ANOVA was used
to check which finger angle varied for each key, followed by
the Tukey post-hoc analysis.

The result shows that all finger angles varied for input keys
(left hand: F = 22.251, p < 0.001, right hand: F = 17.204,
p < 0.001). Figure 6 shows the average angles of each finger
for the keys assigned to the (A) left and (B) right hands.
Depending on the keys assigned to each finger, the angle of
a touching finger always had the most significant variation
compared to the other non-touching fingers. Though, the sur-
rounding non-touching fingers showed correlatedmovements
to the touching finger. For example, when the participants
entered the higher row keys, such as the Q, W, and E keys,
the non-touching fingers were stretched out together with
the touching finger. When entering the lower row keys, all
fingers became more bent than when entering the other row
keys.

Exceptionally, there were no differences in finger angles
between when entering the Y and U keys for all fingers
including the touching finger (p > 0.05). To differentiate
these two keys, we were required to analyze another hand
characteristic that affects the global hand position, such as
the hand direction. We checked whether the hand direction
was different depending on input keys using the same analysis
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used for analyzing finger angles. The hand direction was
estimated as follows.

hand direction =
−−→
WM index +

−−→
WM little∥∥∥−−→WM index +
−−→
WM little

∥∥∥ (3)

With respect to the position of the wrist,
−−→
WM index and

−−→
WM little

are the vectors pointing to the positions of the MCP joints
of the index and little fingers, respectively. To eliminate the
effect of different hand sizes between the participants, the
vector of hand direction was converted into a unit vector.

As a result, the hand direction also varied for each input
key (left hand: F = 14.661, p < 0.001, right hand: F =
16.637, p < 0.001). Especially, in the case of the Y and
U keys, where there were no differences between the finger
angles, the hand direction when entering the Y key was
different from the direction when entering the U key (p <
0.001). When entering the Y key, the right hand turned left
by approximately 8 degrees compared to when entering the U
key (average hand direction: Y key = (0.269, -0.124, 0.949),
U key = (0.200, -0.007, 0.971)).
All the results of the investigation implied that typists

type with unique hand poses (including finger angles, etc.)
and hand directions for each key. Therefore, we were highly
confident that identifying the unique hand pose for each key
improves the virtual keyboards.

V. A NOVEL VIRTUAL KEYBOARD BASED ON HAND
POSES
The investigation of typing patterns encouraged us to imple-
ment a new hand pose-aware virtual keyboard. For implemen-
tation, we constructed key inference system that can infer a
user’s target key using our hand joint vectors. Our key infer-
ence system contains data preprocessing and key inference
models. To construct the key inference models, we experi-
mentally found machine learning models with optimal key
inference accuracy for the hand joint vector.

A. DATA PREPROCESSING
The input vector to our key inference system represents
a hand pose with ten hand joint vectors, as shown in
Figure 3(B). Each hand joint vector consists of 4 dimen-
sional (4D) features including the positional values on
three-dimensional (3D) axes and a constant which is initially
set to 1.0.

However, the original form of the input vector had a high
variance problem that represented the differences in hand
size between typists. For example, even when two hands
are in the same pose, the larger hand generates higher 3D
positional values. As data with low variance are generally
easy to classify [7], we attempted to reduce the impact of
the hand size differences by refining all the input vectors
through two stages of simple preprocessing, normalizing, and
scaling. After two stages of the preprocessing, the constant
value within each joint vector contains information about the
original vector, including his/her finger length.

During the first stage of the preprocessing, the Normalizer
transformed each hand joint vector to be a unit vector. As the
Normalizer extracted the unit vectors independently from
each hand size, it reduced the variance of our typing data.
Then, in the second stage, the StandardScaler made each
feature of the unit vector follow the standard normal distri-
bution. As the preprocessing resulted in better classification
performance in various machine-learning applications [16],
we expected the same effect in our key inference model.

B. MODEL SELECTION
After the two stages of data preprocessing, our key inference
models infer a user’s target key from the refined unit vec-
tor. Our key inference models contain principal component
analysis (PCA) and Multi-layer perceptron (MLP). As the
combinations between the PCA’s output and MLP’s param-
eters affect the performance of the key inference system,
we compared several combinations and finally, chose the
optimal parameter set in terms of key inference accuracy.

1) PRINCIPAL COMPONENT ANALYSIS (PCA)
In our case, the hand pose was represented as the hand joint
vector with 40 dimensions. However, as the shape of the
human hand is slightly similar, we thought that the intrinsic
dimensionality of the hand joint vector during typing would
be lower. This was why we used PCA [38]; it allows the
original vector to be decomposed without loss of information
and helps amachine learningmodel to convergemore quickly
its highest accuracy [42]. To do this, the PCA extracts a set of
successive orthogonal components, called principal compo-
nents, which explain the maximum amount of the variance of
the original data. Therefore, we tried to determine the optimal
number of components along with various parameters of the
machine learning model.

2) MULTI-LAYER PERCEPTRON (MLP)
MLP [29] is one of most famous machine learning algo-
rithms, and it has the capability to learn both linear and
non-linear models. The basic structure consists of an input,
hidden, and output layers where each layer has a plurality
of neurons, and each neuron has its weighted connections
to all neurons at the next layer. Each element of an input
vector, i.e., the hand joint vector in our case, is inserted
into the corresponding neuron at the input layer. Each of the
elements is multiplied by the weight on its connection to the
next layer and then, all the multiplied values are summed
up into one accumulated value. The accumulated value is
eventually passed through a specific activation function to the
corresponding neuron of the next layer. When an input vector
reaches the output layer, the neuron values of the output layer
become the predicted result.

In this work, we used a MLP with one hidden layer.
To determine the optimal MLP model, we then compared the
combinations of the hyper parameters: activation function =
{tanh, relu, sigmoid} [43], the number of neurons in hidden
layer = {all multiples of 10 between 10 and 100} [44].
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FIGURE 7. For the two index fingers, learning curves of the MLP models whenever the original hand joint vector was transformed by
each stage of the Normalizer (N), the StandardScaler (SS), and the PCA.

3) RESULTS
For comparison, we measured the key inference performance
for all combinations of the parameters to be considered.
We used the typing data on the KP keyboard collected from
session 1 to session 4. To consider recall and precision of
the key inference performance, 10-fold cross-validation was
carried out in terms of f1 score.

As a result, we decided that the PCA outputted 25 compo-
nents and the MLP was trained with the sigmoid function as
its activation function and 60 neurons in its hidden layer. For
the two index fingers, whose target keys are the most difficult
to infer compared to those of the other fingers, Figure 7 shows
the learning curves of the MLP models whenever the original
hand joint vector was transformed by each step, including the
Normalizer, the StandardScaler, and the PCA. As expected,
our MLPs could learn faster and converge on higher accu-
racies as long as the original vector went through each step.
Furthermore, as the number of samples increases, the differ-
ence between the training and the validation scores decreases,
indicating that the MLP was less sensitive to variance
errors.

C. KEYBOARD IMPLEMENTATION
With the selected parameter set, we finally constructed a
key inference model for each finger, except the thumbs. For
learning, the typing data collected from session 1 to session
4 were used. Then, the data of session 5 was used to measure
the performance in terms of the f1 score. To show how
much our key inferencemodel improves the virtual keyboards
compared with the Choi et al.’s models [4], we also applied
their models to our typing data and compared our models and
theirs.

For all the fingers, our key inference models (M =

97.64%, SD = 1.288) showed higher accuracies than Choi
et al.’s models (M = 88.21%, SD = 7.586) as shown

TABLE 1. Key inference accuracies of our models and Choi et al.’s models
for all fingers.

in Table 1. Though Choi et al.’s models inferred target keys
using the correlations between all finger movements, their
design was vulnerable to unintended hand drift because they
calculated the finger movements based on the initialization
points. Therefore, such performance differences indicated
that our models correctly inferred a target key regardless of
the hand drift.

To sum up, our hand pose aware virtual keyboard includes
the high f1-scored key inference model for each finger, where
each model has its own Normalizer, StandardScaler, PCA,
and MLP. When a finger touch occurs on the keyboard,
the touching finger’s key inferencemodel infers the target key
among the keys assigned to the touching finger.

VI. TYPING PERFORMANCE EVALUATION
To evaluate the typing performance of our keyboard, we ran
an additional typing experiment. Specifically, the purpose
of this experiment was to determine how effective our
techniques are in terms of improving typing speed, errors,
and accuracy. For comparison, we implemented three dif-
ferent virtual keyboards including our proposed virtual
keyboard.
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A. THREE DIFFERENT KEYBOARD DESIGNS
For the virtual keyboards, the initialization step and
backspace gesture were provided as described before. The
initialization step was used to generate a keyboard layout
whenever the participants wanted, such as resting all fingers
on the surface or changing their initialization points. The
three virtual keyboards varied according to whether each of
our techniques, i.e., Key Pre-allocation and Key Inference
based on Hand Poses, are applied.

First, Normal keyboard (or N-key) is the keyboard that
includes none of the techniques that we proposed. On the
normal keyboard, when a touch event occurs, the closest
key from touch point is entered regardless of the identity of
the touching finger. In other words, this keyboard does not
detect which finger is used for typing, and it simply infers a
target key using a touch point only. Therefore, the horizontal
and vertical typing errors may occur frequently. The distance
between keys is the same as 18 x 18 mm keys of QWERTY
physical keyboard.

Second, Pre-allocation keyboard (or P-key) is designed
based on Key Pre-allocation. When a touch event occurs,
it brings the keys allocated to that touching finger and selects
the one closest to the touch point. As the identity of touching
finger limits the candidates of inputtable keys, the P-key
performs better than the Normal keyboard. Specifically, the
P-key was effective in reducing horizontal typing errors.

Lastly, Pre-allocation and Hand Pose aware keyboard (or
HP-key) is designed based on both Key Pre-allocation and
Key Inference based on Hand Poses. When a touch event
occurs, a target key is inferred through the touching finger’s
key inference model. Therefore, we expected that the HP-key
reduced the horizontal and vertical typing errors at the same
time.

B. PARTICIPANTS & PROCEDURE
Eight of the well-adapted typists who participated in the
previous experiment were re-invited. Their average typing
speed on the KP keyboard was 61.85 WPM (SD = 13.066).
Each participant was required to type on theN-key, P-key, and
HP-key in random order. Because the participants have not
used the three keyboards before, they entered 20 sentences
per keyboard for practice. Then, we conducted a main typing
experiment. During the experiment, the participants were
requested to type 100Mackenzie phrases [20] over 5 sessions
on each keyboard. To measure actual typing performance,
we permitted typing errors. Then, we asked the participants
to type as quickly as possible while correcting all the typing
errors. The experiment was conducted for three successive
days for considering their tiredness; we made the participants
type on only one keyboard per day. After the participants
finished the three typing experiments, theywere compensated
with $50.

C. RESULTS
We collected 24,764, 23,010, and 22,506 typing data from
the N-key, the P-key, and the HP-key, respectively. We first
compared the three keyboards in terms of typing speed and

TABLE 2. Two-way repeated measures ANOVA results. The highlighted
cells represent a significant main effect (p< 0.05).

several kinds of error rates. For analysis, we used two-way
repeated measures ANOVA followed by the Tukey post-hoc
analysis. Keyboard and session are the within subject factors.
All significant findings are reported in the 95% confidence
interval.

Table 2 summarizes all results of the two-way repeated
measures ANOVA. As interactions between Keyboard and
Session do not have a significant effect on all performance
metrics, the following interpretations refer only to the main
effects of Keyboard and Session.

1) TYPING SPEED
The HP-key had the fastest typing speed. The three keyboards
differed significantly in terms of typing speed (F = 69.320,
p < 0.001) and each keyboard performed better over five
typing sessions (F = 3.597, p < 0.05). For each keyboard,
Figure 8 (A) and Figure 8 (B) show the average typing speed
(WPM) and the typing speed on each session, respectively.
On average, the N-key had a typing speed of 33.648 WPM
(SD = 6.99) and the P-key had 41.796 WPM (SD = 9.45).
The HP-key (M = 55.649, SD = 10.25) was faster than both
keyboards (p < 0.05). It is worth noting that our HP-key was
approximately 24 WPM faster than the finger correlations-
aware keyboard proposed by Choi et al. [4] (M = 31.618).

2) ERROR RATES
To measure the typing errors, we used four different metrics
proposed by Soukoreff and Mackenzie [34]. First, the correct
error rate (CER) is the ratio of errors that are subsequently
fixed by users during text entry. Second, the not correct
error rate (NCER) is the ratio of errors that are left in the
transcribed text at the end of each phrase. Finally, the total
error rate (TER) is the sum of the CER and NCER, indicating
error frequencies of substitution, insertion, and omission.

As a result, the HP-key had the lowest error rates. For
each keyboard, Figure 8 (C-H) shows the results of the error
rates. In the case of TER, Figure 8(C) and Figure 8(D) show
the mean for each keyboard and TER on each session. The
three keyboards differed significantly in terms of TER (F =
35.714, p < 0.001). On an average, the TER of the N-key
was 18.536 % (SD = 4.064), and the TER of the P-key was
13.103% (SD = 5.055). The HP-key (M = 9.799%, SD =
3.354) was more accurate than both keyboards (p < 0.05).
In the same vein, as shown in Figure 8(E) and Figure 8(F),
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FIGURE 8. Typing performance measurements for the N-key, P-key, and HP-key. For the three keyboards, (A) an average and standard deviation of
typing speed (WPM), (B) typing speed per session, (C) an average and standard deviation of TER, (D) TER per session.

the HP-key (M = 9.688%, SD = 3.377) was statistically the
most accurate in terms of CER (N-key:M = 18.340%, SD=
4.039, P-key:M = 12.957%, SD = 5.041).
Exceptionally, the keyboards had no difference in NCER

(F = 1.556, p < 0.001). As the participants were requested to
type as quickly as possible, occasionally they failed to correct
the error in the last word of the current sentence and moved
on to the next one. Nevertheless, the three keyboards showed
an NCER of less than 1% (N-key:M = 0.198%, SD= 0.193,
P-key: M = 0.147%, SD = 0.154, and HP-key: M =

0.112%, SD = 0.168).

3) KEY INPUT ACCURACY
To know more about how our techniques improve the virtual
keyboards, we checked input accuracy per key. For analysis,
we used one-way repeated measures ANOVAs, followed by
the Tukey post-hoc analysis. Keyboard is the within-subject
factor.

As a result, the HP-key most accurately entered all the
input keys. The three keyboards differed significantly in
terms of the f1 score (F = 29.115, p < 0.001). The
N-key had an average of 84.51% (SD= 0.026), and the P-key
had the average of 88.99% (SD = 0.049). The HP-key had
an average of 91.94% (SD = 0.033). The participants could
most accurately type on the HP-key as compared to other
keyboards (p < 0.05).

For the horizontal typing errors, the three keyboards had
different error frequencies (F = 61.284, p < 0.001). The hor-
izontal typing errors occurred 162.125 times (SD = 49.461)
on the N-key, 45.50 times (SD = 27.034) on the P-key, and
27.50 times (SD = 23.403) on the HP-key. Although the
horizontal typing errors on the HP-key occurred less than

those on the N-key (p < 0.001), there was no difference
between the HP-key and P-key (p = 0.194). As Key
Pre-allocation was not applied to the N-key unlike the other
keyboards, we concluded that our Key Pre-allocation helped
reduce the horizontal typing errors.

Furthermore, the experiment showed that our Key Infer-
ence based on Hand Poses helped reduced the vertical typing
errors. For the vertical typing errors, the three keyboards had
different error frequencies (F = 10.155, p < 0.001). The
vertical typing errors occurred 76.38 times (SD = 18.493)
on the N-key, 63.88 times (SD = 19.453) on the P-key,
and 38.50 times (SD = 11.123) on the HP-key. The vertical
typing errors on the HP-key occurred less than those on other
keyboards (p < 0.05). However, there was no difference
between the N-key and P-key (p = 0.166).

VII. DISCUSSION
Interestingly, the HP-key (55.6WPM) has almost reached the
ideal typing speed of ten-finger typing on a large touchscreen
(59.5 WPM) that was suggested in [8]. It was because several
features of the HP key allowed users to type accurately with-
out looking down at the keyboard layout or hand position.
After typing on all the three keyboards, most participants
commented: ‘‘The other two keyboards require a certain level
of concentration so as not to lose the initialization points,
but HP-key does not require that much concentration. I could
focus on the sentence I am typing’’.

Figure 9 shows the distribution of all touch points by the
(A) P-key and (B) HP-key, where different colors express
different keys. As the P-key infers a target key by the distance
between the touch point and initialization points set by users,
boundaries between the keys were identified. On the other
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FIGURE 9. Touch point distribution of (A) the P-key and (B) HP-key. The
distribution of all touch points was adjusted relative to the initialization
points for the (A) P-key and wrist positions for the (B) HP-key.

FIGURE 10. Key input accuracies (f1 score) within an assigned finger on
the (A) P-key and (B) HP-key.

hand, as the HP-key determines a target key by estimating
a hand pose, the inference was irrelevant to the touch point.
Accordingly, the distribution of the HP-key was adjusted
relative to the wrist positions. As shown in Figure 9(B),
on the HP-key, because of differences in hand size between
participants, the boundaries between keys were unclear.

Figure 10 shows key input accuracies (f1 score) within an
assigned finger on the (A) P-key and (B) HP-key. For all input
keys, the HP-key had an accuracy of 95.69% (SD = 4.332),
and it had approximately 3.78%more accuracy than the P-key
(M = 91.91%, SD = 8.508). These results further implied
that our HP-key was not affected by the difference in hand
size.

However, despite the several advantages of the HP-key,
the experimental environment and keyboard design of this
work have concerns about feasibility and applicability. First,
our experimental setup relies on a high-fidelity tracking sys-
tem. Second, Key Pre-allocation may be a strong restriction
for some QWERTY-familiar typists. For better usage of our
keyboards, we present solutions to those problems based on
recent technological developments.

A. FEASIBILITY OF HAND POSE TRACKING SYSTEM
For the feasibility of our tracking system, we note that vision-
based hand pose estimation is continuously improving [35],
[46]. Especially, the latest RGB-D camera-based hand pose
estimation algorithm [46] supports real-time processing (∼91
fps) and simultaneously accurate hand pose estimation with
errors less than 10 mm. In addition, depth sensor-equipped
devices, such as Google Tango, etc. [27] are also commer-
cially available. In accordance with this trend, we believe that
such advances in technologies enable our virtual keyboard to
be applied to any flat surface.

Meanwhile, Virtual Reality (VR) and Mixed Reality (MR)
dream of providing a huge interaction space using periph-
eral devices including VR data gloves. Several recent

VR gloves [45], such as HaptX etc., feature accurate hand
pose tracking with an error in sub-millimeters. Though, it is
surprising to see that the current text entry in VR and MR
has been performed either in mid-air at very low speeds (<
25WPM) or by interactingwith physical keyboards [47], [48],
we think that VR with gloves is one practical application for
our proposed keyboard, where users can type on a flat surface
with the VR gloves much faster than the existing VR virtual
keyboards.

B. APPLICABILITY OF HP-KEY
As the non-adapted typists may have several different finger-
to-key mapping from Key Pre-allocation, their typing speed
was limited on the KP keyboard.Wewanted to check whether
the Key Inference based on Hand Poses with individualized
Key Pre-allocation was also valid for the non-adapted typ-
ists. Therefore, when individual finger-to-key mapping was
applied to the virtual keyboard, we compared the accuracies
between key classifications based on touch points and hand
poses. To this end, we measured key classification accuracies
in two ways with the typing data on the NKP keyboard of the
first experiment.

First, the accuracies for all fingers were measured by
classifying target keys based on touch points using a simple
distance-based classification. Here, the touch points were
calculated with respect to the marker positions on the wrists.
Second, the accuracies were measured by classifying target
keys based on hand poses. Similar to our key inference sys-
tem, the hand joint vectors were classified as target keys by
passing through the two stages of data preprocessing, PCA,
and MLP. As individual finger-to-key mapping varied from
each other, we constructed a key inference system per typist.
When an alphabetic key was entered with multiple fingers,
the key was considered to be assigned to the most frequently
entered finger.

As a result, even the non-adapted typists seemed to be
posing differently for input keys. Table 3 shows the accuracies
of the two classification methods per finger. For all fingers,
the classification based on hand poses (M = 90.97%, SD =
3.981) displayed higher accuracies than the touch point based
classification (M = 82.10%, SD = 6.918). These results
implied that our Key Inference based on Hand Poses is also
applicable to the non-adapted typists.

Based on the above implication, we think our keyboard
design can accommodate more typists by loosening the
restrictions on Key Pre-allocation. Except in extreme cases,
where all keys are entered with just one or two fingers
in one hand, most of the mismatching problem with Key
Pre-allocation occurred on the keys directly next to the
assigned column, e.g., entering the C key with the left index
finger and X key with the left middle finger. As the index
fingers of the current HP-key showed already high accuracies
(M = 96.25%) despite being assigned six keys to those
fingers, we believe that the HP-key can be typed with high
performance even though other fingers are assigned one or
two more keys.
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TABLE 3. Key classification accuracies based on touch points and hand
poses for the non-adapted typists.

VIII. CONCLUSION AND FUTURE WORK
Owing to hand drift, the existing virtual keyboards are vulner-
able to typing errors frequently occurring between neighbor-
ing keys in the same row or column. To reduce these typing
errors on virtual keyboards, we proposed two techniques
based on the typing patterns of experienced typists. First,
a set of alphabetic keys in the same column are allocated
to its corresponding finger. Second, as skilled typists enter
the keys with different hand poses, we used the unique hand
poses to infer the users’ intended keys. This key inference
process is tolerant of hand drift, and therefore it reduces the
typing errors that occur around a target key. Based on these
techniques, we finally implemented a novel hand pose-aware
virtual keyboard. Our experimental studies demonstrated that
the proposed keyboard design outperformed the existing vir-
tual keyboards in terms of typing performance and conclu-
sively reached a typing speed of 55.6 WPM.

Despite the significant improvement, we observed that
the keys assigned to the index fingers still raised the most
frequent typing errors in the current HP-key. It leads us to
believe that the current HP-key still has room for improve-
ment. For its further improvement in the future, it would
be worthwhile to examine more joints of typists’ hands
to infer the target keys. A more precise hand model may
contain more information for key inference. In addition,
using semantic information could be another possible direc-
tion. The language modeling [10], [12] is to predict the
next word or character based on the previous sequence of
words. Thus, combining the HP-key with language mod-
eling could reduce the frequent errors related to the index
finger.

In addition, we need to expand the size of the experimen-
tal design. Loosening the restrictions on Key Pre-allocation
allows the HP-key to be used to more typists, but the number
of input data in the additional key column to each finger is
significantly less than the number of data in the previously
allocated column. Since the deviations between input keys
for each finger adversely affect the HP-key’s key inference,
we will need more input data to compensate for the devi-
ations. To do this, inviting more typists or the synthetic
data augmentation based on hand kinematics model may be
considered.
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