
Received July 4, 2019, accepted July 13, 2019, date of publication July 16, 2019, date of current version August 9, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2929274

A Benchmark Suite of Hardware Trojans
for On-Chip Networks
JIAN WANG , SHIZE GUO, ZHE CHEN, AND TAO ZHANG
University of Electronic Science and Technology of China, Chengdu 611731, China

Corresponding author: Jian Wang (wangjian3630@uestc.edu.cn)

This work was supported by the National Natural Science Foundation of China under Grant 61671110.

ABSTRACT As recently studied, network-on-chip (NoC) suffers growing threats from hardware tro-
jans (HTs), leading to performance degradation or information leakage when it provides communication
service in many/multi-core systems. Therefore, defense techniques against NoC HTs experience rapid
development in recent years. However, to the best of our knowledge, there are few standard benchmarks
developed for the defense techniques evaluation. To address this issue, in this paper, we design a suite of
benchmarks which involves multiple NoCs with different HTs, so that researchers can compare various HT
defense methods fairly by making use of them. We first briefly introduce the features of target NoC and its
infected modules in our benchmarks, and then, detail the design of our NoC HTs in a one-by-one manner.
Finally, we evaluate our benchmarks through extensive simulations and report the circuit cost of NoC HTs in
terms of area and power consumption, as well as their effects on NoC performance. Besides, comprehensive
experiments, including functional testing and side channel analysis are performed to assess the stealthiness
of our HTs.

INDEX TERMS Benchmarks, hardware trojan, network-on-chip.

I. INTRODUCTION
With the development of nano-technology, more and more
cores can be integrated into a single chip [1], e.g., CMP (Chip
Multi-Processor) and MPSoC (Multi-Processor System-on-
Chip), to satisfy the increasing requirement for computational
ability from various electronic systems, such as data center,
workstation and measuring instrument, etc. NoC (Network-
on-Chip) [2], which is proposed to address the scalability,
throughput and reliability issues of on-chip communication,
has become the preferred communication infrastructure for
many/multi-core platforms, as shown in Fig. 1. Thereby,
NoC rapidly developed in the last decade, but meanwhile,
it attracted growing attention from hardware hackers [3].

In general, the majority of hardware attacks on NoCs
come from HTs (Hardware Trojans) [4]. They are malicious
modifications on NoC circuit, leading to undesired chip func-
tion and/or sensitive information leakage once activated. For
example, in reference [5], Song et al. describe the procedures
for how the routing tables in NoC router can be modified
to degrade the system performance. In [6], Reinbrecht et al.

The associate editor coordinating the review of this manuscript and
approving it for publication was Amjad Mehmood.

FIGURE 1. NoC-based many/multi-core platforms.

present how to steal the secret key of AES cryptography from
a MPSoC platform by attacking the NoC infrastructure.

To solve the problems caused by NoC HTs, researches
have put many efforts on developing defense techniques,
including both HT prevention and HT detection. These
works make use of homemade NoC Trojans to evaluate the
metrics of their methods since, so far, standard bench-
marks which can be used to fairly compare or contrast
various NoC HT defense techniques are still lacking. Note
that there are some benchmarks frequently used for NoC

102002 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 7, 2019

https://orcid.org/0000-0001-5416-0649

J. Wang et al.: Benchmark Suite of HTs for On-Chip Networks

TABLE 1. Benchmarks for NoC performance evaluation.

performance evaluation, as detailed in TABLE I. However,
these benchmarks cannot be used to assess the NoC HT
defense techniques because they provide different traffics
in software level to drive the target NoC architecture rather
than a set of Trojans implemented in hardware level to infect
NoC circuit. To break through this dilemma, in this paper,
we develop a suite of benchmarks, in which multiple NoCs
with different HTs are involved.

The main contributions of this paper can be summarized as
follows.
• We design five trigger NoC HTs, i.e., livelock Trojan,
deadlock Trojan, misrouting Trojan and replay Trojan
as well as information leakage Trojan. These Trojans are
separately integrated into routers of standard 4×4 mesh
NoCs to form our benchmark suite. The suite provides
researchers with a level playing field to evaluate the
effectiveness of various NoC HTs defense techniques.

• We perform extensive experiments to demonstrate that
our HTs (i) have negligible influence on overall area
(at most 1.23%) and power (at most 0.315%); (ii) can
result in dramatic NoC performance degradation once
activated; and (iii) can rarely be triggered through func-
tional testing and detected by analyzing side channel
information.

The rest of this paper is as follows. In Section II, we
introduce the related works on how to protect NoC against
HTs, and in Section III, we develop our benchmarks involv-
ing various NoC HTs. The experiments which evaluate our
benchmarks in diverse metrics are reported in Section IV.
Finally, we conclude our work in Section V.

II. RELATED WORKS
Hardware Trojan has been found over ten years [13]. It greatly
challenges the security of chips, calling for powerful HT
defense techniques. Hence, in NoC domain, many researches
dedicate to HT detection and/or prevention, touching upon
both software-based and hardware-based strategies.

A. SOFTWARE-BASED TECHNIQUES
The software-based techniques protect NoCs by exploit-
ing security-aware algorithms and frameworks against HT
attacks. They do not make any modification to the original
circuits.

For example, Fernandes et al. propose a protection
technique based on the NoC routing algorithm in [14].
By manipulating the routing of packets, they built multi-
ple security zones, which prioritize communication among

paths deemed secure while guaranteeing deadlock freedom.
In [15], Kulkarni et al. present a real-time anomaly detec-
tion framework for many-core router. Under this framework,
the hardware Trojan attacks can be found by using machine
learning techniques. In [16], Sepulveda et al. combine two
mechanisms together, random arbitration and adaptive rout-
ing, so that the MPSoC can avoid timing side channel
attacks launched by Trojans. The experiments reveal that their
method is effective to protect the NoC-based MPSoC while
increasing the overall performance.

In addition, other software-based techniques are also
widely discussed, such as authenticated communication [17],
packet dynamic tagging [18], etc.

B. HARDWARE-BASED TECHNIQUES
In contrast to the software-based techniques, hardware-based
techniques refer to modification on NoCs, consuming addi-
tional logic circuits.

For example, the authors in [19] propose a security
enhanced NoC named Gossip, which is able to identify traffic
anomalies by integrating a traffic monitor in each router.
Results show that their NoC successfully avoid timing attacks
with an increase of only 1% in area and 0.8% in power.
In [20], Boraten et al. introduce Secure Model Checker
(SMC), a real-time solution for control logic verification and
functional correctness to detect hardware Trojan inducing
denial-of-service attacks. The evaluation results show that
SMC provides significant security enhancements with only
1.5% power and 1.1% area overhead penalty. To reach the
same goal, the authors in [21] and [22] separately present two
techniques, termed as link obfuscation and latency auditor,
and show their promising merits in protecting NoC against
HTs through extensive experiments. To explore the threat
posed by a compromised NoC, Ancajas et al. propose a
three-layer security mechanism. It can be implemented in
NoC NI to prevent covert backdoor activation and reduce
the chance of a successful side-channel attack [23]. In [24],
Yu and Frey exploit transient and permanent error control
methods to address HT issues in NoC links, improving the
network average latency by up to 44.7% over the rerouting
approach.

These works make significant contributions to security
side of NoC domain. In this paper, we develop a suite of
benchmarks which can be applied to all the aforementioned
researches to compare their metrics fairly.

III. OUR BENCHMARKS
Our benchmarks consist of two main parts. One is the target
platform, NoC in the paper, and the other refers to hardware
Trojans.

A. PRELIMINARY
1) NOC OVERVIEW
Before presenting the design of our Trojans, we briefly
introduce the features of our NoC platform. In this paper,

VOLUME 7, 2019 102003

J. Wang et al.: Benchmark Suite of HTs for On-Chip Networks

FIGURE 2. The overview of CONNECT NoC. (a) 4 × 4 mesh NoC. (b) Router
architecture.

we generate a 4 × 4 mesh NoC by using CONNECT tool
developed by Carnegie Mellon University [25], as shown
in Fig. 2a.1

Aswe can see, when a packet is transmitted from source PE
(Processor Element) to its destination, it experiences multiple
routers. Each router contains three modules, i.e., Input Buffer,
Router Controller and Crossbar. Input Buffer and Crossbar
modules belong to the data plane of router, in charge of
data storage and transmitting, respectively. In detail, Input
Buffer stores the coming packets into their corresponding
VCs (Virtual Channels) which are implemented by FIFOs,
and Crossbar module transfers packets from input to output
ports.

On the other hand, Router Controller manages the working
flow of Input Buffer and Crossbar, belonging to the control
plane of router. More precisely, when the header flit of a
packet arrives at the FIFO header, RC (Routing Computation)
module generates a request information for the next hop based
on the packet destination and routing algorithm, i.e., X-Y
routing in this paper. Then, all requests bid for switching and
VA (VC Allocator) decides how to assign VCs of the down-
stream routers to these requests. Meanwhile, SA (Switch
Allocator) which works in parallel with VA picks out the
proper packets from VCs and feed them into Crossbar.

2) HARDWARE TROJAN OVERVIEW
Hardware Trojans are malicious modifications on original
circuits, which can degrade the performance, change the func-
tionality and/or leak confidential information. As depicted
in Fig. 3, all stages in the chip development process (from
specification to assembly & package) can be exploited for
hardware Trojan insertion.

In specification phase, the characteristics of the chip, like
expected function, size and power requirements, are defined.
A Trojan in this phase, for example, can be implemented
through tampering the desired functions of the chip. After
that, the design phasemaps the design to the target technology

1Although there are many well-recognized NoC simulators, such as
ORION [26], Sniper [27] and Noxim [28], etc., most of them are imple-
mented in high-level language, mainly focusing on the network communi-
cation performance. In order to evaluate the hardware overhead of NoC in
area and power consumption, in this paper, we adopt CONNECT NoC since
it provides synthesizable Verilog code.

under multiple constraints, which consists of three stages,
RTL (Register Transfer Level) code, netlist and physical lay-
out. These stages are also vulnerable for Trojans insertion.
For instance, a rogue in the design house may intentionally
hide malicious snippets in the code or add some extra gates
to the original netlist. Finally, the manufacturing phase can be
divided into two steps: fabrication and assembly & package.
Fabrication is to produce desired wafers using masks. Minor
changes in the masks may lead to unexpected effects on
the final products. Hence, an adversary in the foundry can
replace the original masks with the altered masks to realize
Trojans in the chip. Then, the step, assembly & package,
packages the cut wafers (so-called dies) and assemble the
packaged devices on the PCB (Printed Circuit Board) along
with many other electronic components. It is possible that the
attackers intercept the useful information from the exploitable
electromagnetic coupling between the signal on the board
and its electromagnetic surroundings, which is introduced by
malicious assembly.

In this paper, our hardware Trojans are implemented in
RTL level, thus they can be easily implanted to the original
design.

B. HARDWARE TROJAN DESIGN
In general, HTs are classified into two categories according
to their activation mechanism, namely, always-on Trojan and
trigger Trojan. The always-on Trojans work at all time once
the infected chips are powered ON, and therefore, they can be
easily found by HT detection techniques, e.g., side channel
analyzing [29]. In contrast, the trigger Trojans are in sleep in
most of the chip working time unless receiving a rare, specific
wake up signal. In this paper, we design five trigger Trojans
and separately insert them into link, NI (Network Interface)
and various modules of router, i.e., RC, VA, VC and Demux,
as shown in Fig. 2b.

Note that 1) NoC is the communication infrastructure in
many/multi-core systems. It is in charge of data exchanging
among different cores and caches, and therefore, hackers
are preferred to attack NoC to degrade its communication
performance and/or steal valuable data from it by implanting
deadlock, livelock, misrouting, replay and information leak-
age Trojans. 2) These trigger Trojans have two parts, a trigger
and a payload. The ‘‘trigger’’ acts as a sensing circuitry.
According to the observed signals, it decides when the Trojan
‘‘payload’’ should be activated to perform a specific task.
In addition, by adjusting the number of observed bits in
signal, we can easily control the activating probability of our
hardware Trojans.

1) LIVELOCK TROJAN
Livelock means that packets continuously move in the net-
work but never reach their destinations. The Trojan, as shown
in Fig. 4a, monitors the input data at all time and forwards the
received data to DEMUX. If the input data does not satisfy the
trigger condition, the Trojan remains in non-active state and
the payload circuit will not modify the forwarded packets.

102004 VOLUME 7, 2019

J. Wang et al.: Benchmark Suite of HTs for On-Chip Networks

FIGURE 3. Possible stages of hardware Trojans insertion in the chip development process.

FIGURE 4. NoC hardware Trojan design. (a) Livelock trojan. (b) Deadlock
trojan. (c) Misrouting trojan. (d) Replay trojan. (e) Leakage trojan:
Accomplice circuit. (f) Leakage trojan: Theft circuit.

Otherwise, the packet destination will be changed to be the
other Trojan-infected router. As such, the modified packets
will be endlessly transferred between the two Trojan-infected
routers, creating a livelock attack.

As shown in Fig. 5a, we insert a livelock Trojan at the input
port of DEMUX module for two routers, i.e., R2 and R4. If
the inserted Trojans were dormant, the packets in the NoC
would be sent to their destinations naturally. However, once
activated, the Trojan hidden in R2 would force the current
packet being transferred to the another Trojan-infected router
R4. Similarly, the triggered Trojan in R4 would modify the
destinations of received packets as R2. In this way, packets
would fall in the endless loop between the twoTrojan-inserted
routers.

2) DEADLOCK TROJAN
A deadlock occurs in NoC when a group of packets cannot be
further transmitted because they wait for each other to release
resources (usually buffers or channels). For example, one
packet A holds both channels u and v, but it cannot be further
transmitted until the channel w is released. At the same time,

FIGURE 5. Examples of Trojan-infected NoCs. (a) Livelock Trojan-infected
NoC. (b) Deadlock Trojan-infected NoC. (c) Misrouting Trojan-infected
NoC. (d) Replay Trojan-infected NoC. (e) Leakage Trojan-infected NoC.

another packet B holds two channels w and x, while waiting
for the release of channel u. As such, neither A nor B can get
their required channel, resulting in a deadlock. The diagram
of this Trojan is displayed in Fig. 4b. The Trojan trigger
monitors the head flits in FIFOs, and judges whether the
payload should be activated. The payload provides another
routing algorithm which may caused deadlock with the orig-
inal one. It switches the routing algorithm to the malicious
one, if activated.

To implement a deadlock, we insert Trojans in the RCmod-
ule of two router, i.e., R1 and R6, as shown in Fig. 5b. There
are two normal packets in the NoC. One holds the channels
u and v, waiting the w channel for further transmission. The
other packet occupies y and z, attempting to pass through the
channel s. If the Trojans were in sleep, these two packets
can be transferred to their destinations successfully. However,
the activated Trojans in R1 and R6 could change the routing

VOLUME 7, 2019 102005

J. Wang et al.: Benchmark Suite of HTs for On-Chip Networks

algorithm and thus make another two new packets obstruct
the transmission of the former two packets. In detail, a new
packet will occupy channels s and t, requiring the channel u
when the other one owns w and x, needing y. Since no one
in these four packets wants to make a concession, the further
transmission can never be achieved and the deadlock attack
is launched successfully.

3) MISROUTING TROJAN
The purpose of the misrouting Trojan is to block the transfer
of packets and further leads to the paralysis of entire network.

In general, there are two ways to implement a misrouting
Trojan. First, we can modify the packet destination to be an
unknown position, such that the Trojan-infected router has
no idea how to tackle it, and thereby, keeps the packet in
FIFO. Second, we can modify the flow control mechanism
of a router, which makes the credit flag always be full.
As such, the upstream router cannot transfer any packet to
the Trojan-infected router since it believes that the Trojan
router has no free buffer space to store packet. In the paper,
we implement a misrouting Trojan by modifying the packet
destination, which is inserted at the output port of buffers.
The diagram is given in Fig. 4c. When the Trojan is activated,
the destination of packets is replaced with ‘4bxxxx’, so that
RC module cannot generate a request information and the
congestion happens.

A simple example is given in Fig. 5c, we implant the
Trojan in the router R5. When packets were fed into the
Trojan-infected router R5, the working Trojan would replace
their destinations with ‘4bxxxx’. In the next hop, router R6
reads these modified packets. However, due to the meaning-
less ‘4bxxxx’, its RC cannot determine to which direction
these packets should be transferred. Hence, these packets can
only be stored in R6 and cause congestion in the NoC.

4) REPLAY TROJAN
Replay Trojan aims to degrade the network communication
performance by generating useless requesting information.
For example, even though an input buffer of router is empty,
the Trojan still keep requesting for occupying a certain out-
put port, resulting in a waste of bandwidth. In this paper,
we implement a replay Trojan and insert it at the input port of
VC allocator, as shown in Fig. 4d. The workingmechanism of
Replay Trojan is similar to the Misrouting Trojan, it observes
the head of FIFOs to decide whether activates the Trojan or
not. Once the Trojan begins to work, the payload continu-
ously sends the requesting information to VA module. Since
CONNECT NoC responses all requests by using polling
mechanism, such useless requests can effectively reduce the
bandwidth utilization, resulting in the performance losing of
NoC.

From Fig. 5d, we can observe that a replay Trojan is
inserted into the router R5. There is no packets to be trans-
mitted in R5. Nevertheless, the Trojan hidden in the router
is always sending requesting information to the RC mod-
ule of R5. Note that processing these meaningless requests

consumes bandwidth and other resources, which leads to the
degradation of NoC communication efficiency.

5) INFORMATION LEAKAGE TROJAN
The objective of information leakage Trojan is to eavesdrop
the communication from one router to another. In general,
an information leakage Trojan consists of two parts, one
accomplice circuit located at a NI and one theft circuit
inserted into router links.

The two circuits can work together to steal sensitive infor-
mation fromNoC. As shown in Fig. 4e and 4f, the accomplice
circuit in NI monitors the input port of NI buffer at all time,
and it will generate a coded sequence of flits to activate
the theft circuit when watching a predefined signal from PE
(Processing Element). On the other hand, the theft circuit
stays asleep and forwards the coming packets directly until its
trigger module receives an active command from the accom-
plice circuit. Once it wakes up, its payload module copies
the incoming packets and modifies their destination to be the
address where the accomplice circuit is. After that, the dupli-
cated packets are forwarded to the downstream router until
they reach their destinations. In this way, the information
leakage Trojan can intercept the desired communication in
the NoC.

In our benchmark, we insert the accomplice circuit at the
network interface corresponding to R5 and implant the theft
circuit at links connected to R1. In detail, the trigger module
of theft circuit is located at the link between R1 and R5, while
its payload module is inserted into the links from R1 to R2
and R5. When the accomplice circuit detects a predefined
signal from PE, it sends a command to R5, waking up the
theft circuit. Afterwards, the packets from R0 to R2 are first
duplicated and then transformed to R5. As such, the packets
sent from R0 to R2 can be divulged to R5 through the infor-
mation leakage Trojan.

Note that the aforementioned detrimental effects can also
be implemented by other circuits which have different archi-
tecture and position against our HTs. For example, we could
infect the routing computation module to launch a livelock
attack in NoC, rather than hijacking the DEMUX module as
displayed in Fig. 4a. Hence, the HTs in this paper are not the
only circuits corresponding to the detrimental effects, we can
design more HTs to enrich our benchmark when necessary.

IV. EXPERIMENTAL RESULTS
We evaluate our benchmarks from three sides. The first one
is the circuit overhead of our NoC HTs in area and power
consumption, the second one is the HT influence on NoC
communication performance, and the final one is the stealth-
iness of our NoC HTs.

A. POWER AND AREA OVERHEAD
We first implement the proposed five HTs in RTL level
by using Verilog code and then separately insert them into
a 4 × 4 CONNECT NoC, in which each input buffer has
four virtual channels implemented by 40-bit width and 4-flit

102006 VOLUME 7, 2019

J. Wang et al.: Benchmark Suite of HTs for On-Chip Networks

TABLE 2. Power and area cost.

depth FIFOs. Synopsys DC is used to synthesize the area
and power consumption of our benchmarks with a 32-nm
standard cell library. The system clock frequency is set to be
250MHz. The results are shown in TABLE I. In the table,
the first column lists our benchmarks named by the inserted
HTs, the 2nd-4th columns report their corresponding power
consumption in µW and the 5th-7th columns detail their
area cost in µm2. RATE means the percent of HT cost in a
benchmark, which can be calculated by HT/(NoC + HT).

From the table, we can find that the five HTs need little
logic resources to be implemented, since their power con-
sumption ranges from 0.04 µW to 0.26 µW . Furthermore,
each Trojan only takes small percentage, from 0.049% (Dead-
lock) to 0.315% (Livelock) when compared to the total power
consumption of benchmark. From the perspective of area
cost, we can draw the same conclusion. In detail, the five HTs
separately occupy area from 475 µm2 to 14995 µm2, which
takes small percentage of the whole chip, i.e., from 0.04%
to 1.23%.

B. NETWORK PERFORMANCE EVALUATION
We display the influence of HTs on NoC communication
performance before/after they are activated. To reach this
goal, we design a complete peripheral module in Verilog code
which can both inject packet into NoC with a given rate (in
Possion distribution) and count the number of leaving packets
from NoC for a predefined time duration. In this paper,
we set the packet injection rate to be 0.028 packets/cycle,
which is the critical point for the 4 × 4 CONNECT NoC.
Then, we perform RTL level simulation by using Model-
sim tool, and collect the leaving packets for each 2500 ns
during the whole simulation process. For each benchmark,
we activate the inserted HT after the Trojan-infected NoC
works for about 200 µs. In addition, we also observe the
communication performance from a Trojan-free NoC for
comparison purpose. Note that critical point is defined as the
packet injection rate that doubles the average network com-
munication latency compared to NoC under loads without
contention. It is the boundary between NoC heavy loads and
light loads, and therefore, often used for NoC performance
evaluation [2][30].

The experimental results are shown in Fig. 6. From the
figure, we can find that the Trojan-infected NoCs have the
same performance as the Trojan-free ones before HTs are
activated. However, once the HTs wake up, the performance
of all Trojan-infected NoCs will be degraded. More precisely,

FIGURE 6. Trojan influence on NoC performance. (a) Live lock. (b) Dead
lock. (c) Misrouting. (d) Replay. (e) Leakage.

the Deadlock and Misrouting Trojans almost use up all the
NoC bandwidth once they are activated, leading to zero
leaving packets immediately. On the other hand, the activate
Livelock, Replay and information leakage Trojans only waste
a fraction of NoC bandwidth, which makes the rate of leaving
packets reduced in the rest simulation time.

To evaluate the effect of Trojans at different NoC loads and
sizes, we separately insert five Trojans, i.e., livelock, dead-
lock, misrouting, replay and information leakage Trojans,
into 8 × 8 and 16 × 16 mesh NoCs. Then, we activate these
Trojans under light and heavy network loads, and in Fig. 7,
we report the NoC bandwidth normalized to the benignNoCs.

From Fig. 7, we can draw the following conclu-
sions. First, the activated deadlock and misrouting Trojans
seriously threat the NoC communication performance. They
consume all bandwidth for both large and small scale NoCs,
no matter which load they work on. Second, the livelock,
relay and leakage Trojans have different influences on NoC
performance with the variation of network sizes and loads.
In general, they lead to more performance losing for the
small scale NoC under heavy load. For example, when the
livelock Trojan is activated, the 8 × 8 NoC under heavy
load, i.e., 0.016 packet/cycle, remains only 68.7% bandwidth.
However, for the 8 × 8 NoC under light load and the 16 ×
16 NoC under heavy load, the reserved bandwidths achieve
81.9% and 74.3%, respectively.

VOLUME 7, 2019 102007

J. Wang et al.: Benchmark Suite of HTs for On-Chip Networks

FIGURE 7. The effect of Trojans at different NoC loads and sizes. (a) 8 × 8 mesh NoC. (b) 16 × 16 mesh NoC.

C. TROJANS STEALTHINESS EVALUATION
We evaluate the stealthiness of our NoC Trojans through
different methods. In detail, we first perform function testing
on our benchmarks to assess how hard our Trojans could
be triggered. After the assessment, we analyze the electro-
magnetic emissions from the running design through the side
channel technique proposed in [31], attempting to find out
those Trojans.

1) FUNCTIONAL TESTING
In this experiment, we carefully design a peripheral packet
injector in Verilog to feed data packets to our benchmarks.
An input signal controls whether the injector is turned on
or not. Three kinds of traffic patterns, namely, uniform,
hotspot and bit-reverse, can be applied on the experimental
NoCs [2], and NoCs here work in the uniform traffic pattern.
According to the pattern, the peripheral injector will generate
10,000,000 packets, 32 40-bit flits in each packet, and inject
them to the NoC with a Poisson distribution. Note that we
embed a pseudo-random number generator in the injector to
assign the random values for each packet, to simulate the
real-world scenario. By using the NoC, these packets can be
transferred to their destinations with X-Y routing.

In the testing process for each benchmark, we first imple-
ment the benchmark along with the peripheral injector on an
Artix-7 FPGA. Then we turn on the injector by sending it
a specific signal. After that, the NoC starts to transfer the
fed packets from the injector to their destinations. In the
process, we employ the Xilinx logic analyzer ChipScope to
observe the activate signal of the Trojan. If the activate signal
value changes, it means that the trojan can be triggered using
functional testing.

From the second column of TABLE II, we can observe
that no Trojans can be activated under the stimulation of
numerous testing vectors (for each benchmark, the number
of vectors equals to the generated flits 10,000,000 × 32 =
320,000,000). The experimental results can be explained by
two reasons. First, the routers which can be experienced
by certain packet are determined by the destination and the
routing algorithm. It is completely possible that a packet
could have to trigger the Trojan but it can never reach the
HT-infected routers, so that the NoC can be free from the
potential attack. On the other hand, even though all packets
pass through the infected routers, the Trojans can still be

TABLE 3. Detection results of different methods on our benchmarks.

hardly activated since they can be activated only when the
values of the current flit exactly match the pre-defined values.
It means that the activating probability of these Trojans is
extremely low (1

240
). In this case, the probability that the

Trojan is activated through 320,000,000 random vectors can
be approximately calculated as 3

10000 . The reasonable results
demonstrate that our Trojans can rarely be triggered, and thus
are resistant to functional testing.

2) SIDE CHANNEL ANALYSIS
From the Section IV-C 1), we can claim that our Trojans
can hardly be triggered. To further prove the stealthiness
of our Trojans, we detect these dormant Trojans by using
the side channel technique, namely, electromagnetic (EM)
detection [31].

In this experiment, the 4×4 CONNECT mesh NoC serves
as our golden design, and HT-infected NoCs are experimental
targets. One Xilinx Artix-7 FPGA is selected as our platform
for design implementation. We place the experimental FPGA
on a X-Y-Z positioning system and use a near-field probe
(Langer ICR HH500-6) above the target FPGA to measure
its EM emissions. To obtain a better signal strength, we open
the package of the target FPGA chip and put the probe close
to the circuitry.

During the experiment, we first implement the golden
design on the FPGA and collect its EM emanations. Par-
ticularly, we represent its area as a matrix of 17 rows and
21 columns and perform 3000 measurements at each point
to get an average value. In this way, we can get a set of data
showing the EM distribution of the golden design. With the
same method, the EM emissions of the HT-infected designs
can also be collected. Then we subtract the data of the golden
design to the data of HT-infected ones point-by-point. If there

102008 VOLUME 7, 2019

J. Wang et al.: Benchmark Suite of HTs for On-Chip Networks

exist significant differences, we can claim that the dormant
HT can be detected using the side channel technique.

From the third column of TABLE II, we can find that
no Trojans have been found out through the EM detection.
It is understandable since our Trojans only occupy at most
1.23% of the whole area. However, according to [31], the EM
detection requires an applicable HT scale being at least 1.3%
of the whole circuit. If the target HTs are smaller than the
scale, the technique will be hard to deal with them.

V. CONCLUSION
In this paper, we propose a suite of benchmarks which contain
different hardware Trojans in a standard CONNECT NoC,
namely, deadlock, livelock, misrouting, replay and leakage.
After briefly introducing the features of CONNECT NoC
and its infected modules in our benchmarks, we separately
detail the design of our NoC HTs. The simulation results
reveal that our HTs in the NoC has the characteristics of low
power consumption and small area, and they can effectively
reduce the communication performance of NoCs once acti-
vated. Besides, the extensive experiments demonstrate that
our HTs are hard to be triggered and detected. Therefore,
our benchmarks are meaningful for the researches on NoC
security, since they can be used to fairly compare or contrast
any new HT defense technique with existing ones.

Besides the five Trojans, there are some other kinds of
NoC Trojan as well. For example, a malicious circuit could
be designed to power router OFF or launch DoS (Denial-of-
Service) attack at links when it is activated. Also, a multi-
stage ring oscillator could be placed among routers as an
always-on Trojan. It produces thermal at all working time,
triggering the chip thermal threshold to degrade the NoC
frequency. In the future, we plan to add more Trojans to
our repository and develop effective NoC Trojan detection
techniques with them.

REFERENCES
[1] H. Esmaeilzadeh, E. Blem, R. S. Amant, K. Sankaralingam, and D. Burger,

‘‘Dark silicon and the end of multicore scaling,’’ in Proc. 38th Annu. Int.
Symp. Comput. Archit. (ISCA), Jun. 2011, pp. 365–376.

[2] J. Wang, S. Guo, Z. Chen, Y. Li, and Z. Lu, ‘‘A new parallel CODEC
technique for CDMA NoCs,’’ IEEE Trans. Ind. Electron., vol. 65, no. 8,
pp. 6527–6537, Dec. 2018.

[3] L. Fiorin, C. Silvano, and M. Sami, ‘‘Security aspects in networks-on-
chips: Overview and proposals for secure implementations,’’ in Proc. 10th
Euromicro Conf. Digit. Syst. Design Archit., Methods Tools, Aug. 2007,
pp. 539–542.

[4] M. Tehranipoor and F. Koushanfar, ‘‘A survey of hardware Trojan taxon-
omy and detection,’’ IEEE Design Test Comput., vol. 27, no. 1, pp. 10–25,
Feb. 2010.

[5] W. Song, J. Kim, J.-W. Lee, and D. Abts, ‘‘Security vulnerability in
processor-interconnect router design,’’ in Proc. ACM SIGSAC Conf. Com-
put. Commun. Secur., 2014, pp. 358–368.

[6] C. Reinbrecht, A. Susin, L. Bossuet, G. Sigl, and J. Sepúlveda, ‘‘Side
channel attack on NoC-based MPSoCs are practical: NoC prime+probe
attack,’’ in Proc. 29th Symp. Integr. Circuits Syst. Design, Aug. 2016,
pp. 1–6.

[7] J. Hestness, B. Grot, and S. W. Keckler, ‘‘Netrace: Dependency-driven
trace-based network-on-chip simulation,’’ inProc. 3rd Int. Workshop Netw.
Chip Archit., 2010, pp. 31–36.

[8] W. Liu, J. Xu, X.Wu, Y. Ye, X.Wang,W. Zhang, M. Nikdast, and Z.Wang,
‘‘A NoC traffic suite based on real applications,’’ in Proc. IEEE Comput.
Soc. Annu. Symp. VLSI, Jul. 2011, pp. 66–71.

[9] E. Pekkarinen, L. Lehtonen, E. Salminen, and T. D. Hämäläinen, ‘‘A set
of traffic models for network-on-chip benchmarking,’’ in Proc. Int. Symp.
Syst. Chip (SoC), Oct. 2011, pp. 78–81.

[10] Y. Xue and P. Bogdan, ‘‘Scalable and realistic benchmark synthesis
for efficient NoC performance evaluation: A complex network analysis
approach,’’ in Proc. Int. Conf. Hardw./Softw. Codesign Syst. Synthesis
(CODES+ISSS), Oct. 2016, pp. 1–10.

[11] C. Bienia, S. Kumar, J. P. Singh, and K. Li, ‘‘The PARSEC benchmark
suite: Characterization and architectural implications,’’ in Proc. 17th Int.
Conf. Parallel Archit. Compilation Techn., 2008, pp. 72–81.

[12] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, ‘‘The SPLASH-
2 programs: Characterization and methodological considerations,’’ ACM
SIGARCH Comput. Archit. News, vol. 23, no. 2, pp. 24–36, 1995.

[13] D. Agrawal, S. Baktir, D. Karakoyunlu, P. Rohatgi, and B. Sunar, ‘‘Trojan
detection using IC fingerprinting,’’ in Proc. IEEE Symp. Secur. Privacy,
May 2007, pp. 296–310.

[14] R. Fernandes, C. Marcon, R. Cataldo, J. Silveira, G. Sigl, and J. Sepúlveda,
‘‘A security aware routing approach for NoC-based MPSoCs,’’ in Proc.
29th Symp. Integr. Circuits Syst. Design (SBCCI), Aug. 2016, pp. 1–6.

[15] A. Kulkarni, Y. Pino, M. French, and T. Mohsenin, ‘‘Real-time anomaly
detection framework for many-core router through machine-learning tech-
niques,’’ ACM J. Emerg. Technol. Comput. Syst., vol. 13, no. 1, p. 10,
2016.

[16] M. J. Sepulveda, J. P. Diguet, M. Strum, and G. Gogniat, ‘‘NoC-based
protection for SoC time-driven attacks,’’ IEEE Embedded Syst. Lett., vol. 7,
no. 1, pp. 7–10, Mar. 2015.

[17] H. K. Kapoor, G. B. Rao, S. Arshi, and G. Trivedi, ‘‘A security framework
for NoC using authenticated encryption and session keys,’’ Circuits, Syst.,
Signal Process., vol. 32, no. 6, pp. 2605–2622, 2013.

[18] M. Hussain and H. Guo, ‘‘Packet leak detection on hardware-trojan
infected NoCs for MPSoC systems,’’ in Proc. Int. Conf. Cryptogr., Secur.
Privacy, 2017, pp. 85–90.

[19] C. Reinbrecht, A. Susin, L. Bossuet, and J. Sepúlveda, ‘‘Gossip NoC—
Avoiding timing side-channel attacks through traffic management,’’ in
Proc. IEEE Comput. Soc. Annu. Symp. VLSI (ISVLSI), Jul. 2016,
pp. 601–606.

[20] T. Boraten, D. DiTomaso, and A. K. Kodi, ‘‘Secure model checkers for
network-on-chip (NoC) architectures,’’ in Proc. Int. Great Lakes Symp.
VLSI, May 2016, pp. 45–50.

[21] T. Boraten and A. Kodi, ‘‘Mitigation of Hardware Trojan based denial-
of-service attack for secure NoCs,’’ J. Parallel Distrib. Comput., vol. 111,
pp. 24–38, Jan. 2018.

[22] J. S. Rajesh, D. M. Ancajas, K. Chakraborty, and S. Roy, ‘‘Runtime
detection of a bandwidth denial attack from a rogue network-on-chip,’’ in
Proc. 9th Int. Symp. Netw.-Chip, 2015, p. 8.

[23] D. M. Ancajas, K. Chakraborty, and S. Roy, ‘‘Fort-NoCs: Mitigating the
threat of a compromised NoC,’’ in Proc. 51st Annu. Design Autom. Conf.,
2014, pp. 1–6.

[24] Q. Yu and J. Frey, ‘‘Exploiting error control approaches for hardware
Trojans on network-on-chip links,’’ in Proc. IEEE Int. Symp. Defect Fault
Tolerance VLSI Nanotechnol. Syst. (DFTS), Oct. 2013, pp. 266–271.

[25] M. K. Papamichael and J. C. Hoe, ‘‘The CONNECT network-on-chip
generator,’’ Computer, vol. 48, no. 12, pp. 72–79, Dec. 2015.

[26] A. B. Kahng, B. Li, L.-S. Peh, and K. Samadi, ‘‘Orion 2.0: A power-area
simulator for interconnection networks,’’ IEEE Trans. Very Large Scale
Integr. (VLSI) Syst., vol. 20, no. 1, pp. 191–196, Jan. 2012.

[27] T. E. Carlson, W. Heirmant, and L. Eeckhout, ‘‘Sniper: Exploring the level
of abstraction for scalable and accurate parallel multi-core simulation,’’ in
Proc. Int. Conf. High Perform. Comput., Netw., Storage Anal., Nov. 2011,
pp. 1–12.

[28] V. Catania, A. Mineo, S. Monteleone, M. Palesi, and D. Patti, ‘‘Cycle-
accurate network on chip simulation with noxim,’’ ACM Trans. Model.
Comput. Simul., vol. 27, no. 1, p. 4, 2016.

[29] S. Narasimhan, D. Du, R. S. Chakraborty, S. Paul, F. Wolff, C. Papachris-
tou, K. Roy, and S. Bhunia, ‘‘Multiple-parameter side-channel analysis:
A non-invasive hardware Trojan detection approach,’’ in Proc. IEEE Int.
Symp. Hardw.-Oriented Secur. Trust (HOST), Jun. 2010, pp. 13–18.

[30] Z. Lu and Y. Yao, ‘‘Dynamic traffic regulation in NoC-based systems,’’
IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 25, no. 2,
pp. 556–569, Jul. 2016.

[31] J. Balasch, B. Gierlichs, and I. Verbauwhede, ‘‘Electromagnetic circuit
fingerprints for hardware trojan detection,’’ in Proc. IEEE Int. Symp.
Electromagn. Compat. (EMC), Aug. 2015, pp. 246–251.

VOLUME 7, 2019 102009

	INTRODUCTION
	RELATED WORKS
	SOFTWARE-BASED TECHNIQUES
	HARDWARE-BASED TECHNIQUES

	OUR BENCHMARKS
	PRELIMINARY
	NOC OVERVIEW
	HARDWARE TROJAN OVERVIEW

	HARDWARE TROJAN DESIGN
	LIVELOCK TROJAN
	DEADLOCK TROJAN
	MISROUTING TROJAN
	REPLAY TROJAN
	INFORMATION LEAKAGE TROJAN

	EXPERIMENTAL RESULTS
	POWER AND AREA OVERHEAD
	NETWORK PERFORMANCE EVALUATION
	TROJANS STEALTHINESS EVALUATION
	FUNCTIONAL TESTING
	SIDE CHANNEL ANALYSIS

	CONCLUSION
	REFERENCES

