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ABSTRACT A novel star identification network (RPNet) based on representation learning is proposed in
this paper. Unlike other pattern-based stars identification algorithms, the RPNet does not require the creation
of an elaborate pattern, nor does it need to search among patterns. Instead, a star pattern generator (SPG) in
the RPNet helps in finding the best pattern that can distinguish different stars clearly. A star pattern classifier
(SPC) in the RPNet is utilized to recognize the pattern generated before. The simulations show that the
RPNet is extremely robust toward star position noise, star magnitude noise, and false stars. The performance
on simulation images outperforms almost all other pattern-based stars identification algorithms. On average,
it achieves an identification rate of 99.23% in simulated star images. The identification rate on real star
images is higher than 98%. Moreover, the algorithm achieves this performance with lesser memory and
faster speed compared to polygon algorithms.

INDEX TERMS Neural networks, pattern recognition, representation learning, star identification.

I. INTRODUCTION
The navigation system is an indispensable part of a spacecraft
and includes attitude determination, speed measurement, and
positioning. The star sensor [1] is an important device in the
navigation system that can determine its three-axis attitude
without any prior information. Its high accuracy makes it
widely used in spacecraft. The star sensor has two operat-
ing modes: The initial attitude acquiring mode and tracking
mode. Though most of the time it works on tracking mode,
a star identification process is needed for a star sensor to
obtain current attitude of the spacecraft once it loses in space.

Star identification algorithms aim at finding the correlation
between observed and cataloged stars. It mainly falls into two
categories: the subgraph isomorphism algorithm and pattern-
based identification algorithm.

The subgraph isomorphism-based algorithms borrow ideas
from graph theory. Stars are treated as vertexes, angular
distances between star pairs are the weight of the edge,
a subgraph is constructed from a stellar image and the com-
plete graph is formed from the star catalog; Identification
problems can be reduced to find the most similar subgraph
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in the entire graph. The triangle algorithm [2] is the most
typical and widely used one; it uses three stars and their
angular distances between each other to generate a triangle
feature. The algorithm is quite robust even though there are
only three stars in a stellar image, but it is time-consuming
because the number of triangle features formed in a star
catalog have to be searched and matched. To accelerate the
search process, Quine [3] modified the triangle algorithm
by filtering the redundant triangles of each star, Kruijff [4]
assigned each star a probability based on the magnitude of
detected stars to select the most reliable triangle, and Mortari
et al. [5] proposed the pyramid algorithm to solve the false
star condition. Wang et al. [6] used a hash map to improve
the searching time of the pyramid algorithm. Another type
of subgraph isomorphism algorithm utilizes a voting strategy
based on the count of angular distances [7]; the algorithm
proves to be tolerant to position noise but behaves terribly
with the increase of false stars. Li et al. [8] improved the
geometric voting algorithm by adding an iterative process to
eliminate false stars, but cannot converge sometimes when
the true stars in star images are not sufficient.

Pattern-based star identification algorithms construct a
unique pattern for each guiding reference star (GRS) chosen
from the star catalog; this pattern of a GRS usually contains
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information from its guiding neighbor stars (GNSs). The
matching process is to find the most similar pattern among
all of the pre-calculated patterns. The most representative
pattern-based approach is the grid algorithm [9] proposed
by Padgett; it has a remarkable tolerance for position noise,
but once the nearest neighbor star is missing or wrongly
detected, the pattern calculated and the identification would
be incorrect. Zhang et al. [10] put forward an algorithm on
the basis of radial and cyclic features; the pattern is with
rotation invariance and it overcomes the shortcomings of the
grid algorithm. In addition, the algorithm takes a step-by-
step matching strategy to improve the identification accu-
racy, but it still suffers a lot from plenty of false stars and
missing stars. Jiang et al. [11] utilized a redundant-coded
radial and cyclic pattern to conduct the identification. Based
on the fundamental of the former, Sun et al. [12] created a
HiddenMarkovmodel (HMM) based pattern to accelerate the
matching process. In [13], the K-L transform is taken to form
a rough matching, then a star walk procedure is performed to
identify stars precisely. However, when the number of false
stars increases, the identification rate decreases severely.

With the boom of artificial intelligence, neural net-
works [14]–[16] and some advanced algorithms such as
genetic algorithms [17] were applied on star identification.
However, the complicated network structure and insufficient
robustness of these algorithms resulted in lower identification
rates and slower identification speed. Therefore, this paper
proposes a representation learning based star identification
network RPNet whose network structure is simple but highly
efficient. The RPNet utilizes a star pattern generator (SPG)
to generate star patterns for the GRS, then a star pattern
classifier (SPC) is applied for the identification of the pattern
generated previously. Finally, a weight searching strategy is
exerted to guarantee identification accuracy. By learning from
a huge amount of data, the pattern generated by RPNet is
pretty robust to position noise, star magnitude noise, and false
stars; it outperforms other pattern-based algorithms and AI
algorithms on average. Meanwhile, using a neural network
to do the inference is much more time efficient than other
searching-based algorithms. The proposed algorithm behaves
well in real star images too.

The paper is organized as follows: In section 2, the concrete
implementation of the algorithm is described. In section 3,
comparisons between RPNet and other algorithms on simu-
lated and real star images are made. Finally, the paper makes
a conclusion in section 4.

II. METHODOLOGY
The paper proposes an end-to-end and representation learn-
ing based neural network model RPNet for fast, efficient,
and robust star identification tasks. RPNet learns a unique
star pattern R-Pattern from a huge amount of simulated star
images for each GRS in a catalog, then a classification is
made on these star patterns learned before. RPNet consists
mainly of two parts: (1) a SPG based on the star pattern gen-
eration network to generate unique star patterns for star image

FIGURE 1. Flow chart of the proposed algorithm.

samples, and (2) a SPC to classify the star patterns generated
previously. Compared with other pattern-based star identifi-
cation algorithms, RPNet does not need to manually design
star patterns; instead, it is driven by big data, and it generates
star patterns by self-learning. These star patterns are more
discriminating than man-made star patterns. Therefore, it
has a lower requirement for backend SPC, only a relatively
simple feed-forward neural network can produce satisfactory
results. It greatly reduces the overhead of the training and
prediction of the network, and it avoids the over-fitting caused
by a complicated network structure. Meanwhile, it provides
convenience for later implementation on embedded systems.
A weight searching strategy is also proposed in the paper for
filtering and verification of GRSs identified by RPNet, which
improves tremendously the identification ability for a single
star image. The flow chart of the entire algorithm is shown in
Fig. 1.

The methodology to construct the input of RPNet by GRSs
and GNSs within a pattern radius is introduced in this chapter.
The structure and training process of the RPNet, as well as the
generation of the training data set, is subsequently described
in detail. Finally, a weight searching method is put forward to
verify the identification results.

A. RPNET INPUT CONSTRUCTION
The size of the star catalog influences directly the efficiency
and accuracy of the star identification, thus a screening
process for the original star catalog is imperative and the
remaining stars subsequently become GRSs. GRSs should
meet the following requirements: (1) GRSs should be observ-
able under a certain degree of star magnitude noise. (2) The
number of GRSs in a star image should not be too small on
average. (3) The angular distance between two GRSs cannot
be too close in case of wrong identification. Based on the
criteria above, the Smithsonian Astrophysical Observatory
Star Catalog (SAO) [18] was chosen. A limiting magnitude
that can be detected by a star sensor is set to 6.0 Mv. Some
stars in dense areas are also deleted selectively and one of the
‘‘double stars’’ whose angular distance between each other is
too close is retained randomly. Finally, only star magnitude,
right ascension, and declination of GRSs are kept.

Through the filtering process above, a total of 5,045 GRSs
whose star indices are renumbered from 0 to 5,044. The new
star catalog formed by these GRSs is called the nSAO star
catalog. The identification for GRSs by RPNet is a typi-
cal classification problem. The data and its characteristics
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determine the upper bound of the classification accuracy; the
modules and algorithms merely approach the bound. RPNet
generates patterns of GRSs via a SPG. Though it does not
need to manually design the pattern, the input of the SPG
still should contain sufficient information to guarantee to
produce a well discriminative pattern. So, it is quite critical
to construct the initial input for RPNet according to the GRS
and its GNSs within pattern radius.

It is feasible to determine GNSs of a GRS by limiting
the angular distance between the GRS and other stars in the
celestial coordinate system. Considering that various types
of noises are generated from the image level, the GRS and
GNSs are transformed from the celestial coordinate system
into the image coordinate system. Assuming that the position
of a GRS denoted by S in the celestial coordinate system is
(αs, βs) (with αs as right ascension and βs as declination), let
the attitude angle of the star sensor be (αs, βs, φs), where ϕs
is the roll angle (whose value has no effect on the relative
relationship between S and its GNSs) that can be set to a ran-
dom value in the range [−2π, 2π ]. For another star N whose
coordinates in the celestial coordinate system are (αn, βn),
the projection [19] from the celestial coordinate system into
the image coordinate system can be represented via (1):

s

Xn
Yn
1

 =
 f 0 u0
0 f v0
0 0 1

 ·
 a11 a12 a13
a21 a22 a23
a31 a32 a33


·

 cosαn cosβn
sinαn cosβn

sinβn

 , (1)

where s is the scale factor, (Xn,Yn) is the projected position
of N in the image coordinate system, f is the optical focus,
(u0, v0) is the main point, and a11 ∼ a33 are elements of the
transformation matrix. The angular distance between S and
N can be calculated via (2):

dsn = arccos(
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‖vs‖ · ‖vn‖

)
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 Xn
Yn
−f

 (2)

where N is considered the GNS of S when dsn is within the
pattern radius ρ. After obtaining all GNSs of S, the method-
ology to construct the initial input for RPNet according to S
and geometric distribution of its GNSs is of great importance.
The initial input should meet the following demands of the
self-learning property of RPNet and the distribution of GNSs:
(1) The length of the initial input should be fixed so that the
number of GNSs does not affect the size of the initial input.
(2) The construction procedure of the initial input should be
simple and efficient; it should contain sufficient information
to perform the identification. (3) The initial inputs of different
GRSs should be discriminative. Based on the criteria above,

the initial input construction of S is shown in the following
steps:

1. Choose the right ascension and declination of S and
a random roll angle as the boresight pointing of the
star sensor. Project S and neighboring stars from the
celestial coordinate system into the image coordinate
system. Calculate angular distances between S and
neighboring stars and determine the GNSs of S that are
within the range of pattern radius ρ.

2. Filter out GNSs far away frommain star S. Only keepm
nearest GNSs, if the number of GNSs is smaller thanm.
For all GNSs retained, denote these selected GNSs by
s-GNSs. Calculate the angular distances between S and
s-GNSs and the pair-wise angular distance of s-GNSs,
respectively. Arrange two groups of angular distances
as vector dsn and vector dnn separately.

3. Discrete dsn and dnn; the discretization factors are e and
2e, respectively. For the maximum angular distances
in dsn and dnn, these are ρ and 2ρ, the length of the
discretized vectorsDsn andDnn are both

⌊
ρ
/
e
⌋
. For d1

in dsn and d2 in dnn, the discretization process can be
formulated by (3):

id1 = d1
/
e, Dsn[id1] = Dsn[id1]+ 1

id2 = d2
/
2e, Dnn[id2] = Dnn[id2]+ 1. (3)

4. ConcatenateDsn andDnn to form a 1-D array Sori, as the
initial input fed into RPNet.

The concrete construction procedure of Sori is shown in Fig.2.

B. STRUCTURE OF RPNET
RPNet is composed mainly of two modules: the front end is
a SPG based on a pattern generation network; followed by a
SPC formed by a feed-forward neural network. For the initial
input Sori of a GRS, a unique pattern RPS is generated via
the encoding of SPG to Sori, then SPC classifies this unique
pattern to gain the probability of each star that the GRS may
belong to in the nSAO catalog. The structure of the RPNet is
shown in Fig.3.

The description of the two modules are as follows.

1) STAR PATTERN GENERATOR
The SPG consists of two fully connected layers and a single
activation function layer. It is the encoder part of a pattern
generation network. The encoder part of a well-trained pat-
tern generation network can encode a unique pattern for the
initial input and map the input from the 2

⌊
ρ
/
e
⌋
dimension

into N-dimensional output pattern RPS .The high discrimi-
native pattern it generates guarantees the simplicity of the
subsequent SPC.

2) STAR PATTERN CLASSIFIER
It is based on the typical feed-forward neural network.
A recently proposed batch normalization layer [20] is added
to gain a more robust performance. The SPC plays a role in
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FIGURE 2. Initial input construction of RPNet for S. (a) S and its neighbor
stars observed by the star sensor at the boresight pointing of (αs, βs, φs).
(b) Project S and its neighbor stars onto the image plane. (c) Calculate dsn
and dnn based on S and its m nearest GNSs. (d) Discretization. For
simplicity and better visualization, parameters are set as
ρ = 6,e = 0.5◦,m = 4◦.

FIGURE 3. Structure of RPNet.

assigning probabilities for stars in the nSAO catalog that the
GRS may belong to for later identification.

The specific hierarchical structure of RPNet is shown
in Table 1.

After the normalization process, the output of RPNet obeys
a probability distribution of

σ (z)j =
ezj∑K
k=1 e

zk
, j = 0, 1, . . .K − 1, (4)

where K denotes the size of the nSAO catalog and the output

pj meets the demand
K−1∑
j=0

pj = 1, which denotes the predicted

probability of the j-th star in the nSAO catalog.

TABLE 1. Architecture of RPNet.

FIGURE 4. Methods for adding different types of noise.

C. GENERATION OF TRAINING DATA
Both pattern generation and pattern classification networks
need to complete learning through training on adequate sam-
ples. The pattern generation network requires noise samples
and corresponding clean samples for training. The training of
a pattern classification network requires patterns generated
from a well-trained SPG previously and their related labels.

For a GRS named S, a simulated star image I without noise
can be generated as described above in this chapter. The clean
sample of S can be acquired directly by constructing initial
input of S from I . Noise images are generated by adding
different types and levels of noise into the image I . Noise
samples can be generated through the initial input construc-
tion of noise images. For the pattern generation network,
types and quantities of noise samples determine the discrimi-
nation of the patterns it generates. The more noise samples
it consumes, the higher the accuracy of the identification.
However, because they are limited by hardware condition and
efficiency, noise types and number of noise samples are not
infinite. The types of noise and the way they are added are
shown in Fig. 4.
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The details of the generating procedure for the four types
of noise samples are described below.

1) POSITION NOISE SAMPLES
Position noise results in shifts in the stars’ coordinates in
image I . For all of stars except S in image I , Gaussian noise
of mean of 0 and standard deviation of σx and σy are added
into their X and Y coordinates, respectively, which is pnX ∼
N (0, σ 2

x ), pnY ∼ N (0, σ 2
y ). Set σx = σy for symmetry. The

range of the standard deviation is 0.2 pixel to 1.6 pixels, at a
step of 0.2 pixel. Ten noise samples are assigned for each
level of position noise and 80 position noise samples of S are
generated in total.

2) MAGNITUDE NOISE SAMPLES
Magnitude noise leads to variations in a star’s brightness.
For stars with magnitudes around the limited detectable mag-
nitude of a sensor, magnitude noise may make it darker,
causing it to disappear. For stars that cannot be detected
before, magnitude noise may brighten it to make it appear.
Therefore, a 7.0 Mv limited detectable magnitude is set as
the threshold, then a star image I is simulated according
to the threshold. Magnitude noise is added into each star
except S in the image I , then the stars darker than 6.0Mv
are filtered out. Finally, the noise sample can be constructed
from the noisy image generated before. Star magnitude noise
is subject to a Gaussian distribution of N (0, σ 2), where σ ∈
[0.323, 0.484, 0.646, 0.807, 0.969]. For each level of magni-
tude noise, 16 noise samples are generated, which adds up to
80 noise samples.

3) MISSING STAR SAMPLES
Some stars that should have appeared disappear at random
because of circuit noise or optical system imaging noise. For
stars except for S in image I , 1 to 5 stars were dropped ran-
domly to produce the missing star samples. Eighty samples
of this kind of noise were taken.

4) FALSE STAR SAMPLES
False stars are quite common in real star images. The planet,
cosmic dust, background white noise, and even the flame
from the tail of an aircraft may be considered as false stars.
Subgraph isomorphism-based algorithms are allergic to false
stars; however, the proposed algorithm has good resistance to
false stars. The appearance of false stars is random and thus
are considered to be distributed uniformly on the image plane.
One to five false stars were added randomly with a magnitude
of 0 Mv to 6 Mv into the area within the pattern radius of S
to obtain 80 noise samples.

For a GRS, 320 noise samples versus one clean sample are
generated. Therefore, the noise sample database X ′ contains
5, 045×320 = 1, 614, 400 samples, the corresponding labels
y′ of X ′ are indices of noise samples in the nSAO catalog.
Similarly, clean sample database X includes 5,045 samples in
total, the ground truth label set of X is y . The training dataset
of RPNet is {X′, y′;X, y}.

FIGURE 5. Training process of RPNet.

D. TRAINING OF RPNET
The training of the RPNet can be divided into two stages.
In the first stage, the pattern generation network learns from
noise and clean samples to gain a star pattern generator.
In the second stage, noise samples are fed into the previously
trained star pattern generator to produce unique star patterns
for noise samples. Then, a star pattern classifier is trained
with previously generated star patterns and their correspond-
ing labels. The training process is shown in Fig.5.

The pattern generation network is based on the denoising
auto encoder (DAE) [21]. It accepts corrupted noise samples
as input and trained to undo this corruption to reconstruct the
initial input, the hidden layers part can encode the input fea-
tures thus can be used as a star pattern generator. The detailed
architecture and training process of the pattern generation
network are shown in Fig.6.

Both the star pattern generator and star pattern decoder
contain two fully connected layers: a Relu [22] activation
function, followed by the first fully connected layer. When
creating the initial input of RPNet, the parameters are ρ = 6◦,
e = 0.03◦ which are chosen by referring the discretization
procedure of the other pattern-based star identification algo-
rithms and many experiment results. Hence, the input dimen-
sion of RPNet is 2

⌊
ρ
/
e
⌋
= 400. The detailed parameters of

the pattern generation network are listed in Table 2.
The pattern generation network is adapted from the DAE.

Three key points of improvement are proposed to combine
the multi-classification property of the star identification:
(1) A new noise-adding strategy is proposed. The traditional
way of adding noise is to obtain the initial input from clean
simulated star images, then discretize the initial input and
finally add noise. This method of adding noise does not
correspond to the meaning of the actual noise situation. By
contrast, different types of noises are added directly into
clean simulated star images first; then, noise samples are
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FIGURE 6. Architecture of the pattern generation network and its training
strategy.

TABLE 2. Parameters of pattern generation network.

constructed from these corrupted images. It is a reasonable
way of generating various types of noise samples, such as
position noise samples, magnitude noise samples, missing
star samples, and false star samples. (2) Due to the multi-
classification property of the pattern-based star identification
algorithm, tens of thousands of categories require that the
network has sufficient capacity. An extra hidden layer was
added into the encoder and decoder of the traditional DAE to
improve its capability to generate a more representative pat-
tern. (3) A sparse encoding [23] strategy is taken to map the
initial input into a high-dimensional feature space. Compared
with the dimensionality reduction of the traditional DAE that
drops some information when encodes, sparse encoding will
generate a completer and more robust pattern.

The loss function of pattern generation network is MSE
loss, which minimizes the mean-squared error of clean input

TABLE 3. Hyper-parameters of RPNet training.

xo and reconstructed input xr :

L(xo, xr ) = ‖x − xr‖2 . (5)

Star pattern classifier in the backend is trained by 10-fold
cross-validation strategy to select the best hyper-parameters.
All samples are then put into training. The loss function of
this part is cross-entropy loss:

L(p, yi) = − log pyi , (6)

where yi is the label of the sample and pyi denotes the
probability of the sample the network predicts belongs to yi.
The hyper-parameters of two components of RPNet are listed
in Table 3.

E. WEIGHT SEARCHING STRATEGY
For pattern-based star identification algorithms, recognition
of a single star image can be simplified to identify the
GRS closest to the image center. The pattern of the GRS is
completer because it contains most GNSs within the pattern
radius compared with other GRSs. Once the specific GRS
is identified, its GNSs can be identified easily. However,
the wrong identification of the GRS will result in the failure
of the star image identification or it will take a huge amount
of time to conduct verification and re-identify another GRS.
To conquer this problem, a weight searching strategy based
on the characteristic of outputting probabilities of the star
pattern classifier is proposed. By choosing three stars nearest
to the image center, two are selected and verified according
to their distances away from the center and the probabilities
of their candidate stars. This strategy increases tremendously
the confidence ratio of the identified stars and improves the
identification rate for GNSs of the main star as well. That is,
the strategy enhances significantly the identification rate and
processing efficiency for a single star image. The schematic
diagram of the algorithm is shown in Fig.7.

Suppose there are three stars closest to the image center c as
S1, S2, and S3. The distances meet the following relationship:

S1c < S2c < S3c. (7)

The initial inputs constructed by S1, S2, and S3 are fed into the
RPNet. For each of the three stars, the RPNet will generate
the probability of each star in the nSAO catalog it predicted,
then choose three of the most likely stars as candidate stars.
Take S1 for example: the corresponding probabilities of its
candidate stars S11, S12, and S13 outputted by RPNet are p11,
p12, and p13, respectively. They satisfy the following formula:

p11 > p12 > p13 > . . . (8)

1Pattern generation network
2Pattern classification network
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FIGURE 7. Weight search algorithm.

The position weights po1, po2 and po3 are assigned to
candidate stars from near to far; the probability weight pr1,
pr2, and pr3 are assigned to candidate stars based on the
probabilities RPNet generates, too. Two groups of weights
meet the following relationship:

3∑
i=1

poi = 1,
3∑
i=1

pri = 1 (9)

Two stars Si and Sj, are selected randomly and then the
candidate stars of Si and Sj are chosen randomly and denoted
by Sij and Skl , where i, j, k, l ∈ {1, 2, 3} and i 6= k . The
total number of candidate star pairs are C2

3 · C
1
3 · C

1
3 = 27.

Assume the attitude of Sij and Skl are (α1, β1) and (α2, β2),
respectively. The angular distance between two candidate
stars are as follows:

dijkl = arccos[cos(β1) · cos(β2) · cos(α1 − α2)

+ sin(β1) · sin(β2)] (10)

If dijkl is beyond the maximum angular distance of field
of view (FOV), it indicates the chosen candidate star pair
is wrong. Otherwise, calculate the score of the qualified
candidate star pair based on the following equation:

WSij↔Skl = poi · prj · pij + pok · prl · pkl (11)

Finally, the candidate star pair Sij ↔ Skl with the highest
score is chosen as ‘‘confident stars’’ for guiding stars Si and
Sj, then their GNSs are identified.

III. EXPERIMENT RESULTS AND ANALYSIS
The assessment and verification of the algorithm is performed
on a series of simulated star images with different types of
noise; Thus, the fundamental parameters of the simulation
platform and the key parameters of the algorithm are intro-
duced first. Then, comparisons of performances on simu-
lated star images between RPNet and other pattern-based
algorithms are made, and time and space complexities are
analyzed as well. Finally, tests on real star images are carried
out.

TABLE 4. Parameters of the simulation platform.

TABLE 5. Weight distribution.

A. PARAMETERS SETTING
When the boresight pointing of the star sensor is given,
a series of star images with different kinds of noise can be
produced through the simulation platform. By altering the
boresight pointing randomly, simulated star images can be
considered as distributed uniformly over the entire celestial
sphere. We chose the simulated parameters of some typical
pattern-based star identification algorithms for better compar-
isons. The detailed parameters of the simulation platform are
listed in Table 4.

The key parameters of the algorithm and their selection are
described below:

(1) Pattern radius ρ. Considering the FOV of a star sensor
typically ranges from810◦ to820◦, so the limitation is 2ρ <
20◦. In the meanwhile, original patterns should cover as much
information as possible so that ρ cannot be too small, ρ is set
to 6◦ for compromise.
(2) Number of selected GNSs m. The number of neighbor

stars within the pattern radius varies from a few to hundreds.
To reduce the time and space required to generate the initial
input, select as few GNSs as possible under the premise of
sufficient information contained for identification. Multiple
experiment results indicate the most suitable value ism = 10.

(3) Discretization factor e. Discretization factor turns the
continuous angular distance into discrete form. A smaller
e results in a more elaborate representation but takes more
space to store while a larger emay lead to poor discrimination
of the input. According to many results of the experiment,
e = 0.03◦ achieved the best performance.
(4) Position weight poi, i = 1, 2, 3 and probability weight

pri, i = 1, 2, 3. Two groups of parameters are selected using
grid search algorithm [23]. The best weights obtained are
listed in Table 5.
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FIGURE 8. Identification rate for different levels of position noise.

B. SIMULATION RESULTS AND COMPARISONS
The proposed algorithm is verified and evaluated under dif-
ferent noise conditions. Two typical pattern-based star iden-
tification algorithms are adopted as references for a better
comparison: one is the unified and redundant pattern [11]
algorithm that concatenates the radial features and the neigh-
bor star features to form a 1-D pattern. It takes the advantages
of the polestar algorithm [24] and radial and cyclic pattern
algorithm [10] and uses redundant coding strategy to gain a
more robust performance. The second is the grid algorithm
[9], which constructs a 2-D pattern based on the distribution
of neighbor stars. The grid algorithm is re-implemented and
tuned to adjust to the simulation platform; the results of
the unified and redundant pattern algorithm are taken from
related papers.

1) PERFORMANCE TOWARDS POSITION NOISE
The test set is built in the same way as the training data
set. For each noise level with a mean of 0 and a standard
deviation of 0.2 to 1.6 pixels, 10,000 simulated star images
are generated randomly as test data. The performances of the
three algorithms are shown in Fig. 8.

The identification rate is obviously near 100% and almost
has no attenuation when position noise is less than 1 pixel,
indicating that the proposed algorithm has a considerable
robust performance towards tiny deformation. Meanwhile,
the identification rate of the proposed algorithm is steadily
1% higher than the other two algorithms. When the position
continues to increase, the unified redundant pattern algorithm
has a cliff fall in identification rate. Although the identifi-
cation rate of the proposed algorithm drops to 94% when
position noise increases to 1.6 pixels, it still outperforms the
other two algorithms.

2) PERFORMANCE TOWARDS STAR MAGNITUDE NOISE
The distribution of the magnitude noise is also a Gaussian
distribution with a mean of 0 and a standard deviation ranging
from 0 to 1Mv. The noise is applied to the magnitude of
each star and the number of noise samples for each level of
magnitude noise is 10,000. The identification rate of three
algorithms can be found in Fig.9.

The identification rate of the proposed algorithm drops
from 99.90% to merely 98.11% when the magnitude noise

FIGURE 9. Identification rate for different levels of magnitude noise.

FIGURE 10. Identification rate for different ratios of false stars.

increases from 0.323Mv to 0.969Mv. By contrast, the unified
and redundant pattern algorithm undergo a large decline from
99.29% to 86.17%while the grid algorithm falls from 99.70%
to 90.80% in the same noise condition. Both of algorithms
decreased severely when the noise is greater than 0.5 Mv,
but the performance of the proposed algorithm remains favor-
able. The huge gap between the proposed algorithm and the
other two algorithms may be caused by their different way of
generating patterns. The proposed algorithm involves taking
the N closest GNSs to form the initial input; the initial input
suffers a little but the other two algorithms are averse to
this kind of noise because both algorithms use brightness
information to some extent.

3) PERFORMANCE TOWARDS FALSE STARS
The level of this kind of noise is measured by the percentage
of false stars p. For a randomly generated star image, the num-
ber of star Nt in the image should be determined and then the
number of false star Nf can be calculated by

Nf
Nf + Nf

= p (12)

Finally, Nf false stars are added randomly to form the noise
sample. The number of noise samples for each level of false
star noise is also 10,000. The performances of the three
algorithms are shown in Fig.10.

The performance of the proposed algorithm is better than
the two other algorithms when the ratio of false stars is rela-
tively small (p< 20%); the identification rate remains higher
than 80%. With the increase in ratio p, the grid algorithm is
slightly better than the proposed algorithm. However, when
the ratio p reaches 50%, the proposed algorithm outperforms
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FIGURE 11. The identification rate for different number of missing stars.

the other two algorithms and maintains an identification rate
of 35%.

4) PERFORMANCE TOWARDS MISSING STARS
The missing star sample can be obtained easily by drop-
ping the stars in the simulated star image randomly. One
to five missing stars were tested and each level contained
10,000 noise samples. However, only the proposed algorithm
is estimated because of the lack of experiment results of the
other two algorithms. The results for the proposed algorithm
are shown in Fig. 11.

The identification rate dropped from 97.6% to 81.09%
when the number of missing stars increased from 1 to 5. Only
1 or 2 missing stars are acceptable because too many missing
stars may lead to insufficient information for recognition,
especially when the total number of stars in an image is
scarce.

C. ALGORITHM COMPLEXITY ANALYSIS
The implementations and platforms of star identification
algorithms are different, which makes it difficult to compare
the running time and actual memory. However, the perfor-
mance of the algorithms can be judged by analyzing the
time and space complexities. Assuming that the size of
the star catalog is N , for the most representative subgraph-
isomorphism-based algorithm, the triangle algorithm and its
varieties construct C3

N = N (N − 1)(N − 2)
/
6 triangle fea-

tures. The identification procedure involves finding the most
similar triangle in the triangle feature database and thus the
time and space complexities of this kind of algorithms are
both O(N 3). For pattern-based algorithms such as the grid
algorithm, for each star in the catalog, a unique pattern should
be generated, which means there are N patterns in total.
Suppose a pattern takes O(c) space, the space complexity of
the algorithm will be O(cN ) and the identification can be
reduced to a pattern recognition process, and thus, the time
complexity of the grid algorithm is O(N ). For the algorithm
proposed in this paper, patterns are not stored explicitly but
in the form of the network parameters which takes O(c)
space. However, the star catalog must be stored which means
the space complexity of the algorithm is O(c) + O(N ) =
O(N ). The identification involves performing an inference
through the networks and thus, the time complexity is O(1).

TABLE 6. Time and space complexities of different algorithms.

FIGURE 12. Identification results for a real star image.

TABLE 7. Parameters of the ZY3 star sensor.

TABLE 8. Identification rate on ZY-3 real star images.

Table 6 lists the time and space complexities of different
algorithms for a better comparison.

D. PERFORMANCE ON REAL STAR IMAGE
A total of 323 real star images downloaded from the Chinese
civilian satellite ZY-3 were tested to verify the performance
in a real scene. The parameters of the star sensor are shown
in Table 7 and the recognition results of one real star image
are shown in Fig.12.

Five images were failed to be identified because of the low
accuracy of the star centroids positioning algorithm. Many
stars in these images were too dim to be extracted. The
proposed algorithm achieved a 98.45% identification accu-
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racy on this dataset. The comparison with other algorithms is
listed in TABLE 8 [11], [12].

IV. CONCLUSION
A representation learning based neural network (RPNet) for
robust and efficient star identification tasks is proposed in
this paper. The RPNet learns from a huge amount of data
and creates unique patterns for GRSs and then classifies the
previously created patterns. The characteristics of the RPNet
are listed below:

(1) The algorithm is quite robust towards small deforma-
tions of the star image and star magnitude noise hardly affects
the identification rate.

(2) A few false stars or missing stars do not hinder the algo-
rithm from maintaining an acceptable performance. How-
ever, too many false stars or missing stars will significantly
decrease the identification rate. This issue is a common prob-
lem for pattern-based algorithms.

(3) The algorithm is fast in theory; it achieves a time
complexity of only O(1) and the space complexity is O(N).
These numbers are far smaller than the triangle algorithm
whose time and space complexities are both O(N 3).
(4) The architecture of the RPNet is relatively simple. After

training on the computer, RPNet is feasible and easy to re-
implement on embedded systems such as the FPGA and DSP.

In conclusion, the algorithm proposed in this paper is fast
and highly efficient. The identification rate of the algorithm
outperforms other pattern-based algorithms on average. The
RPNet is also a bold and successful attempt of artificial
intelligence in the aerospace field.
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