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ABSTRACT Medical image analysis is currently experiencing a paradigm shift due to deep learning. This
technology has recently attracted so much interest of the Medical Imaging Community that it led to a
specialized conference in ‘‘Medical Imaging with Deep Learning’’ in the year 2018. This paper surveys the
recent developments in this direction and provides a critical review of the related major aspects. We organize
the reviewed literature according to the underlying pattern recognition tasks and further sub-categorize
it following a taxonomy based on human anatomy. This paper does not assume prior knowledge of
deep learning and makes a significant contribution in explaining the core deep learning concepts to the
non-experts in the Medical Community. This paper provides a unique computer vision/machine learning
perspective taken on the advances of deep learning in medical imaging. This enables us to single out ‘‘lack of
appropriately annotated large-scale data sets" as the core challenge (among other challenges) in this research
direction. We draw on the insights from the sister research fields of computer vision, pattern recognition, and
machine learning, where the techniques of dealing with such challenges have already matured, to provide
promising directions for the Medical Imaging Community to fully harness deep learning in the future.

INDEX TERMS Deep learning, medical imaging, artificial neural networks, survey, tutorial, data sets.

I. INTRODUCTION
Deep Learning (DL) [1] is a major contributor of the con-
temporary rise of Artificial Intelligence in nearly all walks of
life. This is a direct consequence of the recent breakthroughs
resulting from its application across a wide variety of sci-
entific fields; including Computer Vision [2], Natural Lan-
guage Processing [3], Particle Physics [4], DNA analysis [5],
brain circuits studies [6], and chemical structure analysis [7]
etc. Very recently, it has also attracted a notable interest of
researchers in Medical Imaging, holding great promises for
the future of this field.

The DL framework allows machines to learn very complex
mathematical models for data representation, that can sub-
sequently be used to perform accurate data analysis. These
models hierarchically compute non-linear and/or linear func-
tions of the input data that is weighted by the model param-
eters. Treating these functions as data processing ‘layers’,
the hierarchical use of a large number of such layers also
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inspires the name ‘Deep’ Learning. The common goal of
DL methods is to iteratively learn the parameters of the
computational model using a training data set such that the
model gradually gets better in performing a desired task, e.g.
classification; over that data under a specified metric. The
computational model itself generally takes the form of an
Artificial Neural Network (ANN) [8] that consists of multi-
ple layers of neurons/perceptrons [9] - basic computational
blocks, whereas its parameters (a.k.a. network weights) spec-
ify the strength of the connections between the neurons of
different layers. We depict a deep neural network in Fig. 1
for illustration.

Once trained for a particular task, the DL models are also
able to perform the same task accurately using a variety
of previously unseen data (i.e. testing data). This strong
generalization ability of DL currently makes it stand out
of the other Machine Learning techniques. Learning of the
parameters of a deep model is carried out with the help of
back-propagation strategy [10] that enables some form of the
popular Gradient Descent technique [11], [12] to iteratively
arrive at the desired parameter values. Updating the model
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FIGURE 1. Illustration of a deep neural network: The network consists of multiple layers of neurons/perceptrons that are
connected in an inter-layer fashion. The neurons compute non-linear/linear transformations of their inputs. Each feature
of the input signal is weighted by the network parameters and processed by the neuron layers hierarchically. A network
connection performs the weighting operation. The strengths of the connections (i.e. network parameter values) are
learned using training data. The network layers not seen by the input and output signals are often termed ‘hidden’ layers.

parameters using the complete training data once is known as
a single epoch of network/model training. Contemporary DL
models are normally trained for hundreds of epochs before
they can be deployed.

Although the origins of Deep Learning can be traced back
to 1940s [13], the sudden recent rise in its utilization for
solving complex problems of the modern era results from
three major phenomena. (1) Availability of large amount of
training data: With ubiquitous digitization of information in
recent times, very large amount of data is available to train
complex computational models. Deep Learning has an intrin-
sic ability to model complex functions by simply stacking
multiple layers of its basic computational blocks. Hence,
it is a convenient choice for dealing with hard problems.
Interestingly, this ability of deep models is known for over
few decades now [14]. However, the bottleneck of relatively
smaller training data sets had restricted the utility of Deep
Learning until recently. (2) Availability of powerful com-
putational resources: Learning complex functions over large
amount of data results in immense computational require-
ments. Related research communities are able to fulfill such
requirements only recently. (3) Availability of public libraries
implementing DL algorithms: There is a growing recent trend
in different research communities to publish the source codes
on public platforms. Easy public access to DL algorithm
implementations has exploded the use of this technique in
many application domains.

The field of Medical Imaging has been exploiting Machine
Learning since 1960s [15], [16]. However, the first notable
contributions that relate to modern Deep Learning tech-
niques appeared in the Medical Imaging literature in
1990s [17]–[21]. The relatedness of these methods to con-
temporary DL comes in the form of using ANNs to accom-
plish Medical Imaging tasks. Nevertheless, restricted by the
amount of training data and computational resources, these
works trained networks that were only two to three layers
deep. This is no longer considered ‘deep’ in the modern
era. The number of layers in the contemporary DL models
generally ranges from a dozen to over one hundred [22].
In the context of image analysis, such models have mostly
originated in Computer Vision literature [2].

The field of Computer Vision closely relates to Medical
Imaging in analyzing digital images. Medical Imaging has
a long tradition of profiting from the findings in Computer
Vision. In 2012 [23], DL provided a major breakthrough in
Computer Vision by performing a very hard image classifica-
tion task with remarkable accuracy. Since then, the Computer
Vision community has gradually shifted its main focus to DL.
Consequently, Medical Imaging literature also started wit-
nessing methods exploiting deep neural networks in around
2013, and now such methods are appearing at an ever increas-
ing rate. Sahiner et al. [24] noted that the peer-reviewed
publications that employedDL for radiological images tripled
from 2016 (∼100) to 2017 (∼300), whereas the first quarter
of 2018 alone saw over 100 such publications. Similarly, the
main stream Medical Imaging conference, i.e. International
Conference on ‘Medical Image Computing and Computer
Assisted Intervention’ (MICCAI) published over 120 papers
in its main proceedings in 2018 that employed Deep Learning
for Medical Image Analysis tasks. The large inflow of contri-
butions exploiting DL in Medical Imaging has also given rise
to a specialized venue in the form of International Conference
on ‘Medical Imaging with Deep Learning’ (MIDL) in 2018.1

We note that a few review articles for closely
related research directions also exist at the time of this
publication [24]–[29]. Among them, [25] only focuses on
MRI, whereas [24], [26]–[29] mainly discuss the literature
until the year 2017. However, the rapid advancements and
breakthroughs in Deep Learning have already invalidated a
few observations made in those reviews. Moreover, there is
a large number of more recent Medical Imaging techniques
employing DL technologies that were not invented (or at least
not popular) at the time of those surveys. Besides review-
ing the more recent literature as compared to the existing
reviews, our survey also provides a unique Computer Vision
and Machine Learning perspective on the Medical Imaging
problems. Confined by their narrow perspective, the existing
reviews also fall short on elaborating the root causes of the
challenges faced by Deep Learning in Medical Imaging.
Moreover, they are unable to provide insights for leveraging

1https://midl.amsterdam/
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the findings in other fields for addressing the challenges.
These issues are specifically addressed in our review.

In this paper, we provide a comprehensive review of the
recent DL techniques in Medical Imaging, focusing mainly
on the very recent methods published in 2018 or after.We cat-
egorize these techniques under different pattern recognition
tasks and further sub-categorize them following a taxonomy
based on human anatomy. Analyzing the reviewed litera-
ture, we establish ‘lack of appropriately annotated large-scale
datasets’ for Medical Imaging tasks as the fundamental chal-
lenge (among other challenges) in fully exploiting Deep
Learning for those tasks. We then draw on the literature of
Computer Vision, Pattern Recognition andMachine Learning
in general; to provide guidelines to deal with this and other
challenges in Medical Image Analysis using Deep Learning.
This review also touches upon the available public datasets to
train DL models for the medical imaging tasks. Considering
the lack of in-depth comprehension of Deep Learning by the
broader Medical community, this article also provides the
understanding of the core technical concepts related to DL
at an appropriate level. This is an intentional contribution of
this work.

The remaining article is organized as follows. In Section II,
we present the core Deep Learning concepts for the Medical
community in an intuitive manner. The main body of the
reviewed literature is presented in Section III. We touch
upon the public data repositories for Medical Imaging in
Section IV. In Section V, we highlight the major challenges
faced by Deep Learning in Medical Image Analysis. Recom-
mendations for dealing with these challenges are discussed
in Section VI as future directions. The article concludes in
Section VII. We provide the list of acronyms used in the
remaining article in Table 1.

II. BACKGROUND CONCEPTS
In this Section, we first briefly introduce the broader types
of Machine Learning techniques and then focus on the Deep
Learning framework. Machine Learning methods are broadly
categorized as supervised or unsupervised based on the train-
ing data used to learn the computational models. Deep Learn-
ing based methods can fall in any of these categories.

1) SUPERVISED LEARNING
In supervised learning, it is assumed that the training data is
available in the form of pairs (x, y), where x ∈ Rm is a train-
ing example, and y is its label. The training examples gener-
ally belong to different, say C classes of data. In that case, y
is often represented as a binary vector living in RC , such that
its cth coefficient is ‘1’ if x belongs to the cth class, whereas
all other coefficients are zero. A typical task for supervised
learning is to find a computational modelM with the help of
training data such that it is also able to correctly predict the
labels of data samples that it had not seen previously during
training. The unseen data samples are termed test/testing
samples in the Machine Learning parlance. To learn a model
that can perform successful classification of the test samples,

TABLE 1. List of acronyms used in the survey.

we can formulate our learning problem as estimation of the
parameters 2 of our model that minimizes a specific loss
L(y, ŷ), where ŷ is the label vector predicted by the model
for a given test sample. As can be guessed, the loss is defined
such that it has a small value only if the learned parametric
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model is able to predict the correct label of the data sample.
Whereas the model loss has its scope limited to only a single
data sample, we define a cost for the complete training data.
The cost of a model is simply the Expected value of the losses
computed for the individual data samples. Deep Learning
allows us to learn model parameters2 that are able to achieve
very low cost over very large data sets.

Whereas classification generally aims at learning computa-
tional models that map input signals to discrete output values,
i.e. class labels. It is also possible to learnmodels that canmap
training examples to continuous output values. In that case, y
is typically a real number scalar or vector. An example of such
task is to learn a model that can predict the probability of a
tumor being benign or malignant. In Machine Learning, such
a task is seen as a regression problem. Similar to the classifi-
cation problems, Deep Learning has been able to demonstrate
excellent performance in learning computational models for
the regression problem.

2) UNSUPERVISED LEARNING
Whereas supervised learning assumes that the training data
also provides labels of the samples; unsupervised learning
assume that sample labels are not available. In that case,
the typical task of a computational model is to cluster the data
samples into different groups based on the similarities of their
intrinsic characteristics - e.g. clustering pixels of color images
based on their RGB values. Similar to the supervised learning
tasks, models for unsupervised learning tasks can also take
advantage of minimizing a loss function. In the context of
Deep Learning, this loss function is normally designed such
that the model learns an accurate mapping of an input signal
to itself. Once the mapping is learned, the model is used to
compute compact representations of data samples that cluster
well. Deep Learning framework has also been found very
effective for unsupervised learning.

Along with supervised and unsupervised learning, other
machine learning types include semi-supervised learning and
reinforcement learning. Informally, semi-supervised learning
computes models using the training data that provides labels
only for its smaller subsets. On the other hand, reinforcement
learning provides ‘a kind of’ supervision for the learning
problem in terms of rewards or punishments to the algorithm.
Due to their remote relevance to the tasks inMedical Imaging,
we do not provide further discussion on these categories.
Interested readers are directed to [30] for semi-supervised
learning, and to [31] for reinforcement learning.

A. STANDARD ARTIFICIAL NEURAL NETWORKS
An Artificial Neural Network (ANN) is a hierarchical com-
position of basic computational elements known as neurons
(or perceptrons [9]). Multiple neurons exist at a single level
of the hierarchy, forming a single layer of the network. Using
many layers in an ANN makes it deep, see Fig. 1. A neuron
performs the following simple computation:

a = f (wᵀx+ b), (1)

where x ∈ Rm is the input signal, w ∈ Rm contains the
neuron’s weights, and b ∈ R is a bias term. The symbol f (.)
denotes an activation function, and the computed a ∈ R is the
neuron’s activation signal or simply its activation. Generally,
f (.) is kept non-linear to allow an ANN to induce complex
non-linear computational models. The classic choices for
f (.) are the well-known ‘sigmoid’ and ‘hyperbolic tangent’
functions. We depict a single neuron/perceptron in Fig. 2.

FIGURE 2. Illustration of a single neuron/perceptron in a standard ANN.
Each feature/coefficient ‘xi ∀i ∈ {1, . . . , m}’ of the input signal ‘x’ gets
weighted by a corresponding weight ‘wi ’. A bias term ‘b’ is added to the
weighted sum ‘wᵀx’ and a non-linear/linear function f (.) is applied to
compute the activation ‘a’.

A neural network must learn the weight and bias terms
in Eq. (1). The strategy used to learn these parameters (i.e.
back-propagation [10]) requires f (.) to be a differentiable
function of its inputs. In the modern Deep Learning era,
Rectified Linear Unit (ReLU) [23] is widely used for this
function, especially for non-standard ANNs such as CNNs
(see Section II-B). ReLU is defined as a = max(0,wᵀx+ b).
For the details beyond the scope of this discussion, ReLU
allows more efficient and generally more effective learning
of complex models as compared to the classic sigmoid and
hyperbolic tangent activation functions.

It is possible to compactly represent the weights associated
with all the neurons in a single layer of an ANN as a matrix
W ∈ Rp×m, where ‘p’ is the total number of neurons in that
layer. This allows us to compute the activations of all the
neurons in the layer at once as follows:

a = f (Wx+ b), (2)

where a ∈ Rp now stores the activation values of all the neu-
rons in the layer under consideration. Noting the hierarchical
nature of ANNs, it is easy to see that the functional form of a
model induced by an L-layer network can be given as:

M(x, 2) = fL(WL fL−1(WL−1fL−2 . . . (W1x

+b1)+ . . .+ bL−1)+ bL), (3)

where the subscripts denote the layer numbers. We collec-
tively denote the parametersW i, bi,∀i ∈ {1, . . . ,L} as 2.

A neural network model can be composed by using dif-
ferent number of layers, having different number of neurons
in each layer, and even having different activation functions
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for different layers. Combined, these choices determine the
architecture of a neural network. The design variables of the
architecture and those of the learning algorithm are termed as
hyper-parameters of the network. Whereas the model param-
eters (i.e. 2) are learned automatically, finding the most
suitable values of the hyper-parameter is usually a manual
iterative process. Standard ANNs are also commonly known
as Multi-Layer Perceptrons (MLPs), as their layers are gener-
ally composed of standard neurons/perceptrons. One notable
exception to this layer composition is encountered at the very
last layer, i.e. softmax layer used in classification. In contrast
to ‘independent’ activation computation by each neuron in a
standard perceptron layer, softmax neurons compute activa-
tions that are normalized across all the activation values of
that layer. Mathematically, the ith neuron of a softmax layer
computes the activation value as:

ai =
ew

ᵀ
i aL−1+bi

p∑
j=1

ew
ᵀ
j aL−1+bj

. (4)

The benefit of normalizing the activation signal is that the
output of the softmax layer can be interpreted as a probability
vector that encodes the confidence of the network that a given
sample belongs to a particular class. This interpretation of
softmax layer outputs is a widely used concept in the related
literature.

B. CONVOLUTIONAL NEURAL NETWORKS
In the context of DL techniques for image analysis, Convo-
lution Neural Networks (CNNs) [23], [32] are of the primary
importance. Similar to the standard ANNs, CNNs consist of
multiple layers. However, instead of simple perceptron layers,
we encounter three different kinds of layers in these networks
(a) Convolutional layers, (b) Pooling layers, and (c) Fully
connected layers (often termed fc-layers). We describe these
layers below, focusing mainly on the Convolutional layers
that are the main source of strength for CNNs.

1) CONVOLUTIONAL LAYERS
The aim of convolution layers is to learn weights of the so-
called2 convolutional kernels/filters that can perform con-
volution operations on images. Traditional image analysis
has a long history of using such filters to highlight/extract
different image features, e.g. Sobel filter for detecting edges
in images [33]. However, before CNNs, these filters needed
to be designed by manually setting the weights of the kernel
in a careful manner. The breakthrough that CNNs provided
is in the automatic learning of these weights under the neural
network settings.

We illustrate the convolution operation in Fig. 3. In 2D
settings (e.g. grey-scale images), this operation involvesmov-
ing a small window (i.e. kernel) over a 2D grid (i.e. image).

2Strictly speaking, the kernels in CNNs compute cross-correlations. How-
ever, they are always referred to as ‘convolutional’ by convention. Our
subsequent explanation of the ‘convolution’ operation is in-line with the
definition of this operation used in the context of CNNs.

FIGURE 3. Illustration of convolution operation for 2D-grids (left) and
3D-volumes (right). Complete steps of moving window are shown for the
2D case whereas only step-1 is shown for 3D. In 3D, the convolved
channels are combined by simple addition, still resulting in 2D feature
maps.

In each moving step, the corresponding elements of the two
grids get multiplied and summed up to compute a scalar
value. Concluding the operation results in another 2D-grid,
referred to as the feature/activation map in the CNN liter-
ature. In 3D settings, the same steps are performed for the
individual pairs of the corresponding channels of the 3D
volumes, and the resulting feature maps are simply added to
compute a 2D map as the final output. Since color images
have multiple channels, convolutions in 3D settings are more
relevant for themodern CNNs. However, for the sake of better
understanding, we often discuss the relevant concepts using
the 2D grids. These concept are readily transferable to the 3D
volumes.

A convolutional layer of CNN forces the elements of ker-
nels to become the networkweights, see Fig. 4 for illustration.
In the figure, we can directly compute the activation a1 (2D
grids) using Eq. (1), where x,w ∈ R9 are vectors formed
by arranging w1, ..,w9 and x1, . . . , x9 in the figure. The
figure does not show the bias term, which is generally ignored
in the convolutional layers. It is easy to see that under this
setting, we can make use of the same tools to learn the con-
volutional kernel weights that we use to learn the weights of a
standard ANN. The same concept applies to the 3D volumes,
with a difference that we must use ‘multiple’ kernels to get
a volume (instead of a 2D grid) at the output. Each feature
map resulting from a kernel then acts as a separate channel
of the output volume of a convolutional layer. It is a common
practice in CNN literature to simplify the illustrations in 3D
settings by only showing the input and output volumes for
different layers, as we do in Fig. 4.

From the perspective presented above, a convolutional
layer may look very similar to a standard perceptron layer,
discussed in Section II-A. However, there are two major
differences between the two. (1) Every input feature gets
connected to its activation signal through the same kernel
(i.e. weights). This implies that all input features share the
kernel weights - called parameter sharing. Consequently,
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FIGURE 4. Working of a convolutional layer. CNNs force kernel weights to
become network parameters. (Left) In 2D grids, a single kernel moves
over the image/input signal. (Right) A volume of multiple kernel moves
over the input volume to result in an output volumes.

the kernels try to adjust their weights such that they resonate
well to the basic building patterns of the whole input signal,
e.g. edges for an image. (2) Since the same kernel connects
all input features to output features/activation, convolutional
layers have very few parameters to learn in the form of kernel
weights. This sparsity of connections allows very efficient
learning despite the high dimensionality of data - a feat not
possible with standard densely connected perceptron layers.

2) POOLING LAYERS
The main objective of a pooling layer is to reduce the width
and height of the activation maps in CNNs. The basic concept
is to compute a single output value ‘v’ for a small np × np
grid in the activation map, where ‘v’ is simply the maximum
or average value of that grid in the activation map. Based
on the used operation, this layer is often referred as max-
pooling or average-pooling layer. Interestingly, there are no
learnable parameters associated with a pooling layer. Hence,
this layer is sometimes seen as a part of Convolutional layer.
For instance, the popular VGG-16 network [34] does not see
pooling layer as a separate layer, hence the name VGG-16.
On the other hand, other works, e.g. [35] that use VGG-
16 often count more than 16 layers in this network by treating
the pooling layer as a regular network layer.

3) FULLY CONNECTED LAYERS
These layers are the same as the perceptron layers encoun-
tered in the standard ANNs. The use of multiple Convolu-
tional and Pooling layers in CNNs gradually reduces the size
of resulting activationmaps. Finally, the activationmaps from
a deeper layer are re-arranged into a vector which is then
fed to the fully connected (fc) layers. It is a common knowl-
edge now that the activation vectors of fc-layers often serve
as very good compact representations of the input signals
(e.g. images).

Other than the above mentioned three layers, Batch Nor-
malization (BN) [36] is another layer that is now a days
encountered more often in CNNs than in the standard ANNs.
The main objective of this layer (with learnable parameters)

FIGURE 5. Illustration of unfolded RNN [1]. A state s is shown with a
single neuron for simplicity. At the t th time stamp, the network updates
its state st based on the input xt and the previous state. It optionally
outputs a signal ot . U , V and W are network parameters.

is to control the mean and variance of the activation values of
different network layers such that the induction of the overall
model becomes more efficient. This idea is inspired by a long
known fact that induction of ANNmodels generally becomes
easier if the inputs are normalized to have zero mean and unit
variance. The BN layer essentially applies a similar principle
to the activations of deep neural networks.

C. RECURRENT NEURAL NETWORKS
Standard neural networks assume that input signals are inde-
pendent of each other. However, often this is not the case. For
instance, a word appearing in a sentence generally depends
on sequence of the words preceding it. Recurrent Neural
Networks (RNNs) are designed to model such sequences. An
RNN can be thought to maintain a ‘memory’ of the sequence
with the help of its internal states. In Fig. 5, we show a
typical RNN that is unfolded - complete network is shown
for the sequence. If the RNN has three layers, it can model
e.g. sentences that are three words long. In the figure, xt is
the input at the t th time stamp. For instance, xt can be some
quantitative representation of the t th word in a sentence. The
memory of the network is maintained by the state st that is
computed as:

st = f (Uxt +Wst−1), (5)

where f (.) is typically a non-linear activation function,
e.g. ReLU. The output at a given time stamp ot is a function of
aweighted version the network state at that time. For instance,
predicting probability of the next word in a sentence can
assume the output form ot = softmax(Vst ), where ‘softmax’
is the same operation discussed in Section II-A.

One aspect to notice in the above equations is that we use
the same weight matrices U,V ,W at all time stamps. Thus,
we are recursively performing the same operations over an
input sequence at multiple time stamps. This fact also inspires
the name ‘Recursive’ NN. It also has a significant implication
that for an RNN we need a special kind of back-propagation
algorithm, known as back-propagation through time (BTT).
As compared to the regular back-propagation, BTT must
propagate error recursively back to the previous time
stamps. This becomes problematic for long sequences that
involve too many time stamps. A phenomenon known as
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vanishing/exploding gradient is the root cause of this prob-
lem. This has lead RNN researcher to focus on designing
networks that can handle longer sequences. Long Short-Term
Memory (LSTM) network [37] is currently a popular type of
RNN that is found be reasonably effective for dealing with
long sequences.

LSTM networks have the same fundamental architecture
of an RNN, however their hidden states are computed differ-
ently. The hidden units are commonly known as cells in the
context of LSTMs. Informally, a cell takes in the previous
state and the input at a given time stamp and decides on what
to remember andwhat to erase from its memory. The previous
state, current input and the memory is then combined for the
next time stamp.

D. USING NEURAL NETWORKS FOR
UNSUPERVISED LEARNING
Whereas we assumed availability of the label for each data
sample while discussing the basic concepts of neural net-
works in the preceding subsections, those concepts can also
be applied readily to construct neural networks to model
data without labels. Here, we briefly discuss the mainstream
frameworks that allow to do so. It is noteworthy that this
article does not present neural networks as ‘supervised vs
unsupervised’ intentionally. This is because the core concepts
of neural networks are generally better understood in super-
vised settings. Unsupervised use of neural networks simply
requires to employ the same ideas under different overall
frameworks.

1) AUTOENCODERS
The main idea behind autoencoders is to map an input signal
(e.g. image, feature vector) to itself using a neural network.
In this process, we aim to learn a latent representation of
the data that is more powerful for a particular task than
the raw data itself. For instance, the learned representation
could cluster better than the original data. Theoretically, it is
possible to use any kind of network layers in autoencoders
that are used for supervised neural networks. The uniqueness
of autoencoders comes in the output layer where the signal is
the same as the input signal to the network instead of e.g. a
label vector in classification task.

Mapping a signal to itself can result in trivial models
(learning identity mapping). Several techniques have been
adopted in the literature to preclude this possibility, lead-
ing to different kinds of autoencoders. For instance, under-
complete autoencoders ensure that the dimensionality of the
latent representation is much smaller than the data dimension.
In MLP settings, this can be done by using a small number
(as compared to the input signal’s dimension) of neurons in
a hidden layer of the network, and use the activations of that
layer as the latent representation. Regularized autoencoders
also impose sparsity on neuron connections [38] and recon-
struction of the original signal from its noisy version [39] to
ensure learning of useful latent representation instead of iden-
tity mapping. Variational autoencoders [40] and contractive

autoencoders [41] are also among the other popular types of
autoencoders.

2) GENERATIVE ADVERSARIAL NETWORKS
Recent years have seen an extensive use of Generative
Adversarial Networks (GANs) [42] in natural image analysis.
GANs can be considered a variation of autoencoders that
aim at mimicking the distribution generating the data. GANs
are composed of two parts that are neural networks. The
first part, termed generator, has the ability to generate a
sample whereas the other, called discriminator can classify
the sample as a real or fake. Here, a ‘real’ sample means
that it is actually coming from the training data. The two
networks essentially play a game where the generator tries
to fool the discriminator by generating more and more real-
istic samples. In the process the generator keeps updating its
parameters to produce better samples. The adversarial objec-
tive of the generator to fool the discriminator also inspires
the name of GANs. In natural image analysis, GANs have
been successfully applied for many tasks, e.g. inducing real-
ism in synthetic images [43], domain adaption [44] and data
completion [45]. Such successful applications of GANs to
image processing tasks also open new directions for medical
image analysis tasks. In their recent surveys of the application
of GANs in Medical Imaging domain, Yi et al. [46] and
Kazeminia et al. [47] provide reviews of the successful GAN
based medical image analysis techniques. For the interested
readers, Yi et al. also provide a live Github page that includes
online links to the literature reviewed by the authors.

E. BEST PRACTICES IN USING CNNS FOR
IMAGE ANALYSIS
Convolutional Neural Networks (CNNs) form the backbone
of the recent breakthroughs in image analysis. To solve dif-
ferent problems in this area, CNN based models are normally
used in three different ways. (1) A network architecture is
chosen and trained from scratch using the available training
dataset in an end-to-end manner. (2) A CNN model pre-
trained on some large-scale dataset is fine-tuned by further
training the model for a few epochs using the data available
for the problem at hands. This approach is more suitable
when limited training data is available for the problem under
consideration. It is often termed transfer learning in the
literature. (3) Use a model as a feature extractor for the
available images. In this case, training/testing images are
passed through the network and the activations of a specific
layer (or a combination of layers) are considered as image
features. Further analysis is performed using those features.

Computer Vision literature provides extensive studies to
reflect on the best practices of exploiting CNNs in any of
the aforementioned three manners. We can summarize the
crux of these practices as follows. One should only consider
training a model from scratch if the available training data
size is very large, e.g. 50K image or more. If this is not
the case, use transfer learning. If the training data is even
smaller, e.g. few hundred images, it may be better to use
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CNN only as a feature extractor. No matter which approach
is adopted, it is better that the underlying CNN is inspired
by a model that has already proven its effectiveness for a
similar task. This is especially true for the ‘training from
scratch’ approach. We refer to the most successful recent
CNN models in the Computer Vision literature in the para-
graphs to follow. For transfer learning, it is better to use a
model that is pre-trained on data/problem that is as similar
as possible to the data/problem at hands. In the case of using
CNN as a feature extractor, one should prefer a network with
more representation power. Normally, deeper networks that
are trained on very large datasets have this property. Due
to their discriminative abilities, features extracted from such
models are especially useful for classification tasks.

Starting from AlexNet in 2012 [23], many complex CNN
models have been developed in the last seven years. Whereas
still useful, AlexNet is no longer considered a state-of-the-
art network. A network still applied frequently is VGG-
16 [34] that was proposed in 2014 by the Visual Geometry
Group (VGG) of Oxford university. A later version of VGG-
16 is VGG-19 that uses 19 instead of 16 layers of the learn-
able parameters. Normally, the representation power of both
versions are considered similar. Another popular network is
GoogLeNet [48] that is also commonly known as ‘Inception’
network. This network uses a unique type of layer called
inception layer/block from which it drives its main strength.
To date, four different versions of Inception [49], [50] have
been introduced by the original authors, with each subsequent
version having slightly better representation power (under
a certain perspective) than its predecessor. ResNet [22] is
another popular network that enables deep learning with
models having more than hundred layers. It is based on
a concept known as ‘residual learning’, which is currently
highly favored by Pattern Recognition community because
it enables very deep networks. DenseNet [51] also exploits
the insights of residual learning to achieve the representation
power similar to ResNet, but with a more compact network.

Whereas the above-mentioned CNNs are mainly trained
for image classification tasks, Fully Convolutional Networks
(FCNs) [52] and U-Net [53] are among the most popular
networks for the task of image segmentation. Analyzing
the architectures and hyperparamter settings of these net-
works can often reveal useful insights for developing new
networks. In fact, some of these networks (e.g. Inception-
v4/ResNet [50]) already rely on the insights from others
(e.g. ResNet [22]). The same practice can yield popular net-
works in the future as well. We draw further on the best
practices of using CNNs for image analysis in Section VI.

F. DEEP LEARNING PROGRAMMING FRAMEWORKS
The rise of Deep Learning has been partially enabled by the
public access to programming frameworks that implement
the core techniques in this area in high-level programming
languages. Currently, many of these frameworks are being
continuously maintained by software developers and most of
the new findings are incorporated in them rapidly. Whereas

availability of appropriate Graphical Processing Unit (GPU)
is desired to fully exploit these modern frameworks, CPU
support is also provided with most of them to train and test
small models. The frameworks allow their users to directly
test different network architectures and their hyperparame-
ter settings etc. without the need of actually implementing
the operations performed by the layers and the algorithms
that train them. The layers and related algorithms come
pre-implemented in the libraries of the frameworks.

Below we list the popular Deep Learning frameworks in
use now a days.We order them based on their current popular-
ity in Computer Vision and Pattern Recognition community
for the problems of image analysis, starting from the most
popular. Note that, we provide embedded links to the URLs
of homepages for each of these frameworks. To reach those
URLs, click on the red highlighted name of the framework.
Also note that all red highlighted text in this document pro-
vides links to the relevant URLs for the convenience of its
readers.
• Tensorflow [54] is originally developed by Google
Brain, it is fast becoming the most popular deep learning
framework due to its continuous development. It pro-
vides Python and C++ interface.

• PyTorch [55] is a Python based library supported by
Facebook’s AI Research. It is currently receiving signif-
icant attention due to its ability to implement dynamic
graphs.

• Caffe2 [56] builds on Caffe (see below) and provides
C++ and Python interface.

• Keras [57] can be seen as a high level program-
ming interface that can run on top of Tensorflow and
Theano [58]. Although not as flexible as other frame-
works, Keras is particularly popular for quickly develop-
ing and testing networks using common network layers
and algorithms. It is often seen as a gateway to deep
learning for new users.

• MatConvNet [59] is the most commonly used public
deep learning library for Matlab.

• Caffe [56] was originally developed by UC Berekely,
providing C++ and Python interface.Whereas Caffe2 is
now fast replacing Caffe, this framework is still in use
because public implementations of many popular net-
works are available in Caffe.

• Theano [58] is a library of Python to implement deep
learning techniques that is developed and supported by
MILA, University of Montreal.

• Torch [60] is a library and scripting language based on
Lua. Due to its first release in 2011, many first gen-
eration deep learning models were implemented using
Torch.

The above is not an exhaustive list of the frameworks for
Deep Learning. However, it covers those frameworks that are
currently widely used in image analysis. It should be noted,
whereas we order the above list in terms of the ‘current’ trend
in popularity of the frameworks, public implementations of
many networks proposed in 2012 - 2015 are originally found
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FIGURE 6. Taxonomy of literature review: The contributions exploiting deep learning technology are first categorized according to the underlying pattern
recognition tasks. Each category is than sub-divided based on the human anatomical region studied in the papers.

in e.g. Torch, Theano or Caffe. This also makes those frame-
works equally important. However, it is often possible to find
public implementations of legacy networks in e.g. Tensor-
flow, albeit not by the original authors.

G. PRE-PROCESSING FOR DEEP LEARNING
Pre-processing of images is often considered an important
component of image analysis pipeline. Pre-processing steps
like image filtering, de-noising and dimensionality reduction
etc. have been known to play an important role in the per-
formance of conventional image analysis methods. However,
one of the major advantages of deep learning methods is
that appropriately learned deep models are able to perform
many of these steps implicitly. For instance, in the case of
CNNs, the learned feature maps are actually filtered forms of
the input, where the filters are also learned by the learning
algorithm. Since the filters used by a CNN are tailored to the
task at hands (due to learning), they are able to easily outper-
form the generic hand-crafted filters used by the conventional
pre-processing methods. Nevertheless, appropriately filtered
data still remains preferable for deep learning. Unfiltered data
can cause the induced models to learn idiosyncrasies of the
unwanted signals in the input. This can lead to sub-optimal
model performance if the same peculiarities are not present
in the testing data.

Since learning deep models is generally computationally
expensive, one may be tempted to employ input dimension-
ality reduction during the model training. Reducing the data
dimensionality with lossy methods can result in the induction
of inferior deep models. A more preferable choice for deep
learning is to simply reduce the input size, e.g. by using over-
lapping small patches of images instead of larger images. Due
to their ability to learn complex functions, deep networks are
able to learn even minute data details. Lossy dimensionality
reduction can deprive deep learning of this property.

As a general rule of thumb for the data pre-processing in
deep learning, it should be ensured that training and test-
ing data goes through the exact same pre-processing steps.
This is important because a deep model essentially learns a
mapping from an input data distribution to its outputs. Any

dissimilarity in the data-preprocessing can change the data
distribution, leading to incorrect output predictions. Another
rule for deep models is that avoiding data pre-processing gen-
erally comes at the cost of training more complex networks,
as compared to the models required for clean data.

III. DEEP LEARNING METHODS IN MEDICAL
IMAGE ANALYSIS
In this Section, we review the recent contributions in Medical
Image Analysis that exploit the Deep Learning technology.
We mainly focus on the research papers published after
December 2017, while briefly mentioning the more influen-
tial contributions from the earlier years. For a comprehensive
review of the literature earlier than the year 2018, we col-
lectively recommend the following articles [24], [28], [29].
Taking more of a Computer Vision/Machine Learning
perspective, we first categorize the existing literature under
‘Pattern Recognition’ tasks. The literature pertaining to each
task is then further sub-categorized based on the human
anatomical regions. The taxonomy of our literature review is
depicted in Fig. 6.

A. DETECTION/LOCALIZATION
The main aim of detection is to identify a particular region
of interest in an image an draw a bounding box around it,
e.g. brain tumor in MRI scans. Hence, localization is also
another term used for the detection task. In Medical Image
Analysis, detection is more commonly referred to as Com-
puter Aided Detection (CAD). CAD systems are aimed at
detecting the earliest signs of abnormality in patients. Lung
and breast cancer detection can be considered as the common
applications of CAD.

1) BRAIN
For the anatomic region of brain, Islam and Zhang et al. [61]
employed a CNN for the detection of Alzheimer’s Dis-
ease (AD) using the MRI images of OASIS data set [62].
The authors built on two baseline CNN networks, namely
Inception-v4 [50] and ResNet [22], to categorize four classes
of AD. These classes include moderate, mild, very mild
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and non-demented patients. The accuracies reported by the
authors for these classes are 33%, 62%, 75%, and 99%,
respectively. It is claimed that the proposed method does
not only perform well on the used dataset, but it also has
the potential to generalize to ADNI dataset [63]. Chen and
Konukoglu [64] proposed an unsupervised learning approach
using an Auto-Encoders (AE). The authors investigated
lesion detection using Variational Auto Encoder (VAE) [40]
and Adversarial Auto Encoder (AAE) [65]. The analysis is
carried out on BRATS 2015 datasets, demonstrating good
results for the Aera Under Curve (AUC) metric.

Alaverdyan et al. [66] used a deep neural network for
epilepsy lesion detection in multiparametric MRI images.
They also stacked convolution layers in an auto-encoders
fashion and trained their network using the patches of the
original images. Their model was trained using the data from
75 healthy subjects in an unsupervised manner. For the auto-
mated brain tumor detection in MR images Pandaet al. [67]
used discriminative clustering method to segregate the vital
regions of brain such as Cerebro Spinal Fluid (CSF), White
Matter (WM) and Gray Matter (GM). In another study of
automatic detection in MR images [68], Laukampet al. used
multi-parametric deep learning model for the detection of
meningiomas in brain.

2) BREAST
In assessing cancer spread, histopathological analysis of Sen-
tinel Lymph Nodes (SLNs) becomes important for the task of
cancer staging. Bejnordi et al. [69] analyzed deep learning
techniques for metastases detection in eosin-stained tissues
and hematoxylin tissue sections of lymph nodes of the sub-
jects with cancer. The computational results are compared
with human pathologist diagnoses. Interestingly, out of the
32 techniques analyzed, the top 5 deep learning algorithms
arguably out-performed eleven pathologists.

Chiang et al. [70] developed a CAD technique based on
a 3D CNN for breast cancer detection using Automated
whole Breast Ultrasound (ABUS) imaging modality. In their
approach, they first extracted Volumes of Interest (VOIs)
through a sliding window technique, then the 3D CNN was
applied and tumor candidates were selected based on the
probability resulting from the application of 3D CNN to
VOIs. In the experiments 171 tumors are used for testing,
achieving sensitivities of up to 95%. Dalmış et al. [71] pro-
posed a CNN based CAD system to detect breast cancer
in MRI images. They used 365 MRI scans for training
and testing, out of which 161 were malignant lesions. They
claimed the achieved sensitivity obtained by their technique
to be better than the existing CAD systems. For the detection
of breast mass in mammography images, Zhang et al. [72]
developed a Fully Convolutional Network (FCN) based end-
to-end heatmap regression technique. They demonstrated that
mammography data could be used for digital breast tomosyn-
thesis (DBT) to improve the detection model. They used
transfer learning by fine-tuning an FCN model on mam-
mography images. The approach is tested on tomosynthesis

data with 40 subjects, demonstrating better performance as
compared to the model trained from scratch on the same data.

3) EYE
For the anatomical region of eye, Li et al. [73] recently
employed a deep transfer learning approach which fine tunes
the VGG-16 model [34] that is pre-trained on ImageNet [74]
dataset. To detect and classify Age-related Macular Degen-
eration (AMD) and Diabetic Macular Edema (DME) dis-
eases in eye, they used 207,130 retinal Optical Coherence
Tomography (OCT) images. The proposed method achieved
98.6% prediction detection accuracy in retinal images with
100%. Abràmoff et al. [75] used a CNN based technique to
detect Diabetic Retinopathy (DR) in fundus images. They
assessed the device IDx-DR X 2.1 in their study using
a public dataset [76] and achieve an AUC score of 0.98.
Schlegl et al. [77] employed deep learning for the detection
and quantification of Intraretinal Cystoid Fluid (IRC) and
Subretinal Fluid (SRF) in retinal images. They employed
an auto encoder-decoder formation of CNNs, and used
1,200 OCT retinal images for the experiments, achieving
AUC of 0.92 for SRF and AUC of 0.94 for IRC.

Deep learning is also being increasingly used for diag-
nosing retinal diseases [78], [79]. Li et al. [80] trained a
deep learning model based on the Inception architecture [48]
for the identification of Glaucomatous Optic Neuropa-
thy (GON) in retinal images. Their model achieved AUC of
0.986 for distinguishing healthy from GON eyes. Recently,
Christopher et al. [81] also used transfer learning with
VGG16, Inception v3, and ResNet50 models for the iden-
tification of GON. They used pre-trained models of Ima-
geNet. For their experiments, they used 14,822 Optic Nerve
Head (ONH) fundus images of GON or healthy eyes.
The achieved best performance for identifying moderate-
to-severe GON in the eyes was reported to be AUC
value 0.97 with 90% sensitivity and 93% specificity.
Khojasteh et al. [82] used pre-trained ResNet-50 on
DIARETDB1 [83] and e-Ophtha [84] datasets for the detec-
tion of exudates in the retinal images. They reported an
accuracy of 98%with 99% sensitivity of detection on the used
data.

4) CHEST
For the pulmonary nodule detection in lungs in Computed
Tomography (CT) images, Zhu et al. [85] proposed a deep
network called DeepEM. This network uses a 3D CNN archi-
tecture that is augmented with an Expectation-Maximization
(EM) technique for the noisily labeled data of Electronic
Medical Records (EMRs). They used the EM technique to
train their model in an end-to-end manner. Three datasets
were used in their study, including; the LUNA16 dataset [86]
- the largest publicly available dataset for supervised nodule
detection, NCI NLST dataset3 for weakly supervised detec-
tion and Tianchi Lung Nodule Detection dataset.

3https://biometry.nci.nih.gov/cdas/datasets/nlst/
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For the detection of artifacts in Cardiac Magnetic Res-
onance (CMR) imaging, Oksuz et al. [87] also proposed a
CNN based technique. Before training the model, they per-
formed image pre-processing by normalization and region of
interest (ROI) extraction. The authors used a CNN architec-
ture with 6-convolutional layers (ReLU activations) followed
by 4-pooling layers, 2 fc layers and a softmax layer to esti-
mate the motion artifact labels. They showed good perfor-
mance for the classification of motion artifacts in videos. The
authors essentially built on the insights of [88] in which video
classification is done using a spatio-temporal 3D CNN.

Li et al. [89] proposed a technique for the localization
and identification of thoraic diseases in public database NIH
X-ray4 that comprises 120 frontal view X-ray images with
14 labels. Their model performs the tasks of localization
and identification simultaneously. They used the popular
ResNet [22] architecture to build the computational model.
In their model, an input image is passed through the CNN
for feature map extraction, then a max pooling or bi-linear
interpolation layer is used for resizing the input image by
a patch slicing layer. Afterwards, fully convolutional layers
are used to eventually perform the recognition. For training,
the authors exploit the framework of Multi-Instance Learning
(MIL), and in the testing phase, the model predicts both labels
and class specific localization details. Yi et al. [90] presented
a scale recurrent network for the detection of catheter in X-ray
images. Their network architecture is organized in an auto
encoder-decoder manner. In another study [91],Masood et al.
proposed a deep network, termed DFCNet, for the automatic
computer aided lung pulmonary detection.

González et al. [92] proposed a deep network for the detec-
tion of Chronic Obstructive Pulmonary Disease (COPD) and
Acute Respiratory Disease (ARD) prediction in CT images
of smokers. They trained a CNN using 7,983 COPDGene
cases and used logistic regression for COPD detection and
ARD prediction. In another study [93], the same group of
researchers used deep learning for weakly supervised lesion
localization. Recently, Winkels and Cohen [94] used NLST
and LDIC/IDRI [95] datasets for lung nodule detection in
CT images. They proposed a 3D Group-equivariant Convolu-
tional Neural Network (G-CNN) technique for that purpose.
The proposed method was exploited for fast positive reduc-
tion in pulmonary lung nodule detection. The authors claim
their method performs on-par with standard CNNs while
trained using ten times less data.

5) ABDOMEN
Alensary et al. [96] proposed a deep reinforcement learn-
ing technique for the detection of multiple landmarks with
ROIs in 3D fetal head scans. Ferlaino et al. [97] worked on
plancental histology using deep learning. They classified five
different classes with an accuracy of 89%. Their model also
learns deep embedding encoding phenotypic knowledge that
classifies five different cell populations and learns inter-class

4https://www.kaggle.com/nih-chest-xrays/data

variances of phenotype. Ghesu et al. [98] used a large data
of 1,487 3D CT scans for the detection of anatomic sites,
exploiting multi-scale deep reinforcement learning.

Katzmann et al. [110] proposed a deep learning based
technique for the estimation of Colorectal Cancer (CRC)
in CT tumor images for early treatment. Their model
achieved high accuracies in growth and survival prediction.
Meng et al. [111] formulated an automatic shadow detection
technique in 2D ultrasound images using weakly supervised
annotations. Their method highlights the shadow regions
which is particularly useful for the segmentation task.
Horie et al. [112] recently applied a CNN technique
for easophagal cancer detection. They used 8,428 WGD
images and attained 98% results for the sensitivity.
Yasaka et al. [113] used a deep CNN architecture for the diag-
nosis of three different phases (noncontrast-agent enhanced,
arterial, and delayed) of masses of liver in dynamic CT
images.

6) MISCELLANEOUS
Zhang et al. [114] achieved 98.51% accuracy and a localiza-
tion error 2.45mm for the detection of inner ear in CT images.
They used 3D U-Net [115] to map the whole 3D image
which consists of multiple convolution-pooling layers that
convert the raw input image into the low resolution and highly
abstracted feature maps. They applied false positive suppres-
sion technique in the training process and used a shape based
constraint during training. Rajpurkar et al. [116] recently
released a data set MURA which consists of 40,561 images
from 14,863 musculoskeletal studies labeled by radiologists
as either normal or abnormal. The authors used CNN with
169-layers for the detection of normality and abnormality
in each image study. Li and Ping [117] proposed a Neural
Conditional Random Field (NCRF) technique for the metas-
tasis cancer detection in whole slide images. Their model was
trained end-to-end using back-propagation and it obtained
successful FROC score of 0.8096 in testing using Came-
lyon16 dataset [118]. Codella et al. [119] recently organized
a challenge at the International Symposium on Biomedical
Imaging (ISBI), 2017 for skin lesion analysis for melanoma
detection. The challenge task provided 2,000 training images,
150 validation images, and 600 images for testing. It eventu-
ally published the results of 46 submission. We refer to [119]
for further details on the challenge itself and the submissions.
We also mention few techniques in Table 2 related to the
task of detection/localization. These methods appeared in the
literature in the years 2016-17. Based on Google Scholar’s
citation index, these methods are among the highly influential
techniques in the current related literature. This article also
provides similar summaries of the highly influential papers
from the years 2016-17 for each pattern recognition task
considered in the Sections to follow.

B. SEGMENTATION
In Medical Image Analysis, deep learning is being
extensively used for image segmentation with different
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TABLE 2. Summary of highly influential papers appeared in 2016 and 2017 (based on Google Scholar citation index in January 2019) that exploit deep
learning for detection/localization in medical image analysis.

modalities, including Computed Tomography (CT), X-ray,
Positron-Emission Tomography (PET), Ultrasound, Mag-
netic Resonance Imaging (MRI) and Optical Coherence
Tomography (OCT) etc. Segmentation is the process of
partitioning an image into different meaningful segments
(that share similar characteristics) through automatic or
semi-automatic outlining of the boundaries within the image.
In medical imaging, these segments usually commensurate
to different tissue classes, pathologies, organs or some other
biological structure [120].

Before the popularity of deep learning, many conven-
tional techniques were commonly used for the segmen-
tation task in Medical Image Analysis, including region
growing [121], [122], graph partitioning [123], [124] and
genetic algorithms [125]. However, modern deep learning
techniques are able to consistently outperform the conven-
tional techniques. The main strength of deep learning based
segmentation methods comes from the fact that deep net-
works are able to learn very complex functions required for
the task. Moreover, application of the learned computational
models needs minimal human intervention and heuristics that
are commonly required by the other segmentation techniques.
This makes deep learning particularly suitable for medical
image segmentation.

In Fig. 7, we show a typical process of segmentation using a
deep learning model. The models used for segmentation first
compress the input image dimensions with the help of a stack
of convolutional and pooling layers. This is done to learn
a compact latent space where the regions to be segmented
enter a more discriminative representation. The latter half
of the networks expands the feature maps to the original
image dimensions, and provides the segmentation labels for
the region of interest.

1) BRAIN
Related to the anatomical region of brain, Dey and
Hong [126] trained a complementary segmentation network,
termed CompNet, for skull stripping in MRI scans for normal
and pathological brain images. The OASIS dataset [127] was
used for the training purpose. In their approach, the features
used for segmentation are learned using an encoder-decoder

FIGURE 7. Typical process of segmentation with deep learning:
A convolutional neural network (CNN) based model is learned that first
compresses the source image with a stack of different convolution,
activation and pooling layers. The compressed latent representation is
expanded by the inverse operations. The network is kept end-to-end
trainable. At the test time, a forward pass provides the segmentation
labels.

network trained from the images of brain tissues and its com-
plimentary part outside the brain. The approach is compared
with a plain U-Net and a dense U-Net [128]. The accuracy
achieved by the CompNet for the normal images is 98.27%,
and for the pathological images is 97.62%. These results are
better than those achieved by [128].

Zhao et al. [129] proposed a deep learning technique for
brain tumor segmentation by integrating Fully Convolutional
Networks (FCNs) and Conditional Random Fields (CRFs) in
a combined framework to achieve segmentation with appear-
ance and spatial consistency. They trained 3 segmentation
models using 2D image patches and slices. First, the training
is performed for the FCN using image patches, then CRF is
trained with a Recurrent Neural Network (CRF-RNN) using
image slices. During this phase, the parameters of the FCN
are fixed. Afterwards, FCN and CRF-RNN parameters are
jointly fined tuned using the image slice. The authors used the
MRI image data provided byMultimodal Brain Tumor Image
Segmentation Challenge (BRATS) 2013, BRATS 2015 and
BRATS 2016. In their work, Nair et al. [130] used a 3D
CNNapproach for the segmentation and detection ofMultiple
Sclerosis (MS) lesions in MRI sequences. Roy et al. [131]
used voxel-wise Baysian FCN for the whole brain seg-
mentation by using Monte Carlo sampling. They demon-
strated high accuracies on four datasets, namely MALC,
ADNI-29, CANDI-13, and IBSR-18. Robinson et al. [132]
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also proposed a real-time deep learning approach for the
cadaver MR segmentation.

2) BREAST
In their study, Singh et al. [133] described a conditional
Generative Adversarial Networks (cGAN) model for breast
mass segmentation in mammography. Experiments were
conducted on Digital Database for Screening Mammogra-
phy (DDSM) public dataset and private dataset of mammo-
grams from Hospital Universitari Sant Joan de Reus-Spai.
They additionally used a simpler CNN to classify the seg-
mented tumor area into different shapes (irregular, lobular,
oval and round) and achieved an accuracy of 72% on DDSM
dataset. Zhang et al. [134] exploited deep learning for
image intensity normalization in breast segmentation task.
They used 460 subjects from Dynamic Contrast-enhanced
Magnetic Resonance Imaging (DCEMRI). Each subject con-
tained one T1 weighted pre-contrast and three T1 weighted
post-contrast images. Men et al. [135] trained a deep dilated
ResNet for segmentation of Clinical Target Volume (CTV) in
breasts. Lee and Nishikawa [136] based on fully convolution
neural network proposed an automated segmentation tech-
nique for the breast density estimation in mammograms. For
the evaluation of their approach, they used full-field digital
screening mammograms of 604 subjects. They fine tuned
the pre-trained network for breast density segmentation and
estimation. The Percent Density (PD) estimation by their
approach showed similarities with BI-RADS density assess-
ment by radiologists and outperformed the then state-of-the-
art computational approaches.

3) EYE
Retinal blood image segmentation is considered an impor-
tant and a challenging task in retinopathology. Zhang and
Chung [137] used a deep neural network for this pur-
pose by exploiting the U-Net architecture [53] with resid-
ual connection. They shown their results on three public
datasets STARE [138], CHASEDB1 [139] and DRIVE [140]
and achieved an AUC value of 97.99% for the DRIVE
dataset. De Fauw et al. [141] applied deep learning for
the retinal tissue segmentation. They used 14,884 three
dimensional OCT images for training their network.
Their approach is claimed to be device independent -
it maintains segmentation accuracy while using different
device data. In another study of retinal blood vessels,
Jebaseeli et al. [142] proposed a method to enhance the
quality of retinal vessel segmentation. They analyzed the
severity level of diabetic retinopathy. Their proposed method,
Deep Learning Based SVM (DLBSVM) model uses DRIVE,
STARE, REVIEW, HRF, and DRIONS databases for train-
ing. Liu et al. [143] proposed a semi-supervised learning
for retinal layer and fluid region segmentation in retinal
OCT B-scans. Adversarial technique was exploited for the
unlabeled data. Their technique resembles the U-Net fully
convolutional architecture.

4) CHEST
Duan et al. [144] proposed a Deep Nested Level Set (DNLS)
technique for the multi-region segmentation of cardiac MR
images in patients with Pulmonary Hypertension (PH). They
compared their approach with a CNN method [145] and the
conditional random field (CRF) CRF-CNN approach [146].
DNLS is shown to outperform those techniques for all
anatomical structures, specifically for myocardium. How-
ever, it requires more computations than [145] which is the
fastest method among the tested approaches. Bai et al. [147]
used FCN and RNN for the pixel-wise segmentation of Aor-
tic sequences in MR images. They trained their model in
an end-to-end manner from sparse annotations by using a
weighted loss function. The proposed method consists of
two parts, the first extracts features from the FCN using a
U-Net architecture [53]. The second feeds these features to
an RNN for segmentation. Among the used 500 Arotic MR
images (provided by the UKBiobank), the study used random
400 images for training, and the rest were used for testing the
models. Another recent study on semi supervised myocardiac
segmentation has been conducted by Chartsias et al. [148],
which was presented as an oral paper in MICCAI 2018. Their
proposed network, called Spatial Decomposition Network
(SDNet), model 2D input images in two representations,
namely spatial representation of myocardiac as a binary mask
and a latent representation of the remaining features in a vec-
tor form. While not being a fully supervised techniques, their
method still achieves remarkable results for the segmentation
task.

Kervadec et al. [149] proposed a CNN based ENet [150]
constrained loss function for segmentation of weakly super-
vised Cardiac images. They achieved 90% accuracy on the
public datasets of 2017 ACDC challenge5. Their approach is
closes the gap between weakly and fully supervised segmen-
tation in semantic medical imaging. In another study of cariac
CT and MRI images for multi-class image segmentation,
Joyce et al. [151] proposed an adversarial approach consist-
ing of a shallow UNet like method. They also demonstrated
improved segmentation with an unsupervised cost.

LanLonde and Bagci [152] introduced a CNN based
technique, termed SegCaps, by exploiting the capsule
networks [153] for object segmentation. The authors
exploited the LUNA16 subset of the LIDC-IDRI database and
demonstrated the effectiveness of their method for analyzing
CT lung scans. It is shown that the method achieves better
segmentation performance as compared to the popular U-
Net. The SegCaps are able to handle large images with size
512×512. In another study [154] of lung cancer segmentation
using the LUNA16 dataset, Nam et al. proposed a CNN
model using 24 convolution layers, 2 pooling, 2 decon-
volutional layers and one fully connected layer. Similarly,
Burlutskiy et al. [155] developed a deep learning framework
for lung cancer segmentation. They trained their model
using the scans of 712 patients and tested on the scans

5https://www.creatis.insa-lyon.fr/Challenge/acdc/
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of 178 patients of fully annotated Tissue Micro-Arrays
(TMAs). Their model is aimed at finding high potential
cancer areas in TMA cores.

5) ABDOMEN
Roth et al. [156] built a 3D FCN model for automatic seman-
tic segmentation of 3D images. The model is trained on
clinical Computed Tomography (CT) data, and it is shown to
perform automated multi-organ segmentation of abdominal
CT with 90% average Dice score across all targeted organs.
A CNNmethod, termed Kid-Net, is proposed for kidney ves-
sels; artery, vein and collecting system (ureter) segmentation
by Taha et al. [157]. Their model is trained in an end-to-end
fashion using 3D CT-volume patches. One promising claim
made by the authors is that their method reduces kidney ves-
sels segmentation time from hours tominutes. Their approach
uses feature down-sampling and up-sampling to achieve
higher classification and localization accuracies. Their net-
work trainingmethodology also handles unbalanced data, and
focuses on reducing false positives. It is also claimed that the
proposed method enables high-resolution segmentation with
a limited memory budget. The authors exploit the findings
in [158] for that purpose.

Oktay et al. [159] recently presented an ‘attention gate’
model to automatically find the target anatomy of different
shapes and sizes. They essentially extended the U-Net model
to an attention U-Net model for pancreas segmentation. Their
model can be utilized for organ localization and detection
tasks. They used 120 images of CT for training their model,
and 30 images for testing. Overall, the algorithm achieves
good performance with 2 to 3% increase in dice score as
compared to the existing methods. A related research on
pancreas segmentation had been conducted previously using
dense connection by Gibson et al. [160] and sparse con-
volutions by Heinrich et al. [161]–[163]. For multi-organ
segmentation (i.e lung, heart, liver, bone) in unlabeled X-ray
images, Zhang et al. [164] proposed a TaskDrivenGenerative
Adversarial Network (TD-GAN) automated technique. This
is an unsupervised end-to-end method for medical image
segmentation. They fine tuned a dense image-to-image net-
work (DI2I) [51], [165] on synthetic Digitally Reconstructed
Radiographs (DRRs) and X-ray images. In another study of
multi organ segmentation, Tong et al. [166] proposed an FCN
with a shape representation model. Their experiments were
carried out on H&N datasets of volumetric CT scans.

Yang et al. [167] used a conditional GenerativeAdversarial
Network (cGAN) to segment the human liver in 3D CT
images. Lessmann et al. [168] proposed an FCN based tech-
nique for the automatic vetebra segmentation in CT images.
The underlying architecture of their network is inspired by U-
Net. Their model is able to process a patch size of 128×128×
128 voxels. It achieves 95.8% accuracy for classification and
92.1% for segmentation in the spinal images used by the
authors. Jin et al. [169] proposed a 3D CGAN to learn lung
nodules conditioned on a Volume Of Interest (VOI) with an
erased central region in 3D CT images. They trained their

model on 1,000 nodules taken from LIDC dataset. The pro-
posed CGAN was further used to generate a dataset for Pro-
gressive Holistically Nested Network (P-HNN) model [170]
which demonstrates improved segmentation performance.

6) MISCELLANEOUS
For memory and computational efficiency, Xu et al. [171]
applied a quantization mechanism to FCNs for the segmenta-
tion tasks in Medical Image Analysis. They also used quanti-
zation tomitigate the over fitting issue for better performance.
The effectiveness of the developed method is demonstrated
for 2015 MICCAI Gland Challenge dataset [172]. As com-
pared to [173] their method improves the results by up to
1% with 6.4× reduction in the memory usage. Recently,
Zhao et al. [129] proposed a deep learning technique for
3D image instance segmentation. Their model is trainable
with weak annotations that needs 3D bounding boxes for all
instances and full voxel annotations for only a small fractions
of instances. Liu and Jiang [174] employed a novel deep
reinforcement learning approach for the segmentation and
classification of surgical gesture. Their approach performs
well on JIGSAW dataset in terms of edit score as compared
to previous similar works. Al Arif et al. [175] presented
a deep FCN model called SPNet, as shape predictor for
object segmentation. The X-ray images used in their study
are of cervical vertebra. The dataset used in their experiments
included 124 training and 172 test images. Their SPNet was
trained for 30 epochs with a batch size of 50 images.

Sarker et al. [184] analyzed skin lesion segmentation
with deep learning. They used autoencoder and decoder
networks for feature extraction. The loss function is min-
imized in their work by combining negative Log Likeli-
hood and end-point-error for the segmentation of melanoma
regions with sharp edges. They evaluated their method
SLSDeep on ISBI datasets [119], [185] for skin lesion
detection, achieving encouraging segmentation results. In
another related study of skin cancer, Mirikharaji and
Hamarneh [186] also developed a deep FCN for skin
lesion segmentation. They presented good results on ISBI
2017 dataset of dermoscopy images. They used two fully
convolutional networks based on U-Net [53] and ResNet-
DUC [22] in their technique. Yuan [187] proposed a deep
fully convolutional-deconvolutional neural network (CDNN)
for the automatic skin lesion segmentation, and acquired
Jaccard index of 0.784 on the validation set of ISBI.
Ambellan et al. [188] proposed a CNN based on 3D Sta-
tistical Shape Models (SSMs) for the segmentation of knee
and cartilage in MRI images. In Table 3, we also summarize
few popular methods in medical image segmentation that
appeared prior to the year 2018.

C. REGISTRATION
Image registration is a common task in medical image anal-
ysis that allows spatial alignment of images to a com-
mon anatomical space [189]. It aims at aligning a source
image with a target image through transformations. Image
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TABLE 3. Summary of influential papers appeared in 2016 and 2017 (based on Google Scholar citation index in January 2019) that exploit deep learning
for the segmentation tasks in medical image analysis.

FIGURE 8. Common registration pipeline for using convolutional neural
networks to quantify image similarity in intensity based image
registration.

registration is one of the main stream tasks in medical image
analysis that has received ample attention even before the
deep learning era [190]–[196]. Advent of deep learning has
also caused neural networks to penetrate in medical image
registration [197]–[200].

In Fig. 8, we illustrate a generic framework that inserts a
similarity metric into the intensity-based registration along
with an interpolation strategy, transformation model, and an
optimizer. Normally, a Convolutional Neural Network (CNN)
is used for image representation that is fed with both the
fixed and moving images in the context of image registration.
During training, the network weights are updated with the
ground truth annotations by back-projecting the loss com-
puted by the optimizer. At the test time, the CNN output is
processed further to compute the transformation parameters
for the registration.

1) BRAIN
Deep learning based deformable image registration has also
been recently performed by Sheikh et al. [201]. They used
deep FCN to generate spatial transformations through under
feed forward networks. In their experiments, they used car-
diac MRI images from ACDC 2017 dataset and showed
promising results in comparison to a moving mesh registra-
tion technique. Hou et al. [202] also proposed a learning
based image registration technique using CNNs. They used
2D image slice transformation to construct 3D images using
a canonical co-ordinate system. First, they simulated their
approach on fetal MRI images and then used real fetal brain
MRI images for the experiments. Their work is also claimed
to be promising for computational efficiency. In another study

of image based registration [203], the same group of authors
evaluated their technique on CT and MRI datasets for differ-
ent loss functions using SE(3) as a benchmark. They trained
CNN directly on SE(3) and proposed a Riemannian manifold
based formulation for pose estimation problem. The registra-
tion accuracy with their approach increased from 2D to 3D
image based registration as compared to previous methods.
The authors further showed in [204] that CNN can reliably
reconstruct 3D images using 2D image slices.

Recently, Balakrishnan et al. [205] worked on 3D pairwise
MR brain image registration. They proposed an unsupervised
learning technique named VoxelMorph CNN. They used a
pair of two 3D images as input, with dimensions 160 ×
192 × 224; and learned shared parameters in their network
for convolution layers. They demonstrated their method on
8 publicly available datasets of brainMRI images. OnABIDE
dataset their model achieved 1.5% improvement in the dice
score. It is claimed that their method is also computationally
more efficient than the exiting techniques for this problem.

2) EYE
Costa et al. [206] used adversarial autoencoders for the syn-
thesis of retinal colored images. They trained a generative
model to generate synthetic images and another model to
classify its output into a real or synthetic. The model results
in an end-to-end retinal image synthesis system and generates
as many images as required by its users. It is demonstrated
that the image space learned by the model has an arguably
well defined semantic structure. The synthesized imageswere
shown to be visually and quantitatively different from the
images used for training their model. The shown images
reflect good visual quality. Mahapatra et al. [207] proposed
an end-to-end deep learning method using generative adver-
sarial networks for multimodal image registration. They used
retinal and cardiac images for registration. Tang et al. [208]
demonstrated a robust image registration approach based on
mixture feature and structure preservation (MFSP) non rigid
point matching method. In their method they first extracted
feature points by speed up robust feature (SURF) detector
and partial intensity invariant feature descriptor (PIIFD) from
model and target retinal image. Then they used MFSP for
feature map detection.
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Pan et al. [209] developed a deep learning technique
to remove eye position difference for longitudinal 3D
retinal OCT images. In their method, they first perform
pre-processing for projection image then, to detect ves-
sel shadows, they apply enhancement filters. The SURF
algorithm [210] is then used to extract the feature points,
whereas RANSAC [211] is applied for cleaning the outliers.
Mahapatra [212] also proposed an end-to-end deep learning
technique for image registration. They used GANswhich reg-
istered images in a single pass with deformation field. They
used ADAM optimizer [11] for minimizing the network cost
and trained the model using the Mean Square Error (MSE)
loss.

3) CHEST
Relating to the anatomical region of chest,
Eppenhof et al. [213] proposed a 3D FCN based technique
for the registration of CT lung inspiration-expiration image
pairs. They validated the performance of their method using
two datasets, namely DIRLAB [214] and CREATIS [215].
In general, there is a growing perception in the Medical
Imaging community that Deep learning is a promising tool
for 2D and 3D image registration for the chest regions. de
Vos et al. [216] also trained a CNN model for the affine
and deformable image registration. Their technique allows
registration of the pairs of unseen images in a single pass.
They applied their technique to cardiac cine MRI and chest
CT images for registration. Zheng et al. [217] trained a CNN
model for 2D/3D image registration problem under a Pairwise
Domain Adaptation (PDA) technique that uses synthetic data.
It is claimed that their method can learn effective represen-
tations for image registration with only a limited number
of training images. They demonstrated generalization and
flexibility of their method for clinical applications. Their
PDA method can be specially suitable where small training
data is available.

4) ABDOMEN
Lv et al. [218] proposed a CNN based technique for the 3D
MRI abdomen image registration. They trained their model
for the spatial transformation analysis of different images.
To demonstrate the effectiveness of their technique, they com-
pared their method with three other approaches and claimed
a reduction in the reconstruction time from 1h to 1 minute.
In another related study, Lv et al. [219] proposed a deep learn-
ing framework based on the popular U-net architecture. To
evaluate the performance of their technique they used 8 ROI’s
from cortex and medulla of segmented kidney. It is demon-
strated by the authors that during free breathing measure-
ments, their normalized root-mean-square error (NRMSE)
values for cortex and medulla were significantly lower after
registration.

5) MISCELLANEOUS
Yan et al. [220] presented an Adversarial Image Regis-
tration (AIR) method for multi-modal image MR-TRUS

FIGURE 9. Classification of image/patches is commonly performed by
training a CNN classifier that stacks multiple convolution, activation and
pooling layers, followed by fully-connected layers and a softmax layer.

registration [221]. They trained two deep networks concur-
rently, one for the generator component of the adversarial
framework, and the other for the discriminator component.
In their work, the authors learned not only an image regis-
tration network but also a so-called metric network which
computes the quality of image registration. The data used
in their experimentation consists of 763 sets of 3D TRUS
volume and 2DMR volume with 512×512×26 voxels. The
developed AIR network is also evaluated on clinical datasets
acquired through image-fusion guided prostate biopsy pro-
cedures. For the visualization of 3D medical image data
Zhao et al. [222] recently proposed a deep learning based
technique, named Respond-weighted Class Activation Map-
ping (Respond-CAM). As compared to Grade-CAM [223]
they claim better performance. Elss et al. [224] also
employed Convolutional networks for single phase image
motion in cardiac CT 2D/3D images. They trained regression
network to successfully learn 2D motion estimation vectors.
We also summarize few worth noting contributions from the
years 2016 and 2017 in Table 4.

D. CLASSIFICATION
Classification of images is a long standing problem in Med-
ical Image Analysis and other related fields, e.g. Computer
Vision. In the context of medical imaging, classification
becomes a fundamental task for Computer Aided Diagnosis
(CAD). Hence, it is no surprise that many researchers have
recently tried to exploit the advances of deep learning for
this task in medical imaging. In Fig. 9, we illustrate a generic
image classifier based on deep learning. To learn the classi-
fier, multiple convolutional, activation and pooling layers are
stacked such that the feature map dimensions keep reducing
as we go deeper into the architecture. After a considerable
compression along the spatial dimensions (and expansion in
terms of the number of learned feature maps), the features
are mapped onto fully-connected layers. The activations of
the last fully connected layer are provided to a softmax layer
to predict the probability of the class labels. The classifier is
learned by training on a large number of images. During the
test time, the labels are predicted by simply forward passing
the image through the learned classifier.

1) BRAIN
Relating to the anatomical region of Brain, Li et al. [235] used
deep learning to detect Autism Spectrum disorder (ASD) in
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TABLE 4. Summary of influential papers appeared in 2016 and 2017 (based on Google Scholar citation index in January 2019) that exploit deep learning
for the registration task in medical image analysis.

functionalMagnetic Resonance Imaging (fMRI). They devel-
oped a 2-stage neural network method. For the first stage,
they trained a CNN (2CC3D) with 6 convolutional layers,
4 max-pooling layers and 2 fully connected layers. Their
network uses a sigmoid output layer. For the second stage,
in order to detect biomarkers for ASD, they took advantage
of the anatomical structure of brain fMRI. They developed
a frequency normalized sampling method for that purpose.
Their method is evaluated using multiple databases, showing
robust results for neurological function of biomarkers.

In their work, Hosseini-Asl et al. [236] employed an
auto-encoder architecture for diagnosing Alzheimer’s Dis-
ease (AD) patients. They reported up to 99% accuracy on
ADNI dataset. They exploited Transfer Learning to handle
the data scarcity issue, and used a model that is pre-trained
with the help of CADDementia dataset. Their network archi-
tecture is based on 3D convolutional kernels that models
generic brain features from sMRI data. The overall classi-
fication process in their technique first spatially normalizes
the brain sMRI data, then it learns the 3D CNN model using
the normalized data. The model is eventually fine-tuned on
the target domain, where the fine-tuning is performed in a
supervised manner.

Recently, Yan et al. [237] proposed a deep chronectome
learning framework for the classification of MCI in brain
using Full Bidirectional Long Short-Term Memory (Full-
BiLSTM) networks. Their method can be divided into two
parts, firstly a Full-LSTM is used to gather time varying
information in brain for which MCI can be diagnosed. Sec-
ondly, to mine the contextual information hidden in dFC,
they applied BiLSTM to access long range context in both
directions. They reported the performance of their model on
public dataset ADNI-2, achieving 73.6% accuracy. Heinsfeld
et al. [238] also proposed a deep learning algorithm for the
Autism Spectrum disorder (ASD) classification in rs-fMRI
images on multi-site database ABIDE. They used denoising
autoencoders for unsupervised pretraining. The classification
accuracy achieved by their algorithm on the said dataset
is 70%.

In the context of classification related to the anatomical
region of brain, Soussia and Rekik [239] provided a review
of 28 papers from 2010 to 2016 published in MICCAI. They

reviewed neuroimaging-based technical methods developed
for the Alzheimer Disease (AD) and Mild-Cognitive Impair-
ment (MCI) classification tasks. The majority of papers used
MRI for dementia classification and few worked to predict
MCI conversion to AD at later observations.We refer to [239]
for the detailed discussions on the contributions reviewed
by this article. Gutierrez-Becker and Wachinger et al. [240]
proposed a deep neural network, termedMulti-structure point
network (MSPNet), for the shape analysis on multiple struc-
tures. This network is inspired by PointNet [241] that can
directly process point clouds. MSPNet achieves good clas-
sification accuracy for AD and MCI for the ADNI database.

2) BREAST
Awan et al. [242] proposed to use more context information
for breast image classification. They used features of a CNN
that is pre-trained on ICIAR 2018 dataset for histological
images [243], and classified breast cancer as benign, carci-
noma insitu (CIS) or breast invasive carcinoma (BIC). Their
technique performs patch based and context aware image
classification. They used ResNet50 architecture and overlap-
ping patches of size 512×512. The extracted features are clas-
sified using a Support Vector Machine in their approach. Due
to the unavailability of large-scale data, they used random
rotation and flipping data augmentation techniques during the
training process. It is claimed that their trainedmodel can also
be applied to other tasks where contextual information and
high resolution are required for optimal prediction.

When only weak annotations are available for images, such
as in heterogeneous images, it is often useful to turn to multi-
ple instance learning (MIL). Courture et al. [244] described a
CNN using quantile function for the classification of 5 types
of breast tumor histology. They fine-tuned AlexNet [23].
The data used in their study consists of 1,713 images from
the Carolina Breast Cancer Study, Phase 3 [245]. They
improved the classification accuracy on this dataset from
68.6 to 85.6 for estrogen receptor (ER) task in breast images.
Recently, MIL has also been used for breast cancer classi-
fication in [246] and [247] that perform patch based classi-
fication of histopathology images. Antropova et al. [248]
used 690 cases with 5 fold cross-validation ofMRI maximum
intensity projection for breast lesion classification. They used
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a pre-trained VGGNet [34] for feature extraction, followed
by an SVM classifier. Ribli et al. [249] applied a CNN
based on VGG16 for lesion classification in mammograms.
They trained their model using DDSM dataset and tested
it on INbreast [250]. They achieved the second best score
for Mammography DREAM Challenge, with AUC of 0.95.
Zheng et al. [251] proposed a CAD technique for breast
cancer classification using CNN based on pre-trained VGG-
19 model. They evaluated their technique’s performance on
digital mammograms of pairs of 69 cancerous and 27 healthy
subjects. They achieved the values of 0.928 for sensitivity and
0.991 for specificity of classification.

3) EYE
Pertaining to the region of eye, Gergeya and Leng [76] took a
data driven approach using deep learning to classify Diabetic
retinopathy (DR) in color fundus images. The authors used
public databases MESSIDOR 2 and E-ophtha to train and
test their models and achieved 0.94 and 0.95 AUC score
respectively on the test partitions of these datasets. A con-
volutional network is also employed by Pratt et al. [252] for
diagnosing and classifying the severity of DR in color fundus
images. Their model is trained using the Kaggle datasets, and
it achieved 75% DR severicity accuracy. Similarly, Ayhan
and Berens [253] also exploited the deep CNN architec-
ture of ResNet50 [254] for the fundus image classification.
Mateen et al. [255] proposed a DR classification system
based on VGG-19. They also performed evaluation using
Kaggle dataset of 35,126 fundus images. It is claimed that
their model outperforms the more conventional techniques,
e.g. SIFT as well as earlier deep networks, e.g. AlexNet in
terms of accuracy for the same task.

4) CHEST
Dey et al. [256] studied 3D CNNs for the diagnostic clas-
sification of lung cancer between benign and malignant in
CT images. Four networks were analyzed for their classifi-
cation task, namely a basic 3D CNN; a multi-output CNN; a
3D DenseNet, and an augmented 3D DenseNet with multi-
outputs. They employed the public dataset LIDC-IDRI with
1, 010 CT images and a private dataset of 47 CT images
with both malignant and benign in this study. The best
results are achieved by the 3D multi-output DenseNet (MoD-
enseNet) on both datasets, having accuracy 90.40% as com-
pared to previously reported accuracy of 89.90% [257]. Gao
et al. [258] proposed a deep CNN for the classification of
Interstitial Lung Disease (IDL) patterns on CT images. Pre-
viously, batch based algorithms were being used for this
purpose [259], [260]. In contrast, Gao et al. performed holis-
tic classification using the complete image as network input.
Their experiments used a public data [261] on which the
classification accuracy improved to 87.9% from the previous
results of 86.1% [260]. For the holistic image classification,
the overall accuracy of 68.8% was achieved. In another
work, Hoo-Chang et al. [99] et al. also analyzed three CNN

architectures, namely CifarNet, AlexNet, and GoogLeNet,
for interstitial lung disease classification.

Biffi et al. [262] proposed a 3D convolutional gen-
erative model for the classification of cardiac diseases.
They achieved impressive performance for the classifi-
cation of healthy and hypertrophic cardiomyopathy MR
images. For ACDC MICCAI 2017 dataset they were able to
achieve 90% accuracy for classification of healthy subjects.
Brestel et al. [263] proposed a CNN based technique
RadBot-CXR to categorize focal lung opacities, diffuse
lung opacity, cardiomegaly, and abnormal hilar promi-
nence in chest X-ray images. They claim that their algo-
rithm showed radiologists level performance for this task.
Wang et al. [264] used deep learning in analyzing
histopathology images for the whole slide lung cancer classi-
fication. Coudray et al. [265] used Inception3 CNN model to
analyze whole slide images to classify lung cancer between
adenocarcinoma (LUAD), squamous cell carcinoma (LUSC)
or normal tissues. Moreover, they also trained their model for
the prediction of ten most common mutated genes in LUAD
and achieved good accuracies. Masood et al. [91] proposed
a deep learning approach DFCNet based on FCN, which is
used to classify the four stages of detected pulmonary lung
cancer nodule.

5) ABDOMEN
Relating to abdomen, Tomczak et al. [266] employed deep
Multiple Instance Learning (MIL) framework [267] for the
classification of esophageal cancer in histopathology images.
In another contribution, Frid-Adar et al. [268] used GANs for
the synthetic medical image data generation. They made clas-
sification of CT liver images as their test bed and performed
classification of 182 lesions. The authors demonstrated that
by using augmented data with the GAN framework, up to
7% improvement is possible in classification accuracy. For
automatic classification of ultrasound abdominal images,
Xu et al. [269] proposed a multi-task learning framework
based on CNN. For the experiments they used 187,219 ultra-
sound images and claimed better classification accuracy than
human clinical experts.

6) MISCELLANEOUS
Esteva et al. [274] presented a CNN model to classify skin
cancer lesions. Their model is trained in an end-to-end man-
ner directly from the images, taking pixels and disease labels
as inputs. They used datasets of 129,450 clinical images
consisting of 2,032 different diseases to train CNN. They
classified two most common cancer diseases; keratinocyte
carcinomous versus benign seborrheic keratosis, and the
deadliest skin cancer; malignant melanomas versus benign
nevi. For skin cancer sun exposure classification, Combalia
and Vilaplana [278] also applied a Monte Carlo method to
only highlight the most elistic regions. Antony et al. [279]
employed a deep CNN model for automatic quantification
of severity of knee osteoarthritis (OA). They used Kellgren
and Lawrence (KL) grades to assess the severity of knee.
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TABLE 5. Summary of notable contributions appearing in 2016 and 2017 that exploit deep learning for the classification task in medical image analysis.
The citation index is based on Google scholar (January 2019).

In their work, using deep CNN pre-trained on ImageNet
and fine-tuned on knee OA images resulted in good clas-
sification performance. Paserin et al. [280] recently worked
on diagnosis and classification of developmental dysplasia
of hip (DDH). They proposed a CNN-RNN technique for
3D ultrasound volumes for DDH. Their model consists of
convolutional layers for feature learning followed by recur-
rent layers for spatial relationship of their responses. Inspired
by VGG network [34], they used CNN with 5 convolutional
layers for feature extraction with ReLU activations, and 2×2
max-pooling with a stride of 2. Finally, they used LSTM
network that has 256 units. They achieved 82% accuracy with
AUC 0.83 for 20 test volumes. Few notable contributions
from the years 2016 and 2017 are also summarized in Table 5.

We also provide a comparative review of the techniques in
Table 6. The table includes more influential papers for each
image processing task considered above. It further divides the
contributions based on the anatomical site of interest division
used in our survey. The table summarizes the information
on ‘imaging modality’, ‘dataset size’, ‘performance measure’
and the ‘network bias’ used in the referred papers.

IV. DATASETS
Good quality data has always remained the primary require-
ment for learning reliable computational models. This is also
true for deepmodels that also have the additional requirement
of consuming large amount of training data. Recently, many
public datasets for medical imaging tasks have started to
emerge. There is also a growing trend in the research com-
munity to compile lists of these datasets. For instance we can
find few useful compilation of public dataset lists at Github
repositories and other webpages. Few medical image anal-
ysis products are also helping in providing public datasets.
Whereas detailed discussion on the currently available public
datasets for medical imaging tasks is outside the scope of this
article, we provide typical examples of the commonly used
datasets in medical imaging by deep learning approaches
in Table 7. The Table is not intended to provide an exhaustive
list. We recommend the readers internet search for that pur-
pose. A brief search can result in a long compilation of medi-
cal imaging datasets. However, we summarize few examples
of contemporary datasets in Table 7 to make an important

point regarding deep learning research in the context of
Medical Image Analysis. With the exception of few datasets,
the public datasets currently available for medical imaging
tasks are small in terms of the number of samples and patients.
As compared to the datasets for general Computer Vision
problems, where datasets typically range from few hundred
thousand to millions of annotated images, the dataset sizes
for Medical imaging tasks are too small. On the other hand,
we can see the emerging trend in Medical Imaging commu-
nity of adopting the practices of broader Pattern Recognition
community, and aiming at learning deep models in end-to-
end fashion. However, the broader community has generally
adopted such practices based on the availability of large-scale
annotated datasets, which is an important requirement for
inducing reliable deep models. Hence, it remains to be seen
that how effectively end-to-end trained models can really
perform the medical image analysis tasks without over-fitting
to the training datasets.

V. CHALLENGES IN GOING DEEP
In this Section, we discuss the major challenges faced in fully
exploiting the powers of Deep Learning in Medical Image
Analysis. Instead of describing the issues encountered in
specific tasks, we focus more on the fundamental challenges
and explain the root causes of these problems for the Medical
Imaging community that can also help in understanding the
task-specific challenges. Dealing with these challenges is the
topic of discussion in Section VI.

A. LACK OF APPROPRIATELY ANNOTATED DATA
It can be argued that the single aspect of Deep Learning
that sets it apart from the rest of Machine Learning tech-
niques is its ability tomodel extremely complexmathematical
functions. Generally, we introduce more layers to learn more
complex models - i.e. go deep. However, a deeper network
must also learn more model parameters. A model with a
large number of parameters can only generalize well if we
correspondingly use a very large amount of data to infer
the parameter values. This phenomenon is fundamental to
any Machine Learning technique. A complex model inferred
using a limited amount of data normally over-fits to the used
data and performs poorly on any other data. Such modeling
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TABLE 6. A comparative summary of representative techniques, highlighting the used datasets, performance measures and the network bias in more
influential works.

TABLE 7. Examples of popular databases used by medical image analysis techniques that exploit deep learning.
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is highly undesirable because it gives a false impression of
learning the actual data distribution whereas themodel is only
learning the peculiarities of the used training data.

Learning deep models is inherently unsuitable for the
domains where only limited amount of training data is avail-
able. Unfortunately, Medical Imaging is one such domain.
For most of the problems in Medical Image Analysis, there
is only a limited amount of data that is annotated in a manner
that is suitable to learn powerful deep models. We encounter
the problem of ‘lack of appropriately annotated data’ so fre-
quently in the current Deep Learning related Medical Imag-
ing literature that it is not difficult to single out this problem
as ‘the fundamental challenge’ that Medical Imaging com-
munity is currently facing in fully exploiting the advances in
Deep Learning.

The Computer Vision community has been able to take full
advantage of Deep Learning because data annotation is rela-
tively straightforward in that domain. Simple crowd sourcing
can yield millions of accurately annotated images. This is not
possible forMedical Images that require high level of specific
expertise for annotation. Moreover, the stakes are also very
high due to the nature of medical application, requiring extra
care in annotation. Although we can also find large number
of images in medical domain via systems like PACS and
OIS, however using them to train deep models is still not
easy because they lack appropriate level of annotations that
is generally required for training useful deep models.

With only a few exceptions, e.g. [286] the public datasets
available in the Medical Imaging domain are not large-scale -
a requirement for training effective deep models. In addition
to the issues of hiding patient’s privacy, one major problem
in forming large-scale public datasets is that the concrete
labels required for computational modeling can often not
be easily inferred from medical reports. This is problem-
atic if inter-observers are used to create large-scale datasets.
Moreover, the required annotations for deep models often do
not perfectly align with the general medical routines. This
becomes an additional problem even for the experts to provide
noise-free annotations.

Due to the primary importance of large-scale training
datasets in Deep Learning there is an obvious need to develop
such public datasets for Medical Imaging tasks. However,
considering the practical challenges in accomplishing this
goal it is also imperative to simultaneously develop tech-
niques of exploiting Deep Learning with less amount of data.
We provide discussion on future directions along both of
these dimension in Section VI.

B. IMBALANCED DATA
One problem that occurs much more commonly in Medical
Imaging tasks as compared to general Computer Vision tasks
is the imbalance of samples in datasets. For instance, a dataset
to train a model for detecting breast cancer in mammograms
may contain only a limited number of positive samples but
a very large number of negative samples. Training deep
networks with imbalanced data can induce models that are

biased. Considering the low frequency of occurrences of pos-
itive samples for many Medical Imaging tasks, balancing out
the original data can become as hard as developing large-scale
dataset. Hence, extra care must be taken in inducing deep
models for Medical Imaging tasks.

C. LACK OF CONFIDENCE INTERVAL
Whereas the Deep Learning literature often refers to the out-
put of a model as ‘prediction confidence’; the output signal
of a neuron can only be interpreted as a single probability
value. The lack of provision of confidence interval around a
predicted value is generally not desirable in Medical Imaging
tasks. Litjens et al. [28] has noted that an increasing number
of deep learning methods in Medical Imaging are striving to
learn deep models in an end-to-end manner. Whereas end-to-
end learning is the epitome of Deep Learning, it is not certain
if this is the right way to exploit this technology in Medical
Imaging. To an extent, this conundrum is also hindering the
widespread use of Deep Learning in Medical Imaging.

VI. FUTURE DIRECTIONS
With the recent increasing trend of exploiting Deep Learning
in Medical Imaging tasks, we are likely to see a large influx
of papers in this area in the near future. Here, we provide
guidelines and directions to help those works in dealing with
the inherent challenges faced by Deep Learning in Medical
Image Analysis. We draw our insights from the reviewed
literature and the literature in the sister fields of Computer
Vision, Pattern Recognition and Machine Learning. Due to
the earlier use of Deep Learning in those fields, the techniques
of dealing with the related challenges have considerably
matured in those areas. Hence, Medical Image Analysis can
readily benefit from those findings in setting fruitful future
directions.

Our discussion in this Section is primarily aimed at provid-
ing guiding principles for the Medical Imaging community.
Therefore, we limit it to the fundamental issues in Deep
Learning. Based on the challenges mentioned in the preced-
ing Section, and the insights from the parallel scientific fields,
we present our discussion along three directions, addressing
the following major questions. (1) How can Medical Image
Analysis still benefit from Deep Learning in the absence
of large-scale annotated datasets? (2) What can be done for
developing large-scale Medical Imaging datasets. (3) What
should be the broader outlook of this research direction to
catapult it in taking full advantage of the advances in Deep
Learning?

A. DEALING WITH SMALLER DATA SIZE
1) DISENTANGLING MEDICAL TASK TRANSFER LEARNING
Considering the obvious lack of large-scale annotated
datasets, Medical Imaging community has already started
exploiting ‘transfer learning’ [295]–[297]. In transfer learn-
ing, one can learn a complex model using data from a source
domain where large-scale annotated images are available
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(e.g. natural images). Then, the model is further fine-tuned
with the data of target domain where only a small number
of annotated images are available (e.g. medical images). It is
clear from the literature that transfer learning is proving
advantageous for Medical Image Analysis. Nevertheless, one
promising recent development in transfer learning [298] in
Computer Vision literature remains completely unexplored
for Medical Image Analysis.

Zamir et al. [298] recently showed that performance of
transfer learning can be improved by carefully selecting
the source and target domains/tasks. By organizing different
tasks that let the deep models transfer well between them-
selves, they developed a so-called ‘taskonomy’ to guide the
use of transfer learning for natural images. This concept
has received significant appreciation in the Computer Vision
community, resulting in the ‘best paper’ award for the authors
at the prestigious IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2018. A similar concept is
worth exploring for the data deprived Medical Imaging tasks.
Disentangling medical tasks for transfer learning may prove
very beneficial. The core concept of disentanglement is to
specify the source tasks for which relatively larger annotated
data is available, and find the target task for which the source
models can provide stronger results once fine-tuned. The
source and target tasks may not necessarily be restricted
to the same anatomical regions. Once a taxonomy of such
tasks is established, it can consistently serve to achieve better
performance with the fine-tuned models.

Another related direction that can help in dealing with
smaller data size is to quantify the suitability of transfer learn-
ing between medical imaging and natural imaging tasks. In
other words, it requires establishing the taskonomy between
medical imaging tasks and the tasks performed for natural
image processing. Understanding of the knowledge transfer
abilities of the existing natural image models to the medical
tasks can have a huge impact in Medical Image Analysis
using Deep Learning.

2) WRAPPING DEEP FEATURES FOR MEDICAL
IMAGING TASKS
The existing literature shows an increasing trend of training
deep models for Medical tasks in an ‘end-to-end’ manner.
For Deep Learning, end-to-end modeling is generally more
promising for the domains where large-scale annotated data
is available. Exploiting the existing deep models as feature
extractors and then performing further learning on those fea-
tures is a much more promising direction in the absence of
large-scale training datasets. There is a considerable evidence
in the Pattern Recognition literature that activation signals of
deeper layers in neural networks often form highly expres-
sive image features. For natural images, Akhtar et al. [299]
demonstrated that features extracted from deep models can
be used to learn further effective higher level features using
the techniques that require less training samples. They used
Dictionary Learning framework [300] to further wrap the
deep features before using them with a classifier. In that

case, deep features become input samples to the wrapping
technique. Another representation model for those features
is then learned, and if required, a customized classifier can
further be trained. A key advantage of following this strat-
egy is that it can easily avoid over-fitting. For deep neural
networks, a high percentage of the parameters belong to the
fully-connected layers. Feature extraction performed before
the fully-connected layers significantly reduces the effective
model complexity. Other techniques that inherently learn
less complex models can then take full advantage of the
discriminative nature of deep learning features. For example,
dictionary learning has been shown to exploit those feature
very well under the sparse representation framework [299].

We note that Medical Image Analysis literature has
already seen reasonably successful attempts of using the
existing natural image deep models as feature extractors
e.g. [301]–[303]. However, such attempts generally directly
feed the features extracted from the pre-trained mod-
els to a classifier. The direction we point towards entail
post-processing of deep features to better suit the require-
ments of the underlying Medical Image Analysis task.

3) TRAINING PARTIALLY FROZEN DEEP NETWORKS
As a general principle in Machine Learning, more amount
of training data is required to train more complex computa-
tional models. In Deep Learning, the network depth normally
governs the model complexity, whereas deeper networks also
have more parameters that require large-scale datasets for
training. It is known that the layers of CNNs - the most
relevant neural networks for image analysis - systematically
break down images into their features from lower level of
abstraction to higher level of abstraction [304]. It is also
known that the initial layers of CNNs learn very similar filters
for a variety of natural images. These observations point
towards the possibility of reducing the number of learn-able
parameters in a network by freezing few of its layers to the
parameter values that are likely to be similar for a variety
of images. Those parameter values can be directly borrowed
from other networks trained on similar tasks. The remainder
of the network - that now has less parameters but has the
same complexity - can then be trained for the target task
as normal. Training partially frozen networks for Medical
Imaging task can mitigate the issues caused by the lack of
large-scale annotated datasets.

4) ENSEMBLE DEEP MODELS AND MULTI-TASK LEARNING
It is generally the case that limited training data is provided
for on-line competitions in Computer Vision. A common
strategy is often adopted by the top performing techniques
for such competitions. That is, instead of training a single
deep model, multiple deep models are trained and combined
to compute the final results. The used models normally differ
in terms of network architectures, their complexity and loss
functions to fully exploit different characteristics of the avail-
able data. Networks are combined under different methods,
e.g. by using joint logit layer or combining the networks at the
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output layer by computing losses while accounting for all the
networks. It is a common observation that network ensembles
provide significantly better results than their individual com-
ponents alone. However, the larger network size for ensem-
bles is not attractive for many applications. Nevertheless, for
medical image analysis, this remains a viable option, where
accuracy generally out-weights the network size in majority
of the applications.

On similar lines, multi-task learning under the deep learn-
ing framework is also known to be effective for the cases
where the training data is scarce. It allows to learn models
for multiple tasks where the training data for each task can be
limited, however the tasks are related to each other. Hence,
different tasks are coupled to take advantage of each other’s
data annotations. However, multi-task learning can often be
more complex than learning for a single task at a time.

5) USING GANS FOR SYNTHETIC DATA GENERATION
Generative Adversarial Networks (GANs) [42] are currently
receiving tremendous attention of Computer Vision commu-
nity for their ability to mimic the distributions from which
images are sampled. Among other uses of GANs, one can use
the GAN framework to generate realistic synthetic images for
any domain. These images can then be used to train deeper
models for that domain that generally outperform the models
trained with only (limited) original data. This property of
GANs is of particular interest for Medical Image Analysis.
Therefore, we can expect to see a large number of future
contributions in Medical Imaging that will exploit GANs. In
fact, our literature review already found few recent applica-
tions of GANs in medical image analysis [206], [305]–[307].
Moreover, we also found recent surveys [46], [47] that specif-
ically review the technique in Medical Image Analysis that
exploit GANs. Besides healthy prospects of GANs as a data
generation strategy for Medical Image Analysis tasks, these
articles also indicate numerous future challenges in this direc-
tion. We also recommend that extra care is required while
exploiting the GAN framework in medical imaging. It should
be noted that GANs do not actually learn the original distribu-
tion of images, rather they only mimic it. Hence, the synthetic
images generated from GANs can still be very different from
the original images. Therefore, instead of training the final
model with the data that includes GAN-generated data, it is
often better to finally fine-tune such model with only the
original images.

6) MISCELLANEOUS DATA AUGMENTATION TECHNIQUES
In general, Computer Vision and Pattern Recognition liter-
ature has also developed few elementary data augmentation
techniques that have shown improvement in the performance
of deep models. Whereas these techniques are generally not
as effective as sophisticated methods, such as using GANs to
increase data samples; they are still worth taking advantage
of. We list the most successful techniques below. Again,
we note that some of these methods have already proven their
effectiveness in the context of Medical Image Analysis:

• Image flipping: A simple sideways flip of images dou-
bles the number of training samples, that often results
in a better model. For medical images, top-down flip is
also a possibility due to the nature of images.

• Image cropping: Cropping different areas of a larger
image into smaller images and treating each one of the
cropped versions as an original image also benefits deep
models. Five crops of equal dimensions from an image
is a popular strategy in Computer Vision literature. The
crops are made using the four corners and the central
region of the image.

• Adversarial training: Very recently, it is discovered that
we can ‘fool’ deep models using adversarial images [2].
These images are carefully computed such that they
appear the same as the original images to humans,
however, a deep model is not able to recognize them.
Whereas developing such images is a different research
direction, one finding from that direction is that includ-
ing those images in training data can improve the
performance of deep models [308]. Since adversarial
examples are generated from the original images, they
provide a useful data augmentation method that can be
harnessed for Medical Imaging tasks.

• Rotation and random noise addition: In the context
of 3D data, rotating the 3D scans and adding small
amount of random noise (emulating jitters) are also
considered useful data augmentation strategies [241].

B. ENHANCING DATASET SIZES
Whereas the techniques discussed in Section VI-A can alle-
viate the issues caused by smaller training datasets, the root
cause of those problems can only be eliminated by acquir-
ing Deep Learning compatible large-scale annotated datasets
for Medical Image Analysis tasks. Considering that Deep
Learning has started outperforming human experts inMedical
Image Analysis tasks [309], there is a strong need to imple-
ment protocols that make medical reports readily convertible
to the formats useful for training computational models, espe-
cially Deep Learningmodels. In this context, techniques from
the fields of Document Analysis [310] and Natural Language
Processing (NLP) [311] can be used to alleviate the extra bur-
den falling on the medical experts due to the implementations
of such protocols.

Besides generating the new data at large-scales that is
useful in learning computational models, it is also impor-
tant to take advantage of the existing medical records for
exploiting the current advances in Deep Learning. To han-
dle the large volume of un-organized data (in terms of
compatibility with Machine Learning), data mining with
humans-in-the-loop [312] and active learning [30] can prove
beneficial. Advances in Document Analysis and NLP can
also be exploited for this task.

C. BROADER OUTLOOK
We can make one important observation regarding Deep
Learning research by exploring the literature of different
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research fields. That is, the advancement in Deep Learn-
ing research has often experienced a quantum leap under
the breakthroughs provided by different sister fields. For
example, the ‘residual learning’ concept [22] that enabled
very deep networks was first introduced in the literature
of Computer Vision. This idea (along with other break-
throughs in core Machine Learning research) eventually
enabled the tabula rasa algorithm of AlphaGo Zero [313].
Following up on this observation, we can argue that signif-
icant advances can be made in Deep Learning research in
the context of Medical Image Analysis if researchers from
the sister fields of Computer Vision and Machine Learning
are able to better understand the Medical Image Analysis
tasks.

Indeed, Medical Imaging community already involves
experts from other related fields. However, this involvement
is at a smaller scale. For the involvement of broader Machine
Learning and Computer Vision communities, a major hin-
drance is the Medical Imaging literature jargon. Medical lit-
erature is not easily understood by the experts of other fields.
One effective method to mitigate this problem can be regular
organization of Medical Imaging Workshops and Tutorials in
the reputed Computer Vision and Machine Learning Confer-
ences, e.g. IEEE CVPR, ICCV, NeurIPS and ICML. These
events should particularly focus on playing the role of trans-
lating the Medical Imaging problems to other communities in
terms of their topics of interest.

Another effective strategy to take advantage of Deep
Learning advances is to outsource the Medical Imaging
problems by organizing online challenges, e.g. Kaggle com-
petitions. The authors are already aware of few Kaggle
competitions related to Medical Imaging, e.g. Histopatho-
logic cancer detection. However, we can easily notice
that Medical Imaging competitions are normally attract-
ing fewer teams as compared to other competitions - cur-
rently 361 for Histopathologic cancer detection. Generally,
the number of teams are orders of magnitude lower for
the Medical Imaging competitions than those for the typi-
cal imaging competitions. In authors’ opinion, strict Med-
ical parlance adopted in organizing such competitions is
the source of this problem. Explanation of Medical Imag-
ing tasks using the terms more common among Computer
Vision and Machine Learning communities can greatly help
in improving the popularity of Medical Imaging in those
communities.

In short, one of the key strategies to fully exploit Deep
Learning advances in Medical Imaging is to get the experts
from other fields, especially Computer Vision and Machine
Learning; to involve in solvingMedical Imaging tasks. To that
end, the Medical Imaging community must put an extra effort
in making its literature, online competitions and the overall
outlook of the filed more understandable to the experts from
the other fields. Deep Learning is being dubbed as ‘modern
electricity’ by the experts. In the future, its ubiquitous nature
will benefit those fields the most that are better understood
by the wider communities.

VII. CONCLUSION
This article presented a review of the recent literature in
Deep Learning for Medical Imaging. It contributed along
three major directions. First, we presented an instructive
introduction to the core concepts of Deep Learning. Keeping
in view the general lack of understanding of Deep Learning
framework among Medical Imaging researchers, we kept our
discussion intuitive. This part of the paper can be understood
as a tutorial of Deep Learning concepts commonly used in
Medical Imaging. The second part of the paper presented a
comprehensive overview of the approaches in Medical Imag-
ing that employ Deep Learning. Due the availability of other
review articles until the year 2017, we mainly focused on the
literature published in the year 2018. The third major part
of the article discussed the major challenges faced by Deep
Learning inMedical ImageAnalysis, and discussed the future
directions to address those challenges.

Beside focusing on the very recent literature, this article
is also different from the existing related literature surveys
in that it provides a Computer Vision/Machine Learning
perspective to the use of Deep Learning in Medical Image
Analysis. Using that perspective, we are not only able to
provide an intuitive understanding of the core concepts in
Deep Learning for the Medical community, we also highlight
the root cause of the challenges faced in this direction and rec-
ommend fruitful future directions by drawing on the insights
from multiple scientific fields.

From the reviewed literature, we can single out the ‘lack of
large-scale annotated datasets’ as the major problem for Deep
Learning in Medical Image Analysis. We have discussed and
recommended multiple strategies for the Medical Imaging
community that are adopted to address similar problems in
the sister scientific fields. We can conclude that Medical
Imaging can benefit significantly more from Deep Learning
by encouraging collaborative research with Computer Vision
and Machine Learning research communities.
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