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ABSTRACT Stratigraphic correlation based on well-logging data is able to help geological interpreters
analogize and deduce underground sedimentary morphology. A great deal of traditional methods has been
studied to automatically or manually achieve stratigraphic correlation, the courses of which are usually
time-consuming and not intuitive. Many uncertainties are easily generated to reduce the effectiveness of
stratigraphic correlation and the accuracy of geological interpretation. To address this issue, this paper intro-
duces an interactive visual analytics system for identifying correlation patterns and improving correlation
accuracies using large-scale well-logging data. First, we propose a novel stratigraphic correlation model with
the composition of multi-log curve integration, layer identification, and layer matching. Then, a visualization
framework is designed by working closely with domain experts in an iterative manner to get deeper insights
into the course of stratigraphic correlation based on a few visual interfaces such asmap view, correlation view,
matrix view and attribute view. Also, a rich set of interactions is provided allowing interpreters to refine the
results of stratigraphic correlation according to domain knowledge and user requirements. Furthermore, case
studies based on real-world datasets and interviews with domain experts have demonstrated the effectiveness
of our system for the stratigraphic correlation and geological interpretation.

INDEX TERMS Stratigraphic correlation, well-logging data, geological interpretation, visual analytics,
human-computer interaction.

I. INTRODUCTION
According to the latest news, the Paris-based International
Energy Agency has raised its forecast for oil demand growth
in 2018 to 1.4million barrels per day, from a previous forecast
of 1.3 million bpd, after the International Monetary Fund
upped its estimate of global economic growth for this year
and next. As the lifeblood of the 21st century economy, oil
plays significant roles in a variety of fields, ranging from
transportation and industrial production to the aerospace and
defence industry.

Accurate interpretation of geological structures is signifi-
cant in the process of oil production, which helps geologists to
estimate reserves, work out development plans and build geo-
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FIGURE 1. Stratigraphic correlation.

logic models. Geological structures are irregularly distributed
under the ground, which are difficult to identify merely
according to depth values. Stratigraphic correlation [1]–[5] is
a commonly usedmethod to identify the distribution of under-
ground geological structures, as shown in Fig.1. Thewell logs
are measured by various kinds of logging instruments which
record the petrophysical parameters of subsurface at different
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FIGURE 2. System interface. (a) Map View shows the geographic distribution of wells, in which different wells of interest can be easily
highlighted. (b) Correlation View enables the visual exploration of correlations within two or more wells.(c) Matrix View unfolds the
pairwise-well correlation model to reveal the course of stratigraphic correlation. (d) Attribute View is able to check multi-dimensional
characteristics for a pair of matched layers, which is helpful to edit and refine the correlation results. (e) Control Panel provides a rich set
of interactions for the visual analytics of stratigraphic correlation.

depth of wells. All kinds of parameters can be used to iden-
tify different underground rock formations, such as oil, gas,
water, coal, metal or deposit, which provide essential seismic
interpretation datasets for further reservoir characterization.
For example, stratigraphic correlation is able to match similar
patterns within different wells according to their multiple
well-logging attributes, and the regional variation rules of
strata (including oil-bearing strata) as well as the source-
reservoir-seal combination can be further determined.

In the traditional process of seismic interpretation,
stratigraphic correlation is often manually achieved by
geological interpreters, which is a time-consuming and sub-
jective task, bringing much uncertainties to the identifica-
tion of different geological structures. Thus, a rich set of
techniques have been proposed to conduct automatic strati-
graphic correlation in the field of geophysics, with the devel-
opment of computing power and pattern recognition, such
as correlating the well logs based on neural networks [6],
cross-correlation algorithms [1], [2] and dynamic program-
ing algorithms [7]–[9]. The efficiency of stratigraphic cor-
relation can be largely enhanced by means of automatic
algorithms running on computers. However, the course of
stratigraphic correlation is not intuitive, which makes the
geological interpreters hardly to understand the meanings of
model parameters and achieve the correlation details of geo-
logical structures. What’s more, the best fully automated cor-
relation algorithms also produce significant errors. Thus it is
always impossible to directly use the automatic stratigraphic
correlation results for further seismic interpretation, which
should still undergo a rigorous and time-consuming manual
proofreading process. Therefore, it is of great need to develop

an interactive visual analytics system, providing geological
interpreters with an intuitive visual interface to understand
and refine correlation models, and further carry out accurate
stratigraphic correlation and seismic interpretation.

To fill this gap, we first propose a novel stratigraphic cor-
relation model by combining the multi-log curve integration,
horizon identification and stratum matching. Then, a set of
visualization views is designed to make well-logging data
and the results of correlation algorithms more accessible to
geologists, as shown in Fig.2. A map view shows the geo-
graphic distribution of wells, allowing users to select wells of
interest. A correlation view presents the stratigraphic correla-
tion results, enabling users to visually capture the correlation
features within multiple wells. The course of stratigraphic
correlation is further highlighted in the matrix view, in which
the pairwise-well correlation model is unfolded. An attribute
view is designed to present the multi-dimensional character-
istics for a pair of matched layers within two wells, which
is helpful for geological interpreters to check and refine
the correlation results. Based on the integration of above
stratigraphic correlation model and visual interfaces, a visual
analytics system is implemented to facilitate the accurate
stratigraphic correlation and intuitive seismic interpretation.
The effectiveness of our system is further demonstrated
through case studies based on real-world datasets and inter-
views with domain experts. The contributions of this work are
summarized as follows:
• An automatic correlation model is proposed to deter-
mine correlations between pairs of wells with the
multi-log curve integration, layer identification and
layer matching taken into consideration.
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• A rich set of visualization interfaces are designed for
users to get deeper insights into the correlation patterns
and geologic structures intuitively and further refine the
results of seismic interpretation interactively.

• Case studies based on a real-world dataset are conducted
to demonstrate the usefulness of our system for strati-
graphic correlation and geological interpretation.

The rest of this paper is organized as follows: The related
work is summarized in Section 2. Section 3 presents the anal-
ysis tasks and system overview. The stratigraphic correlation
model is described in Section 4. The visual designs and the
visual analytic methods are detailed in Section 5. Case stud-
ies in addition to domain-expert interviews are discussed in
Section 6 and finally we drawn our conclusions in Section 7.

II. RELATED WORK
In this section, the related studies relevant to our work are
divided into three categories, including correlation models of
wells, seismic data visualizations and visual analytic systems.

A. CORRELATION MODELS OF WELLS
A large number of methods have been developed for the auto-
matic correlation of wells, which can be further divided into
two categories according to the account of wells to be cor-
related, such as the pairwise-well correlation and multi-well
correlation.

Rudman and Lankston [1] utilized the cross correlation
algorithm by building a target function, to match the log sig-
nals of two wells and achieve the maximum target optimiza-
tion. Mann and Dowell [2] introduced a Fourier transform
into this method and conducted profile correlation in the fre-
quency domain by applying an extended time-domain signal
to solve the problem of thickness change. The rule-based
expert system [3], [4], [10] is another way for automatic
correlation of two wells, which establishes the knowledge
learning, rule representation and reasoning by studying the
experts’ logics in the process of correlating wells. But due
to the presence of uncorrelated strata, the rule-based expert
systems are not able to identify gaps and stretching of
layer sequences. In the neural network based correlation
methods [6], the neurons are trained to identify the particular
geologic markers for a given well, which are further used to
identify the markers in other wells. The key to neural net-
work based correlation methods is a large number of training
data, which takes human experts much time to annotate the
layers of given wells manually. But our well-logging dataset
provided by domain experts is obtained directly from the
logging instruments without any annotations. As a gener-
alized method of cross correlation, dynamic programming
based pairwise-well correlation [7]–[9], [11], [12] makes two
well logs reach the best similarity through translation and
distortion of the depth axis, which can effectively identify
gaps and stretching of layer sequences. Such dynamic pro-
gramming methods get a globally optimal correlation of all
layers for twowells, which don’t suffer from the drawbacks of

cross-correlation algorithms only considering the similarities
between a single pair of layers.

For the correlation of multi-wells, many divide-and-
conquer methods [11], [13], [14] are proposed in which the
results of previous correlation are taken as constraints for next
correlation. However, the correlation results of all well logs
are sensitive to the order in which the wells are correlated
due to the propagation of errors. Therefore, several meth-
ods have been developed to solve this issue. For example,
a globally optimal alignment of all well logs is provided
by Wheeler et al. [15] for simultaneous well log correla-
tion, which is more insensitive to large measurement errors
common in well logs. Shi et al. [5] conducted a sequential
correlation of multiple well logs based on an optimal path,
which preserved maximum coherency between neighboring
log traces. However, compared with pairwise-well correla-
tions, the multi-well correlation is relatively complex, which
is difficult for experts to understand the inherent mecha-
nism and edit the correlation results of multiple wells syn-
chronously. In addition, the propagation of correlation errors
is partly resulted from the real geological change, which is
exactly the problem domain experts care about. This will be
greatly eliminated by the multi-well correlation models.

In conclusion, we apply and improve the dynamic pro-
gramming methods to support the analysis of correlation
patterns in this paper. Previousmethods based on the dynamic
programming [9], [11], [12] mainly get a globally optimal
correlation by calculating the cost of correlating each point in
the first well with each of the points in the second well, which
is relatively time-consuming and difficult for users to build a
mental map of correspondences between strata. Though other
dynamic programming based methods [3], [7] calculate the
cost of correlating layer-to-layer in two wells, the layers are
presented as string or symbol information with the help of
expert knowledge, which need strong professionals. In this
paper, we propose a novel stratigraphic correlation model to
solve the above problems. Especially in the final step, each
layer is represented as a vector by extracting rich numeric
features from its log values. Then a match matrix between
layers in a pair of wells is computed to measure their differ-
ences. The best connection path in the match matrix is further
found using a dynamic programming.

B. VISUALIZATION OF GEOLOGICAL DATA
Visualization is a commonly used method focusing on
the reconstruction and visual exploration of strata struc-
ture within the seismic datasets. Reconstruction focuses on
how to build a 2D/3D geological model from the seis-
mic data by horizon extracting methods. Given that, visu-
alizations such as texture mapping and volume rendering
are further applied to present and explore the model
for users. The seismic datasets are always collected in
the form of reflected waves to detect the distribution
of underground media, while the artificial seismic wave
is launched to strata. Seismic visualization methods can
be classified into different categories, such as slice-based
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visualization, direct volume rendering, sketch-based visu-
alization. Slice-based visualization includes texture-based
slice illustration [16]–[18] and 2D fault detection [19], [20].
The former extracts horizontal lines of slices or sections,
which are presented by means of texture mapping. The latter
regards the two-dimensional data as an image, and extracts
the structures of faults using image-processing technologies.
With the development of Graphics Processing Unit (GPU),
volume rendering [21]–[27] can be easily and timely con-
ducted for the exploration of three-dimensional datasets,
which is further employed for seismic visual exploration.
By means of volume rendering techniques, the seismic struc-
tures of interest can be better captured and analyzed within
three-dimensional space, the results of which are really cred-
ible and intuitive with more information considered in addi-
tion to user-friendly interactions, such as translation and
rotation. Illustrative visualization [28] mainly presents the
strata structures of fault, horizon and others with simple
artistic expressions, and focuses on the use of informa-
tion transfer to convey more knowledge. Storytelling [29]
applies the story-centered visualization modeling meth-
ods to present each plot by key frames, which provides
knowledge popularization and decision-making for users.
Sketch-based visualization [30]–[32] improves the user expe-
rience by means of hand drawn technologies, allowing users
to get a deeper impression and understanding on the original
datasets. Domain knowledge aided visualization [33] refers
to improving the effect of visualization with the help of
domain knowledge, thus convey more information to users
and reduce their cognitive burdens. However, the seismic data
and well-logging data present different features due to the dif-
ference of data acquisition ways, so it is not suitable to make
use of seismic visualizationmethods for the exploration of the
well-logging datasets. In contrast to the existing visualization
techniques, our system enables users to explore large amounts
of well-logging data both comprehensively and interactively.
The system incorporates an automatic correlation algorithm
based on dynamic programming, as well as visual designs to
help users inspect and interpret the analysis results.

C. VISUAL ANALYTIC SYSTEMS
Visual analytics has played important roles in enabling dif-
ferent domain experts to explore and understand their data.
Many visualization tools are developed particularly for the
domain of micro-blogs, mobility and transportation, mas-
sive open online courses (MOOC). For example, the visu-
alization and visual analytics group in Peking University
proposes a series of micro-blog visual analytic systems.
Ren et al [34] developed a visual analytic system, Wei-
boEvents, to analyse events of micro-blogs. Chen et al [35]
presented an interactive visual analytics system to dis-
cover people’s movement patterns from sparsely sampled
geo-tagged micro-blog data. Then two map-like visualization
tools, D-Map [36] and E-Map [37], are successively devel-
oped to explore ego-centric and event-centric information
diffusion patterns in social media. While in the domain of

mobility and transportation, a series of visualization tools
are developed to improve intelligent transportation systems,
better supporting the analysis of human mobility, interests,
and lifestyles. For example, Zhou et al. [38] presented a
visual analytic system by employing a Word2vec model
and defining an iterative multi-objective sampling scheme
to help users quickly perceive the patterns of human mobil-
ity. Ma et al. [39] employed an Eulerian approach to study
urban crowd flow among a geographical network and a social
network. Al-Dohuki et al. [40] presented a visual analytic
system, SemanticTraj, to manage and visualize taxi trajectory
data by linking GPS points of trajectories to the location
keywords. Zhou et al. [41] applied a Non-negative Matrix
Factorization to classify and identify urban functional areas
based on spatio-temporal taxi OD trips, and a visual analysis
system is designed for insightful explorations of urban func-
tions. Chen et al. [42] introduced a visual analytic system,
VAUD, to support the visualization, querying, and explo-
ration of urban data. Wang et al. [43] designed a data struc-
ture, MobiHash, to depict population movement in adaptively
spatial and temporal representations based on phone call
records. For the web log data of learner interactions with
course videos recorded by the MOOC platforms, several
online visualization tools are proposed by the visual analytics
group of The Hong Kong University of Science and Tech-
nology. Shi et al. [44] introduced a visual analytic system,
VisMOOC, to analyse user-learning behaviors by visualiz-
ing video clickstream data from MOOC. Chen et al. [45]
developed PeakVizor to analyse the ‘‘peaks’’ in numerous
clickstreams. Fu et al [46] developed an interactive visual
analytics system, iForum, to allow for effectively discover-
ing and understanding temporal patterns in MOOC forums.
There are also many visualization tools developed to explore
other domain data, such as paper citation data [47], university
personality inventory data [48], air-quality data [49], [50],
high-dimensional data [51], [52] and smart manufacturing
data [53]. However, to the best of our knowledge, our study
is the first to propose such a visual analytic system for
geologists to explore stratigraphic correlations and patterns
existing in them with massive well-logging data.

III. PROBLEM CHARACTERIZATION
In this section, we first describe the characteristics of the
well-logging data provided by the domain experts. Then,
several analytics tasks are abstracted based on our discussion
with the experts. Moreover, a number of design principles are
proposed to satisfy the experts’ requirements.

A. DATA DESCRIPTION
The domain experts include two technical staff in a newly
formed petroleum technical service Limited company and a
professor in a Research Institute of Geology. At the beginning
of our cooperation, the two technical staffs provided us a
well-logging dataset and gave a brief introduction about this
dataset. The real well logs of a large-scale oilfield, which
consists of about 2,000 wells, are recorded in this dataset.
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FIGURE 3. A LAS file records the multi-log values of one well (a), which
are printed as multi-log curves on a long strip of paper to make an
engineering drawing. The geologists usually work with two horizontal
engineering drawings to correlate the two wells (b).

Each well has multiple log channels from 600 meters under-
ground to 3,000 meters underground, such as SP (self-
potential), R4 (resistivity log), GR (gamma log), AC (acoustic
wave time difference), and some others, which are recorded
in a LAS file as shown in Fig. 3(a). The depth-sampling
interval is 0.125 meter. So there are about 2,000 LAS files
in total and each LAS file includes about (3000-600) meters/
(0.125 meter/value) * 10 logs = 192,000 log values. There is
another excel file recording the longitude and latitude of each
well. The size of this well-logging dataset is 2.8G.

B. TASK ANALYSIS
After this well-logging dataset was provided, we hold semi-
nars with the three experts twice a month to help us connect
our collaborators’ needs with the data and present them the
latest prototypes. Three experts are denoted as E1, E2 and E3.
We collected the practical engineering problems they encoun-
tered and potential tasks they were interested in. In about
half a year of design and development, an interactive visual
analytics system had been improved continuously according
to the valuable ideas offered by the experts. A number of tasks
are formulated in this process as follows.
T1 (Global Exploration): The two technical staff E1 and

E2 pay more attention to the global correlation results. For
example, what is the overall connectivity rate in a large-scale
oilfield? What is the distribution of one layer and how do the
depths of this layer change in different area? Answering these
questions is helpful for their company to make the mining
plans and estimate the recoverable reserves of oil.
T2 (Pattern Exploration): There are many correlation pat-

terns within multiple wells and pair-wise wells. For example,
different sequence stratigraphy between two wells indicates
a good or poor correlation result, which reflects the local
changes of geological structures. An inconsistent correlation
usually exits in multiple wells. Suppose a layer a in well
A corresponds to another layer b in well B, which in turn
corresponds to a third layer c in well C , but a and c may
not be matched successfully. These patterns are essential for
geologic interpretations.
T3 (Detail Exploration): The professor E3 is very inter-

ested in the details of pairwise-well correlation. He wants to
explore the common characteristic of a pair of matched layers
in two wells. Besides, the structural variation underground

between two wells also needs to be visualized to facilitate the
local geological analysis.
T4 (User-Centered Exploration): According to their own

requirements, three experts all need to explore the correla-
tions of any number of interesting wells, which may produce
arbitrary shape. Meanwhile, it is necessary for them to select
interesting layers to display in these wells. In addition, they
suggested that the system should allow corrections to the
recommended correlation results.

C. SYSTEM OVERVIEW
Our workflow for visual analysis of stratigraphic correlation
based on well-logging data is shown in Fig. 4. First of all,
we propose a new stratigraphic correlation model to get
the matching relation for a pair of wells by pre-processing
the original well-logging data, integrating multi-log curves,
identifying and matching layers of the two wells based on
the dynamic programming. Then according to the correlation
results of any two adjacent wells, the local and global corre-
lations are estimated.

Next, several key design rationales based on the analyti-
cal tasks discussed with experts are identified to guide our
visualization design. According to the principle of ‘‘Overview
first, zoom and filter, then details on demand’’, a Map
View is designed to provide an overview of the entire oil-
field. Moreover, alternative visual encodings such as heatmap
and contour can be overlaid in Map View to provide a
multi-perspective analysis of the overall correlations (T.1).
Multiple selection models are also designed in Map View for
experts to select interested wells in different ways (T.4). Then
experts can explore the correlations between these wells care-
fully in Correlation View and highlight several layers through
interaction to better check the connections of them (T.2).
Particularly, the detailed information in a single pair of wells
can be examined in Matrix View and Attribute View. Experts
can interact with the correlation model directly in Matrix
View to understand the reasoning process of pairwise-well
correlation (T.2, T.3). Through the help of Attribute View
and Control Panel, experts can further easily manipulate the
correlation results, which also update the Matrix View and
Correlation View synchronously (T.4).

IV. PAIRWISE-WELL CORRELATION MODEL
In this section, we will introduce the pairwise-well
correlation model in detail, which includes four steps: data
pre-processing, integration of multi-log curves, layer identi-
fication and layer match based on dynamic programming as
shown in Fig. 5.

A. DATA PREPROCESSING
Suppose there are L log channels and K depth samples for
each well, which is denoted as a matrix Y as shown in
Formula (1), where each row represents multi-log values of
one depth and each column represents the values of one log
in different depth. Random noises on multiple logs can lead
to the statistical fluctuation change, which is irrelevant to the
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FIGURE 4. The pipeline for visual analysis of stratigraphic correlation based on well-logging data.

FIGURE 5. Work flow of pairwise-well correlation model. Step1: data pre-processing, step2: integration of multi-log curves, and step3:
layer identification and Step4: layer match based on dynamic programing.

properties of strata. So themedian filter is used here to smooth
the log values and reduce the sawtooth interferences, which
will provide a good continuity on the logging curves. Besides,
multiple logs have their own value ranges. To eliminate the
dimensional effects, all log values are normalized to their
maximum value and we ensure the maximum is 1.0.

Y =

y11 · · · y1l · · · y1L
... · · · ykl · · ·

...

yK1 · · · yKl · · · yKL

 (1)

B. INTEGRATION OF MULTI-LOG CURVES
Logging curves represent the physical properties of strata
changing with different well depth. But a single logging
curve always leads to the problems of multiple solutions and

uncertainties since the geological stratification is complex
and heterogeneous. So an integration of multi-log curves
is a better choice to reach the optimization of all informa-
tion. Principal component analysis is utilized to reduce the
redundant and complementary information formulti-log data.
A correlation coefficient matrix R in Formula (2) is con-
structed from Y ′, which is got by smoothing and normalizing
Y according to the data preprocessing in Section 4.1. One ele-
ment rij (1 ≤ i, j ≤ L) in R is the Pearson’s correlation coef-
ficient between two logs. The eigenvector (w1,w2, · · ·wL)
corresponding to the maximum eigenvalue of R contains a
higher variance than any of the original variables, where
wi is the weight of each log. Then the multi-log values are
integrated into one value by a weighted summation as shown
in Formula (3). That is the multi-log curves are integrated into
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one comprehensive curve in step 2 as shown in Fig. 5.

R =

r11 · · · · · · · · · r1L
... · · · yij · · ·

...

yL1 · · · · · · · · · rLL

 (2)

y′k =
L∑
l=1

wlykl (3)

C. LAYER IDENTIFICATION
When the physical properties of strata change dramatically,
the values of logging curves will also increase or decrease
suddenly. Such change of physical properties is the most
obvious in the formation interface of different lithology.
For the comprehensive curve integrating multi-log curves,
the characteristics of curve values varyingwith physical prop-
erties of strata are still preserved. Activity function [51] is
usually used to identify the layers of wells, which is sim-
ple and effective. So we apply the activity function to this
comprehensive curve to layer the wells. The discrete form of
activity function is defined as:

Ek =
k+h/2∑
i=k−h/2

(
y′i − ȳ

′
k

)2
(4)

whereEk represents the activity of the curve in depth k , which
is actually the variance of the curve values in the depth range
[k − h/2, k + h/2]. If the activity value is larger than a given
threshold, the corresponding depth is taken as a boundary of
this well, which is a top or bottom of one layer. Thus a well
is divided into many layers.

D. LAYER MATCH BASED ON DYNAMIC PROGRAMING
If there are two wells denoted as A and B, A has m layers
{A1,A2, · · · ,Am} and B has n layers {B1,B2, · · · ,Bn}. Each
layer has a series of values

{
y′k , y

′

k+1, · · · , y
′
k+s

}
, from which

several features can be computed for this layer such as the
mean, variance, thickness, centroid, maximum, minimum
and so on. Then d

(
Ai − Bj

)
is the sum of differences in

all features between two layers, measuring the distance or
similarity of Ai and Bj. What’s more, the weights of different
feature can be interactively adjusted by users according to
their experiences. Thus a match matrix Dmn consisting of
similarities of all possible pairs of layers in A and B is built,
where columns and rows respectively correspond to the layers
of the two wells.

C
(
Ai,Bj

)
= min


C
(
Ai,Bj−1

)
+ g

(
Bj
)

C
(
Ai−1,Bj−1

)
+ d

(
Ai,Bj

)
C
(
Ai−1,Bj

)
+ g (Ai)

(5)

An optimal path, that is the best sequence of matched
layer pairs in A and B, can be searched through this match
matrix Dmn based on dynamic programming. This relies on a
cumulative cost matrix, where each element C

(
Ai,Bj

)
is the

cumulative sum of distances on a path going from (A1,B1) to(
Ai,Bj

)
. But due to the missing strata, a number of layers may

only exist in one well, which should be matched with the gaps
in the other well. The distance between such layers and gaps is
denoted as g (Ai) or g

(
Bj
)
. We consider the distance between

any two layers in A and B is normally distributed, thus the
probability of d

(
Ai,Bj

)
in the range of [0, e] is 68.3% and e is

the standard deviation of all elements in Dmn. So if d
(
Ai,Bj

)
is larger than e, Ai and Bj are thought of unmatched. Because
Ai and Bj are both possible matched with a gap, g (Ai) +
g
(
Bj
)
= e, that is g (Ai) = g

(
Bj
)
= 0.5e. Meanwhile,

the boundary conditions including C (0, 0) = 0,C (Ai, 0) =
i ∗ 0.5e and C

(
0,Bj

)
= j ∗ 0.5e are complementary. Finally,

the recursion in formula (5) is used to find the minimum cost
ofC (Am,Bn) and a well-to-well correlation corresponding to
the optimal path of C (Am,Bn) is obtained.

V. VISUALIZATION DESIGN
In this section, the visual designs and interactions of our sys-
tem will be introduced in detail. Four coordinated views are
provided for experts to explore the stratigraphic correlations
and patterns existing in them at different scales.

A. MAP VIEW
The professor E3 said, ‘‘Generally speaking, the wells with
closer distance often have higher coherence. The number of
pairs of matched layers in neighboring wells is relatively
large. We always give priority to correlating these wells.’’
So we calculate a triangulation net on the surface of the
oilfield, where each point is a well (Fig. 6(a)). Thus each
well is connected with the nearest wells all around. Then
well pairs are defined on the edges of this triangulation net,
which are correlated first of all. The layers are different in
thickness even if they are a pair of matched layers in two
wells. So we use the total thicknesses of all matched layers
to measure the similarity of two wells instead of the number
of matched layer pairs. The higher the similarity is, the better
the connectivity rate of these two wells is. In the previous
design, the edges of the triangulation net were colored to
encode the similarities of two neighboring wells, which failed
to show the overall connectivity rate for experts. The thickly
dotted edges and triangles are often dazzling and desultorily,
so we use heatmap (Fig. 6(b)) to reduce the clutters and
enhance the visual perception of the overall connectivity rate
(T.1). The local connectivity rate is measured by the average
similarity of pairs of wells along the triangle sides in one area.
Color ranging from red to green encodes the better-to-worse
connectivity rate.

One staff E1 pays more attention to the marker horizons,
which are the widely distributed layers in the oilfield. Such
layers play an important role in the geophysical interpretation
and building geologic models. So we track and find the con-
nection net for each layer of all wells in the triangulation net
as shown in Fig. 6(c). The layers are ranked by the number of
wells consisting them. Thus users can select a higher-ranked
layer to explore its distribution. However, the 2D Map View
cannot convey the depth information, which is key to anal-
yse the uneven geological structures. So we illustrate a
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FIGURE 6. Multiple presentations of Map View are provided to address
the global exploration.

straightforward depth contour to show the depth changing
of one layer (T.1). Meanwhile, each contour is filled with
different shade of red to encode the layer’s depth as shown
in Fig. 6(d).

B. CORRELATION VIEW
Correlation View is linked with Map View.When users select
a number of wells of interest in Map View, the detailed
correlation results of these wells are displayed in Corre-
lation View. The domain experts are all not familiar with
visualizations, so it’s more necessary to provide them with
simple and intuitive representations. Particularly, there are
many industrial standards for the engineering drawings in
the field of geology. So we design the visualizations in cor-
relation view imitating these engineering drawings, which
can effectively reduce the experts’ cognitive burden. Each
well is designed as a bounding rectangle, where a num-
ber of rectangular blocks filled with different color are
drawn to represent the inner layers. A colored tape is added
to link a pair of matched layers to show the matching
relationship.

Different selection modes are provided for flexible explo-
ration of correlations of multiple wells (T.4). As shown
in Fig. 7(a), when a well is selected in Map View, the net
fragment around this well based on the triangulation net
will be highlighted. Meanwhile, the correlations of pairs
of wells along these triangle sides in this net fragment are
shown in Correlation View. This mode, named ‘‘star-wheel
mode’’, is very useful to automatically explore the correla-
tions between one well and its neighboring wells. But some-
times experts need to explore the correlations of wells along
one path or in one direction, so a second mode named ‘‘chain
mode’’ is designed in Fig. 7(b). Such mode uses a horizontal
layout to show the correlation results of a series of wells
selected by users, which is better to check the continuities

FIGURE 7. Different selection modes are provided for flexible exploration
of correlations of multiple wells.

of layers. The third mode is the most flexible, which allows
users to select a group of wells in a free-style way as shown
in Fig. 7(c). The last modewill be discussed in detail later. For
all modes, the layers can be highlighted or hidden by mouse
click. The first and third modes show the layouts of wells in
accord with their real geographic locations. But sometimes,
two wells are very close to each other, which will influence
users’ examination of the matching relationships of multiple
wells (T.2). So a drag-and-drop function is provided for users
to move the positions of wells conveniently.

C. MATRIX VIEW & ATTRIBUTE VIEW
Fig.2 shows the last selection mode, well-to-well mode.
When two wells are selected in Map View, their correlations
will be shown in Correlation View. The comprehensive curve
integrating multi-log curves is drawn next to the well. What’s
more, the correlation details of the two wells are visualized in
Matrix View to explain the reasoning process for correlating
layers (T.3). The pairwise-well correlation model is based on
dynamic programming, which applies the match matrix of
layers to search a best connection path. It is quite natural that
we choose the matrix metaphor to visualize the match matrix,
which is the base of our visualization design. For example,
one grid gij in the matrix is filled with different color to repre-
sent the similarity of two layersAi andBj in the corresponding
two wells A and B as shown in Fig. 8. The width and height
of this grid are decided by the thicknesses of the two layers Ai
and Bj. The best connection path is represented as an orange
Bezier curve linking all matched layer pairs to provide users
a quick overview about the correlation rule of the two wells
A and B. When users click this grid gij, the multi-log curves
in the two layers Ai and Bj will be displayed with green and
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FIGURE 8. Illustrations of visual designs in matrix view and attribute view.

blue colors in Attribute View to allow users comparing them
carefully. Besides, many interactions are designed for users
to refine and edit the correlation results for two wells (T.4).

1) SPLIT & MERGING
Due to the parameter setting in the pairwise-well correlation
model and noise data, there may be a number of layers too
thick or too thin. For example, if the threshold of activity
value is too large in the step of layer identification, many
peaks of activity curve are ignored to reduce the number
of boundaries of this well. Thus a number of layers are not
found and they form a thicker layer together with neighboring
layers. If the noise data are not filtered effectively, the fluc-
tuation of log values caused by these noise data can divide
the well excessively into many thin layers. Such layers have a
direct effect on the accuracy of correlation results. To address
this issue, users can split the layers in one position by mov-
ing the horizontal cutting lines in Attribute View as shown
in Fig. 1(d). Then our system will re-compute the similarities
of layers and re-find the optimal path. Matrix View will also
be updated synchronously. Similarly, when two neighboring
grids are selected in Matrix View, users can merge them into
a larger grid, that is merging two corresponding layers into
one layer. The similarities of layers and the optimal path will
be computed automatically again and Matrix View will be
updated too.

2) INSERTION & DELETION
Sometimes, users may think a pair of matched layers is
improper. For example, the differences between two matched
layers’ depths or thicknesses are beyond experts’ estimate.
So a pair of matched layer are allowed for users to delete.
Similarly, users may think a pair of unmatched layers should
be correlated according to their personal experience and
knowledge. Thus an insertion of layer pair is also provided,
but the crossed matched pairs are not allowed according to
the rule of geological structure changing. For example, there
has been a matched layer pair (Ai, Bj). Users cannot insert
a new layer pair (Ap, Bq) into the optimal path if p > i
and q < j, or p < i and q > j unless such matched pairs,
which are crossed with this new layer pair, are deleted. These
modifications of matched layer pairs will also update the
visualizations of Correlation View.

FIGURE 9. Exploration of local connections in different area: a, higher
connectivity rate and b, lower connectivity rate.

3) STRETCH & RECOVER
To better find the common characteristics of the multi-log
values of two layers, users can align these log curves by
stretching a thinner layer. Recover function is also provided
to compare these curves in real depths.

VI. EVALUATION
In this section, we introduce an in-depth case study involving
domain experts to assess the effectiveness of our system. The
three experts are all heavily involved with the development of
our visual analytics system. We encouraged them to explore
our system freely, and took notes of their discussions, find-
ings and opinions. Further, their feedbacks were collected to
analyse the strengths and weaknesses of our method.

A. CASE STUDY
1) EXPLORING GLOBAL CORRELATION
First of all, the two technical staffs wanted to examine the
overall correlations of the oilfield. After the well-logging
data were loaded, the Map View provided a heatmap pic-
ture (Fig. 9) by the interactions of the two staffs. From the
heatmap, they successively clicked two wells in the centers
of two areas under the mode of star-wheel. According to the
color encoding, they knew the two areas a and b in Fig. 9,
which were filled with red and yellow colors, were respec-
tively with a higher and a lower connectivity rate. When
the correlation results were shown in Correlation View, they
noticed that the numbers of matched layers were very differ-
ent. In the area a with a higher connectivity rate, any twowells
along the triangle sides had about 20 matched layers. While
in the area b with a lower connectivity rate, the number was
10 or so. The two staffs said the heatmap was very intuitive to
display the overall correlation results (T.1), since they could
know which place had a better connectivity rate, indicating
that the missing strata were relatively less. The professor
E3 thought these places with higher connectivity rates often
had a variety of layers, which are more important for them to
explore the complete sedimentary environment and geologic
time of this oilfield.

2) DIVING INTO LAYER DISTRIBUTION
Next, one staff E1 wanted to explore the distribution patterns
of different layers. He selected three layers in the contour

98130 VOLUME 7, 2019



Y. Liu et al.: Visual Analytics of Stratigraphic Correlation for Multi-Attribute Well-Logging Data Exploration

FIGURE 10. Exploration of distributions of different layer.

list of Control Panel to check their depth contours as shown
in Fig. 10(a), (b) and (c) (T.1). The three layers are already
ranked by the number of wells consisting them, which respec-
tively rank in the top, middle and bottom of the contour
list. The first layer is widely distributed in the oilfield while
the second layer is only distributed in the lower right cor-
ner of the oilfield. The distribution of the third filed is the
smallest, which covers a much small area. The other staff
E2 found that the color was darker at the lower left corner
in Fig. 10(c), which indicates the depth of the third layer is the
largest there. While there were more than one area with dark
red in Fig. 10(b), showing that the second layer fluctuates
more frequently. In comparison, the color changed gently
in Fig. 10(a), indicating the distribution of the first layer is not
only wide but also flat. The staff E2 appreciated this insight
that such widespread and stratigraphically steady layers are
very suitable for being a candidate marker horizon. They
play a key role in the in-depth examination of correlation
of strata. What’s more, they often indicate the oil-bearing
strata.

3) COMPARING WELL-TO-WELL CORRELATION PATTERN
To further investigate the pairwise-well correlation patterns,
the professor selected multiple pairs of wells to look into
the Matrix View and Correlation View (T.2, T3). Fig. 11(a)
shows a good well-to-well correlation, which corresponds to

FIGURE 11. Different well-to-well correlation patterns.

an optimal path approximately along the diagonal direction
on the match matrix. The two wells shown in Fig. 11(b)
have a different sequence of strata. For example, there are a
number of missing layers denoted as a red ellipse in the right
well. Conversely, there is another group of layers denoted as
a cyan ellipse that only appears in the right well. It has to
be noted that several layers in the green ellipse are parallel
and the depth difference between the matched layer pair is
almost the same. The professor told us the missing layers
were often an isolated event, which only occurs in one well.
The inclined parallel matched layer pairs often reflect the
geological events. The correlation result in Fig. 11(c) is the
worst, which only shows few pairs of matched layers and their
depth differ greatly.

4) DIAGNOSING WELL-TO-WELL CORRELATION RESULT
After the above exploration, the professor showed interest in
exploring the details of matched layers. When he examined
the Matrix View carefully, a prominent layer was found as
shown in Fig. 12(a), which had a larger thickness and lighter
color (T.3). Then the professor clicked one grid, which inter-
sected the optimal path but not on it. He noticed the logs in
the channel ofML1 (micro-normal) andML2 (micro-inverse)
immediately. Because one part of the blue log curves are very
similar with the green ones, which have an obvious trough
of wave. The professor thought this feature was eliminated
since the adjacent noise data influenced the identification of
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boundaries of the curves. Thus the features in a long curve and
a short curve are very difficult to match successfully. So after
the professor split this layer, the correlation results were com-
puted again. A better andmore reasonable correlation result is
found as shown in Fig. 12(b) (T.4). A previous matched layer
pair is deleted and the pair of layers processing the ‘‘trough’’
feature found is added to the optimal path. He also observed
that the other matched layer pairs were preserved, which
demonstrates the stability of our pairwise-well correlation
model.

B. EXPERT FEEDBACKS
After the three experts explored our system fully, we con-
ducted an interview with them to discuss the system usability,
visual design and interaction, model result, system limitation.
Their opinions are summarized below.

1) SYSTEM USABILITY
The three experts all appreciated the insights found by our
system. They all believed our system had wide applications
and commercial values. More encouragingly, two technical
staff would like to introduce our system to their company.
One staff thought this system could be used to explore the
well-logging data for other oilfields, greatly improve the
efficiency of their company and save a lot of manpower and
resources. The other staff told that in their present jobs, they
often had to use a dozen of professional cartographic software
such as Surfer, AutoCAD, Petrel, Mapviewer to generate
such visualization results. In addition, they expressed that the
correlations between well-to-well, multi-wells and all wells
couldn’t be synchronously provided in previous software.
In contrast, they both agreed that our system could help users
quickly and effectively explore the correlation patterns at
different scales. The map view, correlation view, matrix view
and attribute view respectively provide macro, meso-level,
micro perspectives for users to gain insights into stratigraphic
correlations. At the same time, they all suggested that for
those users who were not familiar with stratigraphic correla-
tions or visualizations, it might take them more time to learn
how to use our system. So it is necessary to build a help
document in our system to introduce the coding scheme in
detail.

2) VISUAL DESIGN AND INTERACTION
The professor commented that the map view presented much
useful geographic information such as rivers and mountains.
Thus when users explore the stratigraphic correlations in
context of these geographical conditions, it’s convenient for
them to generate and confirm hypotheses, gain deeper under-
standings of geologic structures. The three experts all felt
the multiple presentations of map view were vivid, which
could assist them to quickly perceive the interesting area.
Given that they can further flexibly explore the details there
by different selection modes. For example, users can drag
and drop wells to adjust the layout in correlation view to
better check the relationships between wells. Besides, the

professor pointed that the visualizations in Matrix View are
useful and inspiring but he had never thought of computing
them in this way before. Since the black box about the
mechanics of stratigraphic correlations is opened to users.
The color encoding and curves convey more information
for users to understand the process of stratigraphic corre-
lations using dynamic programming. He also believed that
our system provided user-friendly interactions in matrix view
and attribute view to allow users examining and refining
the correlation results easily and quickly. Such kind of
visual designs and interactions provide a style of ‘‘what you
see is what you get’’, which is sufficient for the experts’
demands.

3) MODEL RESULT
The three experts all expressed that most correlation results
generated by our model look pretty good after they examined
these results by the attribute view. But two types of errors
often occur. One is that two sections in neighboring wells
should be matched but not matched in the final results. This
is caused by the noise data, which significantly influence the
identification of boundaries of layers. Thus the corresponding
two sections are often divided into two layers with large
difference in length. So a number of features such as the
mean, variance, and thickness are not calculated accurately,
leading to the mismatching of them. The other is two sections
in neighboring wells should not be matched but matched in
the final results. The experts found that there were a few
sections in neighboring wells, of which the log curves were
symmetrical. Thus the features of these two sections are
calculated almost the same. Though these errors can be found
and refined by our visualizations and interactions, it is still
relatively time-consuming for users. So more features like
the correlation coefficient between two sections need to be
considered in the model in future.

4) SYSTEM LIMITATION
Along with the valuable comments about the usability of our
system, the visual designs and the model results, there are
also several limitations proposed by experts to be further
improved. First, the professor suggests that the interfaces
of adjusting the parameters in the pairwise-well correlation
model should be provided, though the number of parameters
in this model is very large. Second, the selection of colors
is another issue. There are a large number of layers and
the same color could be re-used easily, which can create
confusion to users. Third, the experts thought another view
should be provided to show the statistical characteristics
of multi-log curves in one layer. This is very useful for
them to better identify the lithological characters of layers
and label them, such as oil, gas, water, coal, and others
based on their experience and knowledge. Finally, the two
staffs hope our system can support users to capture and save
the selected views. Thus the visualization results in these
views can be printed as reports or auxiliary materials, which
are useful for them to make development plan and build
repositories.
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FIGURE 12. Refining the correlation results of two wells in a detailed
level.

VII. CONCLUSION
To facilitate the understanding of stratigraphic correlations
and patterns existing in them, we worked closely with three
domain experts to iteratively develop an interactive visual
analytics system. First, an automatic correlation model is
applied and improved to determine correlations between pairs
of wells. Then a set of visualization and interactions are
designed to explore the correlation patterns and geologic
structures at different scales. An in-depth case study involv-
ing field experts is provided, demonstrating our system can
effectively help experts to find useful insights in real applica-
tions.

A. ADVANTAGES
According to the feedbacks of experts, our iterative
user-centered design allows users to effectively find and
understand correlation patterns of multi-attribute well-
logging data. Coordinated views enable users exploring the
results from macro to micro, from the surface to the inside.
Particularly the black box about the mechanics of strati-
graphic correlations is opened to users, and the targeted inter-
actions are also provided to further allow users examining
and refining the correlation results easily and quickly on the
model.

B. DRAWBACKS
However, a number of limitations still exist in the current
prototype. For example, more interfaces of the correlation
model should be provided for users to optimize the related
parameters. Color selection and assortment also need to be
further improved to reduce the visual clutters. But above
all, how to increase the robustness of our correlation model
is essential for users to get an accurate interpretation of
geological structure. So in the future, we plan to improve

the accuracies of the pairwise-well correlation model con-
tinually by incorporating machine learning methods. The
manually labeled well-logging data can be trained to mine
much hidden knowledge. Seismic data can also be applied to
reduce the uncertainties and errors of the correlation results,
since they can provide many reasonable constraints in the
correlation process. Moreover, to enhance the reliability of
our system, the correlation results will be compared with
human-annotated dataset. Further, we plan to combine the
seismic data and well-logging data to explore the geological
structures.
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