
Received May 7, 2019, accepted July 8, 2019, date of publication July 16, 2019, date of current version August 14, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2929075

Task Caching, Offloading, and Resource Allocation
in D2D-Aided Fog Computing Networks
YANWEN LAN , XIAOXIANG WANG, DONGYU WANG , ZHAOLIN LIU , AND YIBO ZHANG
Key Laboratory of Universal Wireless Communication, Ministry of Education, Beijing University of Posts and Telecommunications, Beijing 100876, China

Corresponding author: Xiaoxiang Wang (cpwang@bupt.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 61701038, and in part by the
Fundamental Research Funds for the Central Universities.

ABSTRACT In this paper, we investigate the allocation of resource in D2D-aided Fog computing system
with multiple mobile user equipments (MUEs). We consider each MUE has a request for task from a task
library and needs to make a decision on task performing with a selection of three processing modes which
include local mode, fog offloading mode, and cloud offloading mode. Two scenarios are considered in this
paper, which mean task caching and its optimization in off-peak time, task offloading, and its optimization
in immediate time. In particular, task caching refers to cache the completed task application and its related
data. In the first scenario, to maximize the average utility of MUEs, a task caching optimization problem
is formulated with stochastic theory and is solved by a GA-based task caching algorithm. In the second
scenario, to maximize the total utility of system, the task offloading and resource optimization problem
is formulated as a mixed integer nonlinear programming problem (MINLP) with a joint consideration of
the MUE allocation policy, task offloading policy, and computational resource allocation policy. Due to
the nonconvex of the problem, we transform it into multi-MUEs association problem (MMAP) and mixed
Fog/Cloud task offloading optimization problem (MFCOOP). The former problem is solved by a Gini
coefficient-based MUEs allocation algorithm which can select the most proper MUEs who contribute more
to the total utility. The task offloading optimization problem is proved as a potential game and solved by
a distributed algorithm with Lagrange multiplier. At last, the simulations show the effectiveness of the
proposed scheme with the comparison of other baseline schemes.

INDEX TERMS Fog computing, computation offloading, resource allocation, cache, D2D, potential game.

I. INTRODUCTION
In recent years, the world has witnessed a growing number
of intelligent devices and the accompanied wireless data
traffic [1], [2]. It is foreseen that the mobile data traffic will
increase even more significantly due to the development of
the novel sophisticated applications, such as face recognition,
interactive gaming and augmented reality [3]. These emerg-
ing applications and services need not only extensive com-
puting capabilities and vast battery energy, but also high data
rate. However, from the users’ point of view, the computing
capability of equipments are constrained, which has a serious
impact on the delay performance and operational costs of
services in fifth generation (5G) wireless networks.

The associate editor coordinating the review of this manuscript and
approving it for publication was Shree Krishna Sharma.

To overcome such disadvantages, a new paradigm Fog
computing network is proposed which provides cloud ser-
vices at the edge of the network [4]. Fog computing is defined
as a scenario where a huge number of heterogeneous ubiq-
uitous and decentralized devices communicate and poten-
tially cooperate among them to perform tasks without the
intervention of third parties [5], [6]. With the help of Fog
computing, MUEs no longer need to offload all of their tasks
(e.g, high quality video streaming, mobile gaming, etc.) to the
central and remote cloud, which enable their requirement to
be satisfied at anytime and anywhere. By deploying numerous
Fog notes (FNs) in the edge network, MUEs can offload their
tasks to one of Fog servers or the cloud server, which can not
only reduce the backbone traffic, but also decrease the latency
for delay sensitive services [7], [8].

The models of Mobile edge computing and Fog computing
are seemed similar, but actually have many differences in the

104876 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 7, 2019

https://orcid.org/0000-0002-7019-7190
https://orcid.org/0000-0001-6751-3589
https://orcid.org/0000-0002-6736-7654
https://orcid.org/0000-0002-9058-4489

Y. Lan et al.: Task Caching, Offloading, and Resource Allocation in D2D-Aided Fog Computing Networks

methods for monitoring, processing, and conveying data. The
FCNs are heterogeneous based on different kinds of elements
including routers, switches, access points, IoT gateways and
so on [9]. This architecture enables data collection, process-
ing and storage at the local area network which achieves
less latency in comparison to the cloud. Edge computing
refers to data processing at the edge of a network close to
the data source within the Radio Access. The MEC nodes
or servers are usually co-located with the Radio Network
Controller which is close to mobile subscribers and are more
independent in decision making. This results in offering con-
text aware application and services with ultra-low latency and
high-bandwidth requirements.

In mobile Cloud computing (MCC), significant contri-
bution has been achieved [10]. Cloud server is supposed
to have sufficient computing capability, but incurs long
roundtrip corresponding transmit delay. In the mobile Fog
computing system, the computing units are deployed on the
side close to MUEs, which can largely save the transmit
delay. However, due to the limited computiontal power in
the Fog server, sometimes the quality of service (QoS) of
each application cannot be guaranteed, in which situation
efficient allocation of Fog computing resource should be
considered [11].

Up to now, many precious works have been done in the
scenario of Fog computing. To the best of our knowledge,
their works can be classified into following aspects.
• Content offloading. The content caching is known
as caching the popular contents in the caching enti-
ties (users equipments, Fog notes, etc.) located at
edge network, with which the delay and energy con-
sumption of end users who requesting content would
be largely decreased. The researches in such aspect
mainly concentrated on how to design the caching
strategies [12]–[18]. Some works optimize the caching
policy with a jointly consideration of user mobility [13],
user social relationship [14] and D2D sharing [17], [18].

• Task offloading. The main concern of task offloading
strategy is what, how and where to offload MUEs’ tasks
with the current network conditions. Various works have
been done in order to achieve an optimal offloading
policy [19]–[28]. The purposes of these works are to
decrease the signal overhead [19], to maximize the total
utility [20] and to decrease the serving delay or energy
consumption [21]–[28] of MUEs with QoS require-
ments guaranteed.

• Resource allocation. As the channel conditions and
the requested tasks of MUEs are heterogeneity, a joint
resource allocation strategy includes channel allo-
cation policy, transmit power allocation policy, and
computational resource allocation policy are criti-
cal to the ultimate QoS of MUEs [29]–[34]. For
this problem, the researchers have proposed various
optimization strategies, such as the allocation radio
resource [29]–[31], computing resources [32]–[34]and
so on.

From now on, although the benefits of caching have
received much attention on Fog computing networks, but the
main concern of caching in most works is traffic offloading,
which is not suitable for the hybrid services having a large
data size and needing quantities of computation resource for
processing (e.g., scenes rendering task in VR). Moreover,
the potential advantages of D2D communication technology
are still not totally explored in the scenario of Fog computing.

As MUEs have the caching ability which enables to cache
related data of tasks requested, more gains can be achieved
by adopting D2D. The advantages for applying task caching
in D2D-aided Fog networks mainly lie in two points: firstly,
when MUEs request the task they have cached, the computa-
tion and transmission can be omitted, which can bring local
gains by saving computational energy and delay. Secondly,
combined with D2D, lots of MUEs’ requests can be satisfied
by the cache of other adjacent MUEs thanks to a distributed
task caching, which can provide a good chance of data shar-
ing. By task caching, requests are more likely to be satisfied
by the MUEs’ local cache or other MUEs nearby. Thus the
resource consumption and the serving delay can be largely
decreased.

Inspired by the concept of task caching proposed in [35],
we further investigate the benefits of task caching for the
D2D-aided Fog computing networks. Task caching refers to
the caching of completed task applications and their related
data in MUEs’ local caching entities which they have been
processed. In this paper, we propose a caching enabled task
offloading and resource allocation scheme in D2D-aided Fog
compuing networks. The task caching policy, MUE associ-
ation policy, task offloading policy and resource allocation
policy are jointly considered and optimized. Our goal is
maximizing the average utility of MUEs in terms of serving
delay and process energy consumption.

There are two scenarios considered in this paper, which
mean task caching in D2D networks and task offloading and
its optimization in D2D-aided Fog networks. We consider
these two scenarios separately as caching is occurred in
off-peak time while the task offloading should be handled
timely. Moreover, the task caching and the task offload-
ing are happened and optimized in different periods. The
task caching refers caching the task requested before based
on the history or preference of requesting, in which time,
future request is unknown and not happened. The decision
of task caching policy is based on the preference of MUE,
the attributes of requested tasks and the other chance of
D2D sharing. The task offloading and its optimization is
based on the status of task caching, current channel condition,
etc. In addition, the purpose of task caching is to improve
the performance when user requesting, in which time the
future requests and the conditions of request users are both
unknown.

The contribution of this paper are listed as follows.
1) For the scenario which means task caching and its

optimization, we propose a novel task caching scheme in
D2D-aided Fog wireless networks. Specially, by adopting

VOLUME 7, 2019 104877

Y. Lan et al.: Task Caching, Offloading, and Resource Allocation in D2D-Aided Fog Computing Networks

the stochastic theory, the average utility of MUEs with ran-
dom caching probability is formulated.To improve the gains
bring by local caching and D2D sharing, a task caching opti-
mization problem is formulated. This problem is nonlinear
programming problem and non convex. In order to solve
it, a near-optimal task caching algorithm based on GA is
proposed.

2) For the scenario of task offloading, a task offloading
optimization problem is formulated with the purpose of max-
imizing the utility of system. In this problem, the MUEs
association policy, offloading selection policy and computa-
tional resource allocation policy are taken into account in the
problem.

3) Due to the NP-hard properties of the task offloading
optimization problem, we decompose it into multi-MUEs
association problem (MMAP) and mixed Fog/Cloud task
offloading and and optimization problem (MFCOOP). On the
one hand, with the consideration of preventing multiple-FN
matching conflict, an Gini coefficient-based algorithm is
proposed which can effectively select the MUEs who are
most important to the total utility in each FNs. On the other
hand, a distributed task offloading algorithm is proposed to
solve the MFCOOP. Thus the optimal offloading policy and
resource allocation strategy would be obtained.

4) We investigate the performance of the proposed scheme
through extensive numerical experiments. Simulation results
show that the proposed scheme outperforms other schemes.

The paper is organized as follows. The system model is
described in Section II. The task caching problem and its
solution are given in Section III. Section IV provides the
formulation of task offloading and resource optimization
problem, meanwhile, the solution to the problem is also
given. Simulation results are presented in Section V. Finally,
Section VI concludes this paper.

II. SYSTEM MODEL
In this section, we introduce an D2D-aided Fog computing
system model with a hierarchical computing structure which
consists of a set of MUEs and FNs. In such system, the FNs
can provide MUEs seamless access and abundance of com-
puting resources in their close proximity, while the cloud is
seen as a supplement to FNs as it has sufficient computing
resource. Each MUE has a choice to offload its tasks to FNs,
remote cloud, or perform them locally. Fig. 1 illustrates an
instant of such Fog computing system.

A. NETWORK MODEL
We assume there is M FNs in the system, denoted by M =

(1, 2, · · · ,M). We further assume that there is K MUEs
denoted by K = (1, 2, · · · ,K). Each FN is installed with a
Fog server and connects to the remote Cloud via wired optical
fibers. Assume the remote Cloud has sufficient computing
resources, while the computing ability of each Fog server is
limited. We model the Cloud server as a large number of vir-
tual machines with each has a dedicated processing capacity
of f0 (in cycles per time unit). Similarly and without loss of

FIGURE 1. The considered D2D-aided fog computing system.

generality, we model each Fog note as a virtual machine with
a processing power of f0 as same as that in the cloud server
(in cycles per time unit) like the work in [9]. The servers help
MUEs for task computing. If there is more than one MUEs
accessed in a same FN, the processing power of the associated
FN will be shared.

We denote ai,m ∈ {0, 1},∀i ∈ K,∀m ∈ M as the asso-
ciation decision of MUE i. Specifically, ai,m = 1 indicates
that the MUE i is associated FN m, which means MUE i
can offload its tasks to the FN m or relay them to the Cloud
through FN m. Specially, if {ai,m = 0}∀m∈M, MUE i is
not associated with offloading mode, where three cases will
be occurred: i) The requested MUE has cached the required
task. ii) The request can be satisfied by other MUEs who
have cached the task by D2D. iii) It has to perform its task
locally if it cannot be served by its local cache or other
MUEs.

Assume MUEs are equipped with multi-RAT and may
access more than one FN but only be served by a server
in Fog or Cloud during task processing. We define a pro-
file of the offloading decision as Y = {y1, y2, · · · , yK }.
Specially yi = 0 means the MUE i is associated with Fog
computing mode, otherwise, Cloud computing mode will be
applied.

B. TASK CACHING MODEL
Assume there is a task library consists ofN computation tasks
denoted by N = {1, 2, · · · ,N }. For heterogeneous comput-
ing tasks, we define Ln(Dn, Sn, θn) as the task of n, where
Dn denotes total computational resource required by task Ln,
which is presented as the number of cycles for processing
a unit bit of data. Further more, Sn shows the data size in
bits of task Ln. Different from many of works, we consider
the transmission of task results cannot be ignored which is
more practical as the results of many of the services have
a certain amount of data. The ratio of data size after com-
putation to data size before computation for Ln is denoted
by θn.

Each MUE will random cache its task results(e.g.,task
related data) after the completion of task processing

104878 VOLUME 7, 2019

Y. Lan et al.: Task Caching, Offloading, and Resource Allocation in D2D-Aided Fog Computing Networks

according a carefully designed caching policy. We denote the
caching probability distribution by Q = {Q1,Q2, · · · ,QN },
where QN is the caching probability for the result of task N .
In our setting, each MUE cache task or request task once
while different MUEs can request the same task based on
their preferences. In this study, the requested MUEs are
called requesters while the MUEs who have cached the task
needed by others are called responders. In many scenar-
ios that task requests are highly concentrated in the spatial
domain and asynchronously or synchronously repeated in
the time domain, storing computation results for future reuse
can greatly reduce the computation burden and latency. For
instance, in augmented reality subscriptions for better view-
ing experience in museums, a processed augmented reality
output may be simultaneously or asynchronously used by
visitors in the same place [28]. When the task is processed
and obtained by requestingMUEs, the task processing results
should not be abandoned as they are useful for the future
requests. Consider that the requested task would be asked
again in the furfure time or be used by other D2D MUEs
nearby. In this paper, we consider a random task caching
policy because a deterministic caching schemes is difficult
for the management and updating of the caching results as
the idle capacity ofMUEs and the size of results are heteroge-
neous. What’s more, consider the future requests are random,
the random cache caching policy is more able to achieve
a high diversity caching placement which can improve the
chance of D2D sharing and bring a potential gain for task
offloading.

The process of task caching and offloading is as fol-
lows. A requester firstly requests a task according its per-
sonal preference. If the task has been cached on the its
local cache, it can be directly satisfied without consum-
ing computational resource. Otherwise, if there are at least
one responder nearby, an optimal D2D transmission link
will be established which enables the related results subse-
quently delivered with a cost of transmission. If neither of
its local cache nor the adjacent MUEs can serve the request,
Fog offloading mode or Cloud offloading mode will be
adopted.

For simplicity, we assume that the requests ofMUEs follow
the same Zipf distribution P = (P1,P2, · · · ,PN), in which
the popularity is ranked in descending order. The distribution
of many Internet services was proven to follow Zipf’s law.
Similar to Internet services, the distribution of computing
services also follows Zipf’s law [28]. As the assumption
in [28], [35], in this paper, we assume the popularity of tasks
is follow a Zipf’s law. The popularity of tasks can be calcu-
lated by

Pn =
n−β

N∑
j=1

j−r
, ∀n ∈ N (1)

where exponent β is the popularity distribution parameter
which reflects the skewness of popularity.

C. COMMUNICATION MODEL
There are two communication modes include D2D commu-
nication and celullar communication. In this paper, all the
MUEs occupie the orthogonal spectrum in both D2D link and
cellular link and the cell reuses the bandwidth resource of
another cell. That ensure there are no interfere betweenMUEs
no matter which mode they are associated with in a same cell.

1) COMMUNICATIONS IN D2D NETWORKS
The direct discovery strategy is considered in this paper [36].
UE devices participated in the device discovery pro-
cess to periodically transmit/receive discovery signals syn-
chronously. In a Device discovery period, a requester will
transmit discovery signals that may be detected by other
UE devices. The information in the discovery signals should
include identity and application-related information (e.g.,
cache state). The corresponding responder who have cached
the requested task would response to the discovery signal.
The requester will establish a connectionwith themost proper
responder with a maximal downlink signal strength.

In the cache-enabled D2D networks, if a requester cannot
be satisfied by their local caches, it should ask from other
MUEs by D2D communications. Specially, for a D2D link
between requester i and its responder j, the transmit rate can
be calculated by

r(xi,j) = Blog(1+
pjxi,j−agd2di,j

σ 2 +
∑

z∈K ,z 6=i
Iz,j

) (2)

where pj denotes the transmit power of MUEs j, xi,j is the
distance between requester i its responder j, a represents
the path loss exponent, gd2di,j means the small-scale fading
coefficient, σ 2 is the noise power, I is the interfere come
from other concurrent transmit links occupying the same
channel.In this paper, we assume all of MUEs have the same
transmit power(e.g.,pi = pj,∀i, j ∈ K). For convenience,
we use pu to denote the transmit power of MUEs.
According to Formula (2), the time consumption of for

the delivery the results of task n from the responder j can be
calculated by

ti,j,n =
θnSn
r(xi,j)

(3)

We assume the distribution of MUEs follows the Poisson
distribution with a parameter of λ. According to the feature of
the Poisson process, the distribution of requesters for task n
and its responders are modeled as two mutually independent
homogeneous Poisson point processes (PPPs). As mentioned
before, eacch MUE have the chance to become a requester
or responder which is determined by their caching state and
other neabyMUEs’ requesting state. In instance, all of MUEs
have a probability to cache the result of task n that can be the
potential responders. Thus, we can get that the distribution of
task n is following the Poisson distribution with the parameter
of Qnλ.

VOLUME 7, 2019 104879

Y. Lan et al.: Task Caching, Offloading, and Resource Allocation in D2D-Aided Fog Computing Networks

For task n, considering the geographical locations of
MUEs, the distance between a requester and its nearest
responder cannot be directly got, while the probability density
function of the association distance can be obtained according
to the works in [37]

f (xn,Qn) = 2πxnλQne−λQnπxn
2

(4)

where xn means the distance between a requester and its
nearest responder of task n.

Assume MUE i is a requester of task n and MUE j is
the nearest responder, by replacing the parameter xi,j by xn
in Formula (2) and integrating Formula (2)-(4), the average
transmit rate for the results of task n can be represented as

rn(Qn) =
∫ R

0
r(xn)f (xn,Qn)dxn (5)

where R is maximum communication distance of D2D comu-
nication.

The average D2D comunication time of task n’ results for
a typical MUE i can be caculated by

tDi,n =
θnSn
rn(Qn)

(6)

The corresponding average energy consumption for a
requester i can be got by

EDi,n = putDi,n (7)

2) COMMUNICATIONS IN CELLULAR NETWORKS
Asmentioned before, if a requester cannot find its responders
nearby, offloading mode should be adopted. For a requester
in offloading mode, the task uploading in uplink and result
delivery in downlink should both be considered.

The transmit rate of requester i associatedwith the Fog note
m can be calculated by

Rui,m = B log(1+
pul
−a
i,mg

u
i,m

σ 2 +
M∑

o=1,o6=m

K∑
j=1,j 6=i

pul
−a
j,mg

u
j,m

) (8)

where li,m denotes the distance between UE i and the Fog note
m, gui,m is the channel gain of uplink.
Thus, the uploading delay of task n for MUE i can be

calculated by

tui,m,n =
Sn
Rui,m

(9)

The corresponding energy consumption in uplink can be
presented as

Eui,m,n = putui,m,n (10)

Smilarlly, we can get its downlink rate, which can be
calculated by

Rdm,i = B log(1+
pml
−a
i,mg

d
i,m

σ 2 +
M∑

o=1,l 6=m

K∑
j=1,j 6=i

pol
−a
i,o g

d
i,o

) (11)

where pm is the transmit power of FN m, gdi,m is the channel
gain of the offloading downlink.

The delivery delay and its corresponding energy consump-
tion can be respectively represented as

tdm,i,n =
θnSn
Rdm,i

(12)

Edm,i,n = pmtdm,i,n (13)

D. COMPUTING MODEL
For a requester i cannot find its responders nearby, one of
the computing modes will be associated which include local
computingmode, Fog computingmode and Cloud computing
mode.

1) LOCAL COMPUTING
Let wi denotes the the computational power of MUE i,
the computation execution time of task n by local computing
can be calculated by

t li,n =
Dn
wi

(14)

We use the same model of energy consumption as in [38].
The energy consumption of computing locally can be repre-
sented as

E li,n = κiDn(wi)
2 (15)

where κi denotes the energy effective switched capacitance of
MUE i relying on the its chip architecture.

2) FOG COMPUTING
The computation execution time of FN m for the task n
requesting by MUE i can be calculated by

t fi,m,n =
Dn
fi,m

(16)

where fi,m represents the allocated commputational resource
in MEC server for MUE i who connects to FN m.

The energy consumption of computing in FN m can be
represented as

Ecpti,m,n = κserverDn(fi,m)
2 (17)

where κserver denotes the energy effective switched capaci-
tance of Fog servers.

3) CLOUD COMPUTING
Similar to Fog computing, for a typical MUE i, the compu-
tation execution time of task n be processed in cloud can be
calculated by

tci,n =
Dn
f0

(18)

The corresponding energy consumption for computing can
be represented as

Ecpti,n = κserverDn(f0)
2 (19)

104880 VOLUME 7, 2019

Y. Lan et al.: Task Caching, Offloading, and Resource Allocation in D2D-Aided Fog Computing Networks

TABLE 1. Some parameter notations used in this paper.

It should be mentioned that the energy effective switched
capacitance in Fog servers and the cloud server are seemed as
equally in this paper.

III. TASK CACHING PROBLEM AND ITS NEAR-OPTIMAL
SOLUTION
In this section, we introduce the formation of task caching
optimization problem. It should be noticed that task caching is
carried out in off peak time(e.g., midnight) when the number
of requests and the load of networks are both small, which
ensure the caching placement policy and the caching updating
policy be conveied and implemeted efficiently and accurately.
The caching policy and the cache updating policy should
well designed according to the analysis of MUEs’ perfor-
mance during long-term statistics. Considering the fact that
the different properties and performance criterions of delay
and energy of tasks, We use the subtraction between system
revenues and costs for delay decreasing and energy saving as
the system utility function.

A. PROBLEM FORMATION
Comparing to the task offloading and local processing, task
caching and sharing in cached-enabled D2D networks can

largely save the energy consumption and the delay for com-
puting and the transmission of task-realted data. The aim of
caching scheme optimization is to maximize the total benefit
gained by the MUEs’ local cache and contents sharing.

In order to evaluate the benefits of saving time and energy
for the future requests in D2D networks, it is necessary to
obtain the expectation of caching gain in random case as the
future requests and caching state is random. According the
state of task caching in D2D networks, there are two cases
which mean self-satisfaction, D2D satisfaction.

Case I: self-satisfaction
If the request task has already been processed and has

been cached in the local cache of a requester, the task result
would directly satisfy the requester without any additional
computational cost.

The average utility of task caching bring by local caching
can be expressed as

U l
ch ,

{
K∑
i=1

N∑
n=1

PnQn(ρt t li,n + ρ
eE li,n)

}
/K (20)

In Formula (20), (PnQn) represents the probability of each
MUE who requests task n that can be satisfied by its local
cache. (ρt t li,n + ρ

eE li,n) means the the utility by preventing
processing task locally in the case of self-satisfaction.

Case II: D2D-satisfaction
If the request task has not been cached in the requester‘s

local cache but can be got from its responder, a D2D trans-
mission link will be established and the task result would be
directly delivered with the cost of transmission.

The average utility of task caching bring by D2D sharing
can be expressed as

Ud
ch ,

{ K∑
i=1

N∑
n=1

Pn(1− Qn)
[
ρt (t li,n − t

D
i,n)

+ρe(E li,n − E
D
i,n)
] }
/K (21)

where ρt denotes revenue coefficient per unit of saved delay
compared with local computing. ρe is the revenue coefficient
per unit of saved energy compared with local computing.

In Formula (21), [Pn(1− Qn)] represents the probability
of each MUE who requests task n that can’t be satisfied by
its local cache. [(ρt (t li,n − tDi,n) + ρ

e(Ei,local − EDi,n)] means
the utility obtained by decreasing processing time and saving
energy compared with local processing in the case of D2D-
satisfaction.

In consequence, the optimization problem of task caching
in our scenario is shown as

max U ch
= U l

ch + U
d
ch

s.t. C1 : Qn ≥ 0,∀n ∈ N

C2 :
N∑
n=1

Qn ≤ 1,∀n ∈ N (22)

VOLUME 7, 2019 104881

Y. Lan et al.: Task Caching, Offloading, and Resource Allocation in D2D-Aided Fog Computing Networks

Constraints C1 means all of tasks in the task library have a
possibility to be cached by MUEs. C2 limits the cumulative
cache probability of all tasks in the library to 1.

By integrating the Formula (5) - (7), we can get a reforma-
tion of Formula (21) as

Ud
ch =

K∑
i=1

N∑
n=1

Pn(1− Qn)
[
ρt t li,n −

ρtθnSn
rn(Qn)

+ρe(E li,n −
ρepuθnSn
rn(Qn)

)
]

(23)

The Formula (23) indicates the utility bing byD2D sharing.
From the observations of Formula (23), the utility function
of D2D sharing is nonlinear about variable Pn (∀n ∈ N).
Therefore the problem of (22) is nonlinear and noconvex,
which is difficult to find an optimal solution in polynomial
time.

B. NEAR-OPTIMAL TASK CACHING OPTIMIZATION
In this section, we give the solution to the task caching
optimization problem. As mentioned before, it is hard to
obtain the optimum equilibrium solution to problem (22) in
polynomial time. Thus, genetic algorithm(GA) is adopted in
order to obtain a sub-optimal solution.

Genetic algorithm is a heuristic search method to approx-
imate the optimal solution, which is inspired by Darwin’s
natural evolution theory. The process of the inheritance algo-
rithm embodies the ‘‘natural selection theory’’ in evolution
theory, in which the most suitable individual will be chosen
to breed the next generation. The algorithm is widely used in
machine learning, combinatorial optimization and intelligent
computing.

Similarly, in the genetic algorithm, each solution is seemed
as an individual which is coded into a binary ‘‘Gene string’’.
Whether a solution will be selected or not in each ‘‘genera-
tion’’ is based on its fitness value. A higher the fitness value
means a higher chance of the individual will survive and
reproduce. After a process of selection, gene crossing, Gene
mutation, these selected individuals will form a new popu-
lation. The crossover mechanism exchanges some bits in the
Gene strings according to a defined crossover probability. The
mutation maintains the diversity in the population by altering
bits of strings randomly, which prevent the algorithm from
falling into a local optimum. The details of the near-optimal
solution based on GA are presented in Algorithm 1.

In the algorithm, the fitness metric is defined as the objec-
tive function of (22). The caching probability for each task
is encoded into binary strings of the length of ge = dlog2 je,
where j is the caching probability accuracy rate expressed in
percentage. In this paper, we set j as 100 with the considera-
tion of the complexity. As there areN tasks in the task library,
the length of an individual in the gene pool is represented

as
i=N∑
i=1
dlog2 je.

At the beginning of the algorithm, a population of M
individuals will be randomly generated. Then after a number

Algorithm 1 Near-Optimal Task Caching Algorithm Based
On GA
Input: K, N , λ, β, Pcr , Pmu, tmax
Output:

The sub-optimal caching distribution vector P∗ =
(P∗i ,P

∗

2, · · · ,P
∗
N)

1: Initialize aM×N matrix randomly as the first population;

2: for t = 1 to t = tmax do
3: Selection with the roulette wheel selection scheme;
4: Crossover with the probability Pcr ;
5: Mutation with the probability Pmu;
6: Remove the individuals not satisfying the require-

ments C1, C2;
7: Calculate the object value according to (22) and record

the best individuals;
8: end for
9: Select the best individualQ∗ = (Q∗i ,Q

∗

2, · · · ,Q
∗
N) as the

near-optimal solution and output;

generation of evolutions, the best individuals will be obtained,
which means the optimal solution. In each generation of
evolutions, selection, crossover, and mutation will be imple-
mented and a new population will be produced for future
evoluting.

In the selection process, the roulette wheel selection
scheme is adopted to implement proportionate selection. the
roulette wheel selection scheme easure the probability of each
individual being selected is proportional to its fitness value.
The process are as follows:

1) Calculate the fitness of each individual in each
population.

2) Calculate the probability that each individual is chosen
to be inherited into the next generation of population by
P(x) =

U ch(x)
M∑
y=1

U ch(y)
, where U ch(x) means the fittness value for

individual x.
3) Calculate the cumulative probability of each individual.
4) produce a random value from zero to one and compare

it with the cumulative probability for each individual, if the
cumulative probability is the larger one, the individual will be
chosed.

The crossover probability and the mutation probability
are denoted as Pcr and Pmu respectively. The two values
are adpated upated according the difference among fitness
values in each population. In our algorithm, we simplly
set Pcr = 1/(U ch

max − U ch
aver) and Pmu = 1/(U ch

max −

U ch
aver) in each population, where U ch

max means the max-
imum fittness value of individuals before current itera-
tion, U ch

aver presents the average fittness value in each
population.

In the new population, due to the constraints C1 and C2, the
individuals which are not satisfied the two constraints will
be abandoned, and the left individual with the best fitness
will be recorded. Then the new generation of population will

104882 VOLUME 7, 2019

Y. Lan et al.: Task Caching, Offloading, and Resource Allocation in D2D-Aided Fog Computing Networks

be served for the succeeding iteration until the repeat time
reaches. At last, select the best individual with the maxi-
mum fitness value of the recorded individuals and decode
it into decimal numeral system. The sub-optimized caching
probability distribution vector obtained represented as Q∗ =
(Q∗1,Q

∗

2, · · · ,Q
∗
N).

IV. TASK OFFLOADING OPTIMIZATION PROBLEM
AND SOLUTION
If a requester has not cached the task it need nor can find a
responder nearby, task offloading would be needed to relay
the task to Fog notes or Cloud. Like the utility function of
task caching, the utility for task offloading is seemed as the
benefits of delay saving and energy saving compared to the
local computing.

A. PROBLEM FORMATION
We firstly discuss the utility of offloading to FNs. For MUEs
who have been associated with fog offloading mode, the time
consumption includes three parts: offloading delay, delivery
delay and computing delay. The toc N for MUE i assoiated
with FN m can be presented as

t fogi,m,n = tui,m,n + t
d
m,i,n + t

f
i,m,n (24)

Similarly, the total energy consumption includes: offload-
ing energy, computing energy and delivery energy, which is
presented as

E fogi,m,n = Eui,m,n + E
cpt
i,m,n + E

d
m,i,n (25)

The utility for Fog offloading can be caculated by

U fog
i , ρt (t li,n − t

f
i,m,n)+ ρ

e(E li,n − E
fog
i,m,n),

∀m ∈M,∀n ∈ N (26)

For the MUE i with Cloud offloading mode, the upload-
ing delay includes fornthual delay from i to its relay FN
m denotes by tui,m,n, the backhual delay from FN m to the
remote cloud server denotes by tum,o. The delivery delay in
downlink includes two parts in uplink, denote by tdm,i and t

d
o,m

separately.We let Tc denote the round-trip delay between FNs
to Cloud (e,g, Tc = tum,o + t

d
o,m).

The total time consumption for requesder i associated to
FN m for processing task n in cloud offloading mode can be
caculated by

tcloudi,m,n = tui,m,n + t
d
m,i,n + t

c
i,n + Tc (27)

The energy consumption can be represented as

Ecloudi,m,n = Eui,m,n + E
d
m,i,n+E

cpt
i,n (28)

According to the definition of utility function, the utility
cloud offloading can be calculated by

U cloud
i , ρt (t li,n − t

cloud
i,m,n)+ ρ

e(E li,n − E
cloud
i,m,n),

∀m ∈M,∀n ∈ N (29)

The task offloading optimization problem can be represented
as

U0(A,Y) =
∑
i∈K

∑
m∈M

ai,m
[
ymi U

fog
i + (1− ymi)U

cloud
i

]
s.t. C1′ : fi,m ∈ (0, f0)∀i ∈ K , ∀m ∈ M

C2′ :
K∑
i

fi,m ≤ f0, ∀i ∈ K ,∀m ∈ M

C3′ : ymi ∈ {0, 1},∀i ∈ K , ∀m ∈ M

C4′ :
K∑
i

ymi ≤ KT , ∀i ∈ K ,∀m ∈ M

C5′ : ai,m ∈ {0, 1}, ∀i ∈ K ,∀m ∈ M (30)

Constraints C1’ ensures the allocated computatul capacity
of each FN for all the tasks is not less than zero. Con-
straints C2’ means the allocated computational resource for
the MUEs who associated with it cannot exceed its maximum
computational power. Constraints C3 means there is only
two offloading mode to be chosen, cloud offloading mode
and Fog offloading mode. C4’ states that the number of
MUEs accessed in each FN should be less than the maximum
accessible number.Constraints C5’ is proposed to guarantee
eachMUE cannot be associated with more than one FN at the
same time.

From the observation of task offloading optimization prob-
lem (30), we can see that ai,m is binary resulting in the
non-convexity of objective function and feasible sets. The
problem is a mixed discrete and non-convex optimization
problem, which is challenging to find the global optimum.
Moreover, a joint consideration of MUE association and
offloading mode selection makes centralized algorithm com-
monly a high computation complexity, which is not practical.

B. DISTRUBUTED TASK OFFLOADING OPTIMIZATION
Due to the nonconvex property of problem (30), We refor-
mulate it by decomposing it into two sub problems,
which are namedmulti-MUEs association optimization prob-
lem (MMAP) and mixed Fog-Cloud task offloading and
optimization problem (MFCOOP). We designed a Gini
coefficien-based near-optimal MUE allocation algorithm to
solve MMAP. Then based on the results of MUE association,
we will give an optimal solution to MFCOOP. From the
combination of these two solutions, a suboptimal solution to
task offloading problem will be obtained.

1) GINI COEFFICIENT-BASED MMOP OPTIMIZATION
In order to solve MMAP, We will adopt Gini coefficient and
design a gini coefficient-based MUE association algorithm.
The Gini coefficient can effectively obtain the set of MUEs
that most contributed to total utility for each FN, which
was verified in the work [39]. We modify their study and
further apply it to multi-user and multi-base station matching
scenario in which matching conflict is ubiquitousness as each
MUEs may access more than one FN. The Gini coefficient,

VOLUME 7, 2019 104883

Y. Lan et al.: Task Caching, Offloading, and Resource Allocation in D2D-Aided Fog Computing Networks

between 0 and 1, is major for assessment on regional income
inequality. A smaller Gini Coefficient means a more equality
of the utility distribution (i.e., there is more MUEs who con-
tribute to themajority of total obtained utility), and vice versa.
With the matching policy, the MUEs who are abandoned by
all FNs will be associated with local computing mode.

Due to the resource for each requester is not allocated, their
total utility cannot be directly obtained. In order to calcu-
late the Gini coefficient, we introduce an income function
to reflect the total utility with adequate resources for each
requester. The income function is defined as follows

0i,m,n =
ρt t locali

tTi,m,n + t̃i,m(f0)
+

ρeE li,n
ETi,m,n + Ẽ

cpt
i,m,n(f0)

,

∀i ∈ K,∀m ∈M∀n ∈ N (31)

where tTi,m = tui,m,n + t
d
m,i,n and ETi,m,n = Eui,m,n + Edi,m,n,

denote the total transmission delay and total transmission
energy consumption respectively. t̃i,m,n(f0) =

Dn
fi,m

and

Ẽcpti,m,n(f0) = κserverDn(f0)2 respectively denote the compu-
tational delay and computational energy consumption when
all the computational resource are allocated to MUE i.
For each FN, we calculate the income of the accessi-

ble MUEs according to the Income Function, then sort the
income in ascending order (e.g., 0′1 ≤ 0

′

2 ≤ · · · ≤ 0
′

Km
) with

the ordered set of MUEs, {Km,|Km|,Km,|Km−1|, · · · ,Km,1}.
According to [23], the Gini Coefficient and the number of

MUEs contributed more to the total utility can be defined as

Ginim = 1−
1
|Km|

(1+ 2
|Km|−1∑
i=1

bi), ∀i ∈ Km,∀m ∈M

(32)

K∗m = min(
1

Ginim
+ γi(|Km| − d

1
Ginim

e), |Km|) (33)

where bi can be expressed as

bi =

i∑
j=1
0j

Km∑
j=1
0j

,∀i ∈ Km,∀m ∈M (34)

and γi is the modify weight factor of |Km| − d
1

Ginim
e, which

can be calculated by

γi =
min(f0

argmax{Dn}
, |Km|,Kmax)

|Km|
(35)

where Kmax is the maximum number of accessible MUEs in
each FN.

Then we can get the selection decision for each FN.

K∗m = {Km,|Km|,Km,|Km−1|, · · · ,Km,|Km+1−K∗m|},

∀i ∈ Km,∀m ∈M (36)

where Km,|Km| means the |Km|th MUE in the order set of
MUEs in m.

There exit the situation that one MUE is associated with
multiple FNs.

The mach conflict occurred if the following condition was
met

K∗m ∩K∗v 6= ∅, ∀m, v ∈ M , m 6= v (37)

If an MUE i has been associated with more than one FN,
in order to help it chose the most proper FN, we only keep
its associate policy which can help it reach the maximum of
income, (e,g, ai,v = 1). Then abolish all other associated
policy {ai,m}m∈M,m 6=n = 0. The process of eliminating
conflicting which can be expressed as

m∗ = argmax
m

0i,m,n,∀i ∈ Km∀i ∈ N

{ai,m}∀m∈M\m∗ = 0 (38)

After an operation of conflict eliminating, the current opti-
mal association will be reserved. The MUE mache policy in
the FN of i is unchanged while the associate number ofMUEs
in other FNs decrease and should be supplemented.

For an FN whose associated MUE has been grabbed,
the abandoned MUE with the maximal income in the aban-
doned User group would be reselected.

The Gini-coefficient based muti-MUE muti-FN matching
algorithm is shown is algorithm 2.

By the Gini coefficient based association algorithm,
the MUEs who make major contributions to system utility
will be associated with most proper FNs, while the other
MUEs who are abandoned by all the accessible FNs will
select local computing mode.

2) MCFOOP GAME AND OPTIMIZATION
Due to the existence of competition for resources in FNs,
the utility in an FN will be influence by the number of access
MUEs, the required computing resources, some tasks should
be relayed to the cloud server to ensure the maximization of
total utility.

In order to determine which tasks should be offloaded to
Fog server or remote Cloud, we formulate the interactions
between the MUE users as a strategic game and propose an
algorithm that can obtain the NE.

We define game gm = (Km,
∏

i∈Km
ymi , {U

o
i }i∈Km), where

Km is the set of players in FN m, Ymi is the feasible strategy
space of player i. In the game, the eachMUE is one player and
selecting the Fog mode or Cloud mode in order to maximize
its own QoE (e.g,Uo

i) in response to the other MUEs’ strate-
gies which represent its utility achieved from offloading.

For a computation offloading strategy Ym in FN m, define
matrix Y−i = (ym1 , y

m
2 , · · · , y

m
i−1, y

m
i+1, · · · , y

m
Km) as the

offloading strategies of all MUEs except i. According to the
definition of GameTheory, the best response strategy for each
MUE can be expressed as

ymi ∗ = argmaxUo(ymi , y
m
−i)

s.t. ymi = {0, 1},∀i ∈ Km (39)

104884 VOLUME 7, 2019

Y. Lan et al.: Task Caching, Offloading, and Resource Allocation in D2D-Aided Fog Computing Networks

Algorithm 2 Geni-Coefficient Based Multi-MUEs Associa-
tion Algorithm
Input:

The set of MUEs in each FN, {Km}m∈M;
The request set of MUEs R = {R1,R2, · · · ,RK },∀i ∈
K;
The set of MUEs K;
ρt , ρe, f0, wi

Output:
The matching policy {A∗m}∀m∈M;

1: Set Conflict = 1
2: for m→M do
3: Caculate the K∗m and the corresponding income
{0i,m,n}∀i∈Km according to (31)-(35);

4: Update the MUE matching set K∗m according to (36);
5: end for
6: while conflict do
7: for i→ K do

8: if
M∑
m=1

ai,m > 1 then

9: Set conflict = 1
10: Update the association policy for i;
11: Reselect the abondened MUE according to the

income order, update allociation set except FN
m∗;

12: else
13: Set conflict = 0;
14: end if
15: end for
16: end while

Definition 1: An offloading strategy y∗i ∀i∈K is an NE of
game g if no player can further to improve the QoE by
unilaterally altering its strategy, i.e. for all MUEs in the game

Uo
i (y

m
i ,Y

m
−i) ≥ U

o
i (y

m
i
′
,Y−i), ∀i ∈ Km.

We next show that there exists an NE for game g using the
potential games.
Definition 2: A game is called a potential game if it exists

a potential function Qo such that for every player ∀i ∈ K and
offloading vectors ymi and ymi

′ for all MUEs

Uo
i (y

m
i ,Y

m
−i)− U

o
i (y

m
i
′
,Y−i) = Qoi (y

m
i ,Y

m
−i)− Q

o
i (y

m
i
′
,Y−i).

The Nash has self-stability properties which make the MUEs
in the game derive mutually satisfactory solution at the equi-
librium. At the equilibrium, no one can improve their utility
by changing the offloading policy since the MUEs are selfish
to act in their own interests in the non-cooperative offloading
problem.
Proposition 1: The following function is a potential func-

tion and {gm}m∈M are potential games for all MUEs

Qo(ymi ,Y
m
−i) = ai,m(1− ymi)

 ∑
j∈Km,j 6=i

U fog
j + U

cloud
i

+ai,mymi

K∑
i=1

U fog
i ,∀i ∈ Km,∀m ∈M (40)

Proof: As for an MUE i associated with FN m, it can
choose FN server (ymi = 1) or cloud server (ymi = 1)
for task computing. By substituting the value of ymi into the
Formula 39, we have

Q(1,Y−i) =
K∑
i=1

ai,mU
fog
i (41)

Q(0,Y−i) = ai,m
K∑

j=1,j 6=i

U fog
j + U

cloud
i (42)

By subtracting the Formula (41) and (42), we can achieve that

Q(1,Y−i)− Q(0,Y−i) = ai,m(U
fog
i − U

cloud
i) (43)

According to the Formula (30), the subtraction of system
utility obtained by the MUEs associated with m in Fog com-
puting mode or cloud computing mode can be calculated by

Uo(1,Y−i)− Uo(0,Y−i) = ai,m(U
fog
i − U

cloud
i) (44)

By comparing the fomular (35) and (34), we have

Uo(1,Y−i)− Uo(0,Y−i) = Q(1,Y−i)− Q(0,Y−i) (45)

According to the definition 2, the games {gm}m∈M are poten-
tial games. The proposition is concluded and there is at least
one pure-strategy NE.

Next we will give the optimal solution to problem (30). For
a certain offloading strategy {ymi }i∈K, the objective function
of (30) become function of {fi,m}i∈K and the objective func-
tion can be expressed as follows

Uo
=

∑
i∈K

∑
m∈M

ai,m
[
ymi U

fog
i (fi,m)+ (1− ymi)U

cloud
i

]
(46)

Let zi,m = −ui,m, the problem of (30) can be rewritten by

minZ
F
(F) =

K∑
i=1

zi,m

s.t. C1′ − C4′ (47)

The second derivative of Uo for fi,m can be calculated by

∂2Zi,m
∂2fi,m

=
2ai,mymi ρ

tσi

(fi,m)3
+2ai,mymi ρ

ek ≥ 0,

∀i ∈ Km,∀m ∈M (48)

Derived from (48), Z is a convex function with respect to
{fi,m}i∈Km,∀m∈M.

We can solve the optimization problem by applying
the Karush-KuhnTucker (KKT) conditions. The Lagrangian
function of problem of (48) can be expressed as

L =
K∑
i=1

Zi,m + u

(
K∑
i

fi,m − f0

)
(49)

VOLUME 7, 2019 104885

Y. Lan et al.: Task Caching, Offloading, and Resource Allocation in D2D-Aided Fog Computing Networks

Algorithm 3 Distributed Task Offloading Algorithm
Input: {Km}m∈M, N , u, gmax
Output: Fm

∗
∀m∈M;

1: initialize u, δ gmax ,
2: for m ∈M do
3: Set Ymo = (1, 1, · · · , 1), Ym = (0, 0, · · · , 0);
4: while Ymo 6= Ym do
5: Ym = Ym0
6: Set ymi = 1;
7: if g ≤= gmax then
8: for i ∈ Km do
9: if Ym0 = {1, 1, · · · , 1} then
10: Compute the utility U cloud

i according
to (29);

11: end if
12: Calculate f mi and U fog

i according to (48)
and (26);

13: end for
14: end if
15: Update u by (50)-(52) and g++;
16: if U fog

i < U cloud
i then

17: Change the offloading policy of i, ymi = 0;
18: else
19: Change the offloading policy of i, ymi = 1;
20: end if
21: Update the offloading pllicy to Ym0 ;
22: end while
23: end for
24: Output the optimized policy Fm

∗
∀m∈M

For ∀i ∈ K , the KKT conditions can be presented are as
follows

∂L
∂fi,m

= −
ymi ρ

tσi

(fi,m)2
+ 2ymi ρ

ekfi,m + u = 0 (50)

u

(
K∑
i

fi,m − f0

)
= 0 (51)

Combine with the conditions (50) (51), the Lagrange mul-
tipliers update as below.

u(t + 1) =

[
u(t)+ δ(t)

(
K∑
i

fi,m − f0

)]+
(52)

where t is the current times of iteration, δ(t) represents
the step of t th iteration. By utilizing the KKT conditions,
the optimal resource allocation solution can be found.

The solution Algorithm is shown in algorithm 3. In the
algorithm 3, we initially set the offloading strategy Am =
(1, 1, · · · , 1) in each FN which means all MUEs are asso-
ciated with Fog offloading mode for task processing.

V. SIMULATION RESULTS AND DISCUSSIONS
In this section, we use computer simulation software
MATLAB to evaluate the performance of our algorithms.

TABLE 2. Summary of the simulation parameters.

A. SIMULATION SETUP
The simulation parameters are described as follows. We con-
sider the system consists of 250 UEs, 30 FNs. In the simula-
tion, The FNs are located uniform distributed in a 600× 600
m2 area. The wireless bandwidth for each MUE in downlink
and uplink is set to 1MHz. According to the wireless channel
model for cellular radio environment, we set the path loss fac-
tor a = 3. The background noise is σ 2

= −100 dbm. For each
MUE,we assume that the CPU clock speed is 900MHz.With-
out loss of generality, we assume that computation resource of
Fog server and the cloud server are equally set to 4GHz [21].
The Data size of tasks Si is randomly distributed between
10 MB and 30 MB. Meanwhile, the required computational
resource for each task is randomly distributed between 1 Ghz
and 6 Ghz The other main parameters in the simulations are
summarized in table 2.

B. PERFORMANCE AND DISCUSSIONS
In the simulations, the utility of MUEs and system are all
presented in units. The performance of task caching and task
offloading are all disscussed.

1) PERFORMANCE OF TASK CACHING
To evaluate the impact of different parameters of task caching,
we next implement the simulations with two parameters,
the average required computational resource of tasks Daver ,
the distribution parameter of MUEs λ.

We introduce three random-based caching strategies and
two determined strategies:
• Popularity-based random caching strategie(pop-CS),
which means all MUEs random select tasks according
to the popularity distribution of tasks(e.g., Q = P).

Uniform-based
• random caching strategie(unif-CS), which means all
MUEs random select tasks to cache according to an
uniform probability distribution. In other words, each
task have a equal probability to be cached on eachMUE.

• Random-based caching strategie(rand-CS), which
means the MUEs random cache tasks in a random
probability distribution. In this strategie, the probability
of each task be cached on each MUE is random value.

• Greedy-based caching strategie(greedy-cs), which
means to optimaze the caching placement of MUEs
throuth a amount of iterations. In each iteration the task

104886 VOLUME 7, 2019

Y. Lan et al.: Task Caching, Offloading, and Resource Allocation in D2D-Aided Fog Computing Networks

FIGURE 2. The average caching utility over different average required
computational resource of tasks.

which obtains the maximum utility will be determined
to be cached in one of MUE. This strategie ensure to
obtain a optimal solution in each iteration.

• proportional placement strategie(prop-CS). A certain
proportion of MUEs will chose the most popular task
to cache, the other MUEs will random select one of the
left tasks in the task library to cache. The proportion is
set to the optimal value.

We first present the utility of the proposed GA-based
caching strategie with different values of parameter Daver .
In Fig.2, in order to show the influence of average required
computational resource of tasks, we fixed the MUE distribu-
tion density to 0.1 and changeDaver . The average size of tasks
is followed a uniform distribution between 10MB to 20MB
and the popularity parameterβ is set to 0.8. As shown is Fig.2,
the average utility of MUEs increases with the increasing
of Daver . This is due to the fact that when Daver increases,
more computational resource will be needed for processing
which result in increase of energy consumption and time
delay of task computing in local computing mode while the
cost of the task result delivery is not influenced as the energy
consumption of computing is omitted. Thus average utility
of MUEs increases. Morever, compared with some other
caching schemes, the proposed GA-based caching strate-
gie have best performance while the greedy-based caching
strategie obtains the worst performance. We think it is beca-
sue the determined caching strategie decrease the chance
of D2D sharing compared with most random-based caching
strategies.

From Fig. 3, we can see that average caching utility of
MUEs increases with the MUEs distribution parameter λ.
It is because the larger of distribution parameter of MUEs,
the denser the MUEs are. Thus, it is more likely for MUEs
to get the desire task data by D2D sharing from other
MUEs nearby. To evaluate the caching strategy, we compare
the proposed GA-based caching strategie in this paper with

FIGURE 3. The average utility over differennt distrubution parameter λ.

popularity-based caching strategie, the uniform probability
caching algorithm and the random probability algorithm. The
Fig. 3 shows that the performance of the proposed strategie is
outstanding than other strategies.

2) EFFECT OF TASK OFFLOADING
The proposed task offloading and resource allocation algo-
rithms in this paper are compared with three methods.

• The proposed GAORA strategy, which means the
combination of Gini coefficient based MUE association
policy, distribute task offloading and optimal resource
allocation policy.

• Cloud offloading strategy, which stands for all MUEs
who can access the network are associated with Cloud
computing mode. In this strategy, each MUE will select
nearest FN until the current accessable number of FNs
is exceed to the maximum accessable number.

• Fog offloading strategy, which stands for all MUEs who
can access the network are associated with Fog com-
puting mode. The computational resource in each FNs
is optimally allocated. In this strategy, each MUE will
select nearest FN until the current accessable number of
FNs is exceed to the maximum accessable number.

• Greedy-based offloading strategy denotes , optimaze
the offloading policy and computational resource of
MUEs throuth a large amount of iterations. In each itera-
tion oplicy of the task offloading and resource allocation
which obtains the maximum utility will be determined.
This strategie ensure to obtain a current optimal solution
in each iteration.

• ε-Nash offlaoding strategy denotes all the offloading
MUEs chose a better offloading policy until the dif-
ference of changing offloading policy is small than the
deviation ε [21]. In this strategy, each MUE will select
nearest FN until the current accessable number of FNs is

VOLUME 7, 2019 104887

Y. Lan et al.: Task Caching, Offloading, and Resource Allocation in D2D-Aided Fog Computing Networks

FIGURE 4. The beneficial number of MUEs over the mumber of FNs.

exceed to the maximum accessable number. Moreover,
the computational resource in each FN is equally shared.

Fig.4 shows the number of beneficial users for different
number of FNs with the scheme GAORA proposed in this
paper. The default setting is K = 250, Daver = 6Ghz,
Saver = 20 MB. As can be observed from Fig.4, as the
number of FNs increases, the number of beneficial MUEs
increases. It is because the increasing number of FNs enables
more MUEs to access the proper FNs for task offloading, and
more MUEs have chances to enjoy sufficient computational
resource in Fog servers or cloud server, which result in the
increasing of their utility by decreasing of the computing
delay. According to the Fig. 4, the beneficial number of
MUEs in Cloud computing mode increases at the beginning
but decreases later. We analyze the reason may be that as the
number of FNs increase from 5 to 15, moreMUEs will access
the network through FNs. In this time, as the competition
amongMUEs are fierce, someMUEs have to associated with
Cloud offloading mode to ensure the total utility are maxi-
mized. As the number of FNs increase from 15 to 30, there are
more computational resource can be provided by FNs, so it is
sufficient to make the MUEs in Fog computing mode obtain
a higher utility compared offloading their tasks to Cloud
server with long roundtrip delay and energy consumption,
moreMUEs will chose Fog computing mode to increase their
utility, especially When the number of FNs increase to 30, all
MUEs can access the network and the computational resource
in FNs are reached to the peak value.

We now study the number of beneficial users that offload
their computation tasks. In Fig. 5 - Fig. 7, the number of FNs
is set to 5.

The influence of average required computational resource
of tasks to the total utility is illustrated is Fig. 5. We fix the
average data size of tasks to 10MB. As we can see from
Fig. 5, as the average required computational resource of
tasks increase, the total utility in all schemes increase too. It is

FIGURE 5. The total utility of system over the average required
computational resource of tasks.

FIGURE 6. The total utility of system over the number of MUEs.

obviously that more required computational resource means
more energy cost and larger delay for MUEs with local com-
puting. Computing by Cloud and Fog have greater advantages
versus Local computing in saving delay. By the way, although
excess energy consumption is needed, but the total energy
consumption of Fog or Cloud computing is not too difference
compared with the local computing. It is because the CPU
in Fog server and Cloud server aways have a the better
energy effective switched capacitance compared with that in
MUEs.

Fig. 6 illustrates the influence of the number of MUEs to
the total utility. As shown in Fig. 6, the total utility have a
tendency to rise with the increasing number of MUEs for
all algorithms because computation resources can be used
for task processing in FNs is more. Compare the proposed
distributed GRORA scheme with other algorithms, the per-
formance of GRORA have the best performance. The reason

104888 VOLUME 7, 2019

Y. Lan et al.: Task Caching, Offloading, and Resource Allocation in D2D-Aided Fog Computing Networks

FIGURE 7. The total utility over average task size Saver .

is that the resource allocation in FNs is optimized in GRORA
which can further improve the utility in each FN. According
to the Fig.6, we can see that the scheme Cloud computing has
the worst performance comparedwith other schemes. It is due
to the long roundtrip of delay and energy consumption for
Cloud offloading compared with Fog computing.

Figs. 7 illustrates the influence of the average of data
size of tasks to the total utility. In this part, the aver-
age required computional resource is fixed to 2 Ghz, and
the average data size of tasks in changed from 10 MB to
110 MB. As shown in Figs. 7, the total utility decrease
with the increasing of data size for all algorithms. The
reason is that as the data size of tasks increases, more
transmit delay will be suffer which results in the decrease
of total utility. Moreover, by the comparison of the pro-
posed distributed GRORA algorithm with other algorithms,
the proposed algorithm have the best performance. Accord-
ing to the Fig.6, we can see that the scheme Cloud
offloading has the worst performance compared with other
schemes.

We investigate the impact of number of FNs in Fig. 8.
From Fig. 8, we observe that as the number of FNs increase,
the total utility increase too. It is because With the increase
number of FNs, more MUEs can be associated to their proper
FNs with a good channel condition, moreover the available
computing resources in FN server increase too which result in
a smaller transmission delay and computational delay. Thus
the total utility increase. By the comparison of the proposed
distributed GAORA algorithmwith other algorithms, the pro-
posed algorithm has the best performance.

VI. CONCLUSION
In this paper, we investigated the allocation of resource in
caching-enabled Fog computing systemwith multiple mobile
user equipments (MUEs). We assumed MUEs should make
the decision on task performing with a selection of three task
processingmodes including local mode, Fog offloadingmode

FIGURE 8. The total utility over the number of FNs.

and Cloud offloading mode. Two scenarios were considered
in this paper, task caching and its optimization in off-peak
time, task offloading and its optimization in immediate time.
For the first scenario, to maximize the average of utility,
a task caching optimization problem was formulated with
stochastic theory and was solved by a GA-based task caching
algorithm. For the second scenario, to maximize the total
utility, the task offloading and resource optimization prob-
lem was formulated as a mixed integer nonlinear program-
ming (MINLP) which jointly considers the MUE allocation
policy, task offloading policy, the computational resource
allocation policy. We transform it into multi-MUEs asso-
ciation problem (MMAP) and mixed Fog-Cloud offloading
and optimization problem (MFCOOP) and solved them by
a Gini coefficient-based MUEs allocation algorithm and a
distributed algorithm based on Lagrange multiplier respec-
tively. At last, simulations show the effectiveness of the
proposed scheme with the comparison of other baseline
schemes.

REFERENCES
[1] M. Peng, Y. Sun, X. Li, Z. Mao, and C. Wang, ‘‘Recent advances in

cloud radio access networks: System architectures, key techniques, and
open issues,’’ IEEE Commun. Surveys Tuts., vol. 18, no. 3, pp. 2282–2308,
3rd Quart., 2016.

[2] M. Peng, C. Wang, J. Li, H. Xiang, and V. Lau, ‘‘Recent advances in
underlay heterogeneous networks: Interference control, resource alloca-
tion, and self-organization,’’ IEEE Commun. Surveys Tuts., vol. 17, no. 2,
pp. 700–729, 2nd Quart., 2015.

[3] E. Bastug, M. Bennis, M. Medard, and M. Debbah, ‘‘Toward intercon-
nected virtual reality: Opportunities, challenges, and enablers,’’ IEEE
Commun. Mag., vol. 55, no. 6, pp. 110–117, Jun. 2017.

[4] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, ‘‘Fog computing and its
role in the Internet of Things,’’ in Proc. 1st Ed. MCC Workshop Mobile
Cloud Comput. (MCC), Helsinki, Finland, Feb. 2012, pp. 13–16.

[5] L. M. Vaquero and L. Rodero-Merino, ‘‘Finding your way in the fog:
Towards a comprehensive definition of fog computing,’’ ACM SIGCOMM
Comput. Commun. Rev., vol. 44, no. 5, pp. 27–32, Oct. 2014.

[6] M. Peng and K. Zhang, ‘‘Recent advances in fog radio access networks:
Performance analysis and radio resource allocation,’’ IEEE Access, vol. 4,
pp. 5003–5009, 2016.

VOLUME 7, 2019 104889

Y. Lan et al.: Task Caching, Offloading, and Resource Allocation in D2D-Aided Fog Computing Networks

[7] F. Jalali, K. Hinton, R. Ayre, T. Alpcan, and R. S. Tucker, ‘‘Fog computing
may help to save energy in cloud computing,’’ IEEE J. Sel. Areas Commun.,
vol. 34, no. 5, pp. 1728–1739, May 2016.

[8] R. Deng, R. Lu, C. Lai, and T. H. Luan, ‘‘Towards power consumption-
delay tradeoff by workload allocation in cloud-fog computing,’’ in
Proc. IEEE Int. Conf. Commun. (ICC), London, U.K.:, Jun. 2015,
pp. 3909–3914.

[9] H. Xiang, W. Zhou, M. Daneshmand, and M. Peng, ‘‘Network slicing in
fog radio access networks: Issues and challenges,’’ IEEE Commun. Mag.,
vol. 55, no. 12, pp. 110–116, Dec. 2017.

[10] B. Zhou, A. V. Dastjerdi, R. N. Calheiros, S. N. Srirama, and R. Buyya,
‘‘mCloud: A context-aware offloading framework for heterogeneous
mobile cloud,’’ IEEE Trans. Services Comput., vol. 10, no. 5, pp. 797–810,
Sep./Oct. 2017.

[11] C. Mouradian, D. Naboulsi, S. Yangui, R. H. Glitho, M. J. Morrow, and
P. A. Polakos, ‘‘A comprehensive survey on fog computing: State-of-the-
art and research challenges,’’ IEEE Commun. Surveys Tuts., vol. 20, no. 1,
pp. 416–464, 1st Quart., 2018.

[12] Y. Niu, Y. Liu, Y. Li, Z. Zhong, B. Ai, and P. Hui, ‘‘Mobility-aware caching
scheduling for fog computing in mmWave band,’’ IEEE Access, vol. 6,
pp. 69358–69370, 2018.

[13] S. M. Azimi, O. Simeone, A. Sengupta, and R. Tandon, ‘‘Online edge
caching and wireless delivery in fog-aided networks with dynamic content
popularity,’’ IEEE J. Sel. Areas Commun., vol. 36, no. 6, pp. 1189–1202,
Jun. 2018.

[14] Z. Su, Q. Xu, J. Luo, H. Pu, Y. Peng, and R. Lu, ‘‘A secure con-
tent caching scheme for disaster backup in fog computing enabled
mobile social networks,’’ IEEE Trans. Ind. Informat., vol. 14, no. 10,
pp. 4579–4589, Oct. 2018.

[15] F. Xu and M. Tao, ‘‘Fundamental limits of decentralized caching in Fog-
RANswith wireless fronthaul,’’ in Proc. IEEE Int. Symp. Inf. Theory (ISIT)
Vail, CO, USA, Jun. 2018, pp. 1430–1434.

[16] Y. Wei, F. R. Yu, M. Song, and Z. Han, ‘‘Joint optimization of caching,
computing, and radio resources for fog-enabled IoT using natural actor-
critic deep reinforcement learning,’’ IEEE Internet Things J. vol. 6, no. 2,
pp. 2061–2073, Apr. 2019.

[17] R. Karasik, O. Simeone, and S. Shamai, ‘‘Fundamental latency limits for
D2D-Aided content delivery in fog wireless networks,’’ in Proc. IEEE Int.
Symp. Inf. Theory (ISIT), Vail, CO, USA, Jun. 2018, pp. 2461–2465.

[18] S. Yan, M. Peng, M. A. Abana, and W. Wang, ‘‘An evolutionary game for
user access mode selection in fog radio access networks,’’ IEEE Access,
vol. 5, pp. 2200–2210, 2017.

[19] S. Jošilo and G. Dán, ‘‘Decentralized algorithm for randomized task allo-
cation in fog computing systems,’’ IEEE/ACM Trans. Netw., vol. 27, no. 1,
pp. 85–97, Feb. 2019.

[20] Z. Wei and H. Jiang, ‘‘Optimal offloading in fog computing systems with
non-orthogonal multiple access,’’ IEEE Access, vol. 6, pp. 49767–49778,
2018.

[21] H. Shah-Mansouri and V.W. S. Wong, ‘‘Hierarchical fog-cloud computing
for IoT systems: A computation offloading game,’’ IEEE Internet Things J.,
vol. 5, no. 4, pp. 3246–3257, Aug. 2018.

[22] Y. Jiang and D. H. K. Tsang, ‘‘Delay-aware task offloading in shared
fog networks,’’ IEEE Internet Things J., vol. 5, no. 6, pp. 4945–4956,
Dec. 2018.

[23] Y. Yang, K. Wang, G. Zhang, X. Chen, X. Luo, and M. Zhou, ‘‘MEETS:
Maximal energy efficient task scheduling in homogeneous fog networks,’’
IEEE Internet Things J., vol. 5, no. 5, pp. 4076–4087, Oct. 2018.

[24] Y. Liu, F. R. Yu, X. Li, H. Ji, and V. C. M. Leung, ‘‘Distributed resource
allocation and computation offloading in fog and cloud networks with non-
orthogonal multiple access,’’ IEEE Trans. Veh. Technol., vol. 67, no. 12,
pp. 12137–12151, Dec. 2018.

[25] L. Liu, Z. Chang, X. Guo, S. Mao, and T. Ristaniemi, ‘‘Multiobjective
optimization for computation offloading in fog computing,’’ IEEE Internet
Things J., vol. 5, no. 1, pp. 283–294, Feb. 2018.

[26] J. Du, L. Zhao, J. Feng, and X. Chu, ‘‘Computation offloading and
resource allocation in mixed fog/cloud computing systems with min-max
fairness guarantee,’’ IEEE Trans. Commun., vol. 66, no. 4, pp. 1594–1608,
Apr. 2018.

[27] R. Deng, R. Lu, C. Lai, T. H. Luan, and H. Liang, ‘‘Optimal work-
load allocation in fog-cloud computing toward balanced delay and power
consumption,’’ IEEE Internet Things J., vol. 3, no. 6, pp. 1171–1181,
Dec. 2016.

[28] L. Liu, Z. Chang, and X. Guo, ‘‘Socially aware dynamic computation
offloading scheme for fog computing system with energy harvesting
devices,’’ IEEE Internet Things J., vol. 5, no. 3, pp. 1869–1879, Jun. 2018.

[29] Y. Sun, M. Peng, S. Mao, and S. Yan, ‘‘Hierarchical radio resource alloca-
tion for network slicing in fog radio access networks,’’ IEEE Trans. Veh.
Technol., vol. 68, no. 4, pp. 3866–3881, Apr. 2019.

[30] G. M. S. Rahman, M. Peng, K. Zhang, and S. Chen, ‘‘Radio resource
allocation for achieving ultra-low latency in fog radio access networks,’’
IEEE Access, vol. 6, pp. 17442–17454, 2018.

[31] G. Li, J. Wu, J. Li, K. Wang, and T. Ye, ‘‘Service popularity-based
smart resources partitioning for fog computing-enabled industrial Internet
of things,’’ IEEE Trans. Ind. Informat., vol. 14, no. 10, pp. 4702–4711,
Oct. 2018.

[32] H. Zhang, Y. Xiao, S. Bu, D. Niyato, F. R. Yu, and Z. Han, ‘‘Computing
resource allocation in three-tier IoT fog networks: A joint optimization
approach combining Stackelberg game and matching,’’ IEEE Internet
Things J., vol. 4, no. 5, pp. 1204–1215, Oct. 2017.

[33] X.Wang, Z. Ning, and L.Wang, ‘‘Offloading in Internet of vehicles: A fog-
enabled real-time trafficmanagement system,’’ IEEE Trans. Ind. Informat.,
vol. 14, no. 10, pp. 4568–4578, Oct. 2018.

[34] Y. Sun, M. Peng, and S. Mao, ‘‘Deep reinforcement learning-based mode
selection and resource management for green fog radio access networks,’’
IEEE Internet Things J., vol. 6, no. 2, pp. 1960–1971, Apr. 2019.

[35] Y. Hao,M. Chen, L. Hu,M. S. Hossain, andA. Ghoneim, ‘‘Energy efficient
task caching and offloading for mobile edge computing,’’ IEEE Access,
vol. 6, pp. 11365–11373, 2018.

[36] X. Lin, J. Andrews, A. Ghosh, and R. Ratasuk, ‘‘An overview of 3GPP
device-to-device proximity services,’’ IEEE Commun. Mag., vol. 52, no. 4,
pp. 40–48, Apr. 2014.

[37] Y. Long, D. Wu, Y. Cai, and J. Qu, ‘‘Joint cache policy and transmit
power for cache-enabled D2D networks,’’ IET Commun., vol. 11, no. 16,
pp. 2498–2506, 2017.

[38] J. Zhang, W. Xia, F. Yan, and L. Shen, ‘‘Joint computation offloading and
resource allocation optimization in heterogeneous networks with mobile
edge computing,’’ IEEE Access, vol. 6, pp. 19324–19337, 2018.

[39] P. Zhao, H. Tian, C. Qin, and G. Nie, ‘‘Energy-saving offloading by jointly
allocating radio and computational resources for mobile edge computing,’’
IEEE Access, vol. 5, pp. 11255–11268, 2017.

YANWEN LAN received the B.S. degree in com-
munications engineering and the M.E. degree in
electrical and communications engineering from
Henan University, in 2013 and 2016, respectively.
He is currently pursuing the M.S. degree with
the Beijing University of Posts and Telecommu-
nications (BUPT). His research interests include
fog computing, mobile edge computing, and
cache-enabled heterogeneous networks.

XIAOXIANG WANG received the B.S. degree
in physics from Qufu Normal University, Qufu,
China, in 1991, the M.S. degree in information
engineering from East China Normal University,
Shanghai, China, in 1994, and the Ph.D. degree in
electronic engineering from the Beijing Institute
of Technology, Beijing, China, in 1998. In 1998,
she joined the School of Information and Commu-
nication Engineering, Beijing University of Posts
and Telecommunications. From August 2010 to

February 2011, she was a Visiting Fellow with the Department of Electri-
cal and Computer Engineering, North Carolina State University, Raleigh.
Her research interests include communications theory and signal process-
ing, with specific interests in cooperative communications, multiple-input-
multiple-output systems, multimedia broadcast/multicast service systems,
and resource allocation.

104890 VOLUME 7, 2019

Y. Lan et al.: Task Caching, Offloading, and Resource Allocation in D2D-Aided Fog Computing Networks

DONGYU WANG received the B.S. and M.S.
degrees from Tianjin Polytechnic University,
China, in 2008 and 2011, respectively, and the
Ph.D. degree from the Beijing University of Posts
and Telecommunications, China, in 2014. From
September 2014 to June 2016, he held a post
Ph.D. position with the Department of Biomedi-
cal Engineering, Chinese PLA General Hospital,
Beijing.

In September 2016, he joined the School of
Information and Communication Engineering, Beijing University of Posts
and Telecommunications. His research interests include device-to-device
communication, multimedia broadcast/multicast service systems, resource
allocation, theory, and signal processing, especially cooperative communi-
cations and mobile edge computing.

ZHAOLIN LIU received the B.S. degree in com-
munications engineering from the University of
Electronic Science and Technology of China,
in 2017. He is currently pursuing the M.E.
degree with the Beijing University of Posts and
Telecommunications (BUPT). His research inter-
ests include about edge computing, including
mobile edge computing and fog computing.

YIBO ZHANG received the B.S. degree from
Henan University, Kaifeng, China, in 2013, and
the M.S. degree from Henan Normal University,
Xinxiang, China, in 2015. He is currently pur-
suing the Ph.D. degree with the Key Labo-
ratory of Universal Wireless Communications,
Ministry of Education, Beijing University of
Posts and Telecommunications, Beijing, China.
His research interests include nonorthogonal mul-
tiple access, wireless multicast, and cooperative
communication.

VOLUME 7, 2019 104891

	INTRODUCTION
	SYSTEM MODEL
	NETWORK MODEL
	TASK CACHING MODEL
	COMMUNICATION MODEL
	COMMUNICATIONS IN D2D NETWORKS
	COMMUNICATIONS IN CELLULAR NETWORKS

	COMPUTING MODEL
	LOCAL COMPUTING
	FOG COMPUTING
	CLOUD COMPUTING

	TASK CACHING PROBLEM AND ITS NEAR-OPTIMAL SOLUTION
	 PROBLEM FORMATION
	NEAR-OPTIMAL TASK CACHING OPTIMIZATION

	TASK OFFLOADING OPTIMIZATION PROBLEM AND SOLUTION
	PROBLEM FORMATION
	DISTRUBUTED TASK OFFLOADING OPTIMIZATION
	GINI COEFFICIENT-BASED MMOP OPTIMIZATION
	MCFOOP GAME AND OPTIMIZATION

	SIMULATION RESULTS AND DISCUSSIONS
	 SIMULATION SETUP
	PERFORMANCE AND DISCUSSIONS
	PERFORMANCE OF TASK CACHING
	EFFECT OF TASK OFFLOADING

	CONCLUSION
	REFERENCES
	Biographies
	YANWEN LAN
	XIAOXIANG WANG
	DONGYU WANG
	ZHAOLIN LIU
	YIBO ZHANG

