
Received May 9, 2019, accepted June 21, 2019, date of publication July 16, 2019, date of current version September 26, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2929199

Decomposition Method for Belief Reliability
Analysis of Complex Uncertain Random Systems
QINGYUAN ZHANG , RUI KANG, AND MEILIN WEN
School of Reliability and Systems Engineering, Beihang University, Beijing 100083, China
The Key Laboratory on Reliability and Environmental Engineering Technology, Beijing 100083, China

Corresponding author: Meilin Wen (wenmeilin@buaa.edu.cn)

This work was supported in part by the Science Challenge Project No. TZ2018007, in part by the National Natural Science Foundation of
China under Grant 61573043, Grant 71671009, Grant 61871013, and Grant 61573041, and in part by the Academic Excellence Foundation
of BUAA for Ph.D. Students.

ABSTRACT Belief reliability is a new proposed reliability metric considering both aleatory and epistemic
uncertainty. In belief reliability theory, system reliability analysis is a key component. Traditional system
belief reliability theory for systems with random and uncertain components is based on a complex belief
reliability formula, which is not understandable and efficient enough in engineering practise. In this paper,
we put forward a novel system belief reliability analysis method, called decomposition method to cope with
the problem. An algorithm of this method is proposed according to the properties of the cut sets of systems
and the complexity of the algorithm is analyzed and compared with that of the reliability formula method.
Finally, the effectiveness and efficiency of this method is further illustrated with a comparative case study.

INDEX TERMS Belief reliability, reliability analysis, decomposition method, chance theory.

NOTATIONS AND ABBREVIATIONS
0 : universal set in uncertainty space
L : σ−algebra over 0
M : uncertain measure
3 : uncertain event
� : universal set in probability space
A : σ−algebra over �
Pr : probability measure
ξ : uncertain random variable / system state variable
η : random variable
τ : uncertain variable
4 : feasible domain
G : system state mode
RB : belief reliability
R(P)B : belief reliability of random components or systems
R(U )
B : belief reliability of uncertain components or systems
x : component state mode
φ : structure function
m : number of random components
n : number of uncertain components
c : component number
u : state mode of random components
v : state mode of uncertain components

The associate editor coordinating the review of this article and approving
it for publication was Nagarajan Raghavan.

C : minimal cut sets (MCS)
CS : cut sets (CS)
l : the number of MCS
r : the number of CS of the decomposed system
MCS : minimal cut set
RBD : reliability block diagram
CAN : controller area network
FPGA : field-programmable gate array
MOSFET : metal-oxide-semiconductor field-effect transistor

I. INTRODUCTION
System reliability analysis is a key component in reliability
engineering. Traditional system reliability analysis is based
on probability theory, i.e., the reliability of components are
described as probability estimated through failure data and
the system reliability is obtained through reliability block
diagram (RBD) method, minimal cut/path method, structural
function method, etc. [1]–[4].

In real cases, however, since the lack of failure data,
we cannot even give the reliability of components, let alone
the system. To give a reasonable reliability metric, the physics
of failure (PoF) method is developed based on the failure
mechanisms of the components [5]. In this method, failures
of the components are described by physical models, whose
parameters are modeled as probability distributions [6], [7].
The component reliability can be calculated by propagating
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the uncertainty through the model, and the system reliability
can be, then, obtained based on classical reliability analysis
methods mentioned above.

The limitation of the PoF-based method is that it only
models aleatory uncertainty (the inherent randomness of the
real world modeled by probability distributions [8]) without
considering epistemic uncertainty (uncertainty caused by our
lack of knowledge [9], [10]). For example, the physical model
may not be perfectly accurate due to the limit knowledge of
failure mechanisms and the distribution of model parame-
ters may not be precise because of the indeterministic real
working conditions. To deal with this problem, several reli-
ability analysis methods considering epistemic uncertainty
is developed based on different theories, such as evidence
theory [11], [12], interval analysis theory [13], [14], fuzzy
set theory [15], possibility theory [16], [17], etc. However,
the reliability methods based on the first three theories may
cause interval extension problems in the process of system
reliability analysis because the component reliability is given
as intervals [18]. As for the method based on possibility the-
ory, it may cause counterintuitive results because the theory
itself does not satisfy duality properties [18].

To overcome these shortcomings, Zeng et al. [19] utilize
uncertainty theory (proposed by Liu in 2007 [20]) to model
epistemic uncertainty and first put forward the name belief
reliability. Because of the axioms of uncertainty theory, belief
reliability satisfy duality property and can perfectly avoid the
interval extension problems [18]. Nevertheless, this metric
still cannot solve the reliability analysis problem of most real
systems consisting of both aleatory and epistemic uncertainty.
Specifically, the real systems are usually consist of two kinds
of components, i.e., random components mainly affected
by aleatory uncertainty and uncertain components mainly
affected by epistemic uncertainty. Since the reliability of ran-
dom and uncertain components are modeled by probability
theory and uncertainty theory, respectively, the original belief
reliability analysis method cannot give a reasonable value of
the system reliability [21].

To solve this problem, Wen and Kang [21] and
Zhang et al. [22] extended the concept of belief reliability and
developed system reliability analysis methods using chance
theory, which is regarded to be a combination of probabil-
ity theory and uncertainty theory [23]. In their proposed
methods, the belief reliability of simple systems which can
be divided into random and uncertain subsystems can be
easily calculated, while the belief reliability of other relatively
complex systems can only be calculated using a complex
reliability formula. Although the formula works well for
some system configurations, it still has two disadvantages
in practice. First, the formula is too complex for reliability
engineers to understand. Second, in the calculation process,
we have to figure out all possible combinations of the
components states and make a lot of comparisons, so the
computational complexity for using this formula seems to be
too high. Therefore, in this paper, we develop a new belief

reliability analysis method, called decomposition method,
to improve the effectiveness and efficiency of the formula.

The basic idea of the decomposition method is to decom-
pose the original system configuration into several sub-
configurations only consisting of uncertain components
according to the states of random components, and then cal-
culate the system reliability based on the additivity property
of probability theory. To program this method in computer,
we develop an applicable algorithm using the system cut sets
after studying their properties. By comparing the computa-
tion complexity of the proposed algorithm and the reliability
formula method, we find that the new method is more under-
standable and more efficient in most cases. Since the reliabil-
ity analysis process of simple systems, such as series and par-
allel systems, is very simple (shown in [22]), we only apply
the decomposition method to complex systems in this paper.

The remainder of this paper is organized as follows.
First, we will briefly introduce some necessary knowledge
about uncertainty theory and chance theory in section II.
Section III gives a review on system belief reliabil-
ity theory, and introduces the belief reliability analysis
method of uncertain random systems and uncertain systems.
In section IV, the decomposition method is introduced in
detail. To put forward the algorithm, a theorem about the
decomposed system is proposed and proved. The complexity
analysis is also conducted in this section. Finally, we com-
pare the proposed method with the belief reliability formula
method through a numerical case study in section V.

II. PRELIMINARY
In this section, some basic concepts and results of uncertainty
theory and chance theory are introduced.

A. UNCERTAINTY THEORY
Uncertainty theory is a new branch of axiomatic mathematics
built on four axioms, i.e., Normality, Duality, Subadditivity
and Product Axioms. Founded by Liu [20] in 2007 and
refined by Liu [24] in 2010, uncertainty theory has been
widely applied as a new tool for modeling subjective (espe-
cially human) uncertainties. In uncertainty theory, belief
degrees of events are quantified by defining uncertain mea-
sures:
Definition 1 (Uncertain Measure [20]): Let 0 be a

nonempty set, and L be a σ -algebra over 0. A set function
M is called an uncertain measure if it satisfies the following
three axioms,
Axiom 2 (Normality Axiom): M{0} = 1 for the universal

set 0.
Axiom 3 (Duality Axiom): M{3} + M{3c

} = 1 for any
event 3 ∈ L.
Axiom 4 (Subadditivity Axiom): For every countable

sequence of events 31,32, · · · , we have

M

{
∞⋃
i=1

3i

}
≤

∞∑
i=1

M {3i}
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Uncertain measures of product events are calculated fol-
lowing the product axiom [25]:
Axiom 5 (Product Axiom): Let (0k ,Lk ,Mk) be uncer-

tainty spaces for k = 1, 2, . . .. The product uncertainmeasure
M is an uncertain measure satisfying

M

{
∞∏
k=1

3k

}
=

∞∧
k=1

Mk {3k}

where Lk are σ -algebras over 0k , and 3k are arbitrarily
chosen events from Lk for k = 1, 2, . . ., respectively.
Definition 6 (Uncertain Variable [20]): An uncertain vari-

able is a function τ from an uncertainty space (0,L,M) to
the set of real numbers such that {τ ∈ B} is an event for any
Borel set B of real numbers.

B. CHANCE THEORY
Chance theory is founded by Liu [23], [26] as a mixture
of uncertainty theory and probability theory, to deal with
problems affected by both aleatory uncertainty (randomness)
and epistemic uncertainty. The basic concept in chance theory
is the chance measure of an event in a chance space.

Let (0,L,M) be an uncertainty space, and (�,A,Pr) be
a probability space. Then (0,L,M) × (�,A,Pr) is called a
chance space.
Definition 7 (Chance Measure [23]): Let (0,L,M) ×

(�,A,Pr) be a chance space, and let2 ∈ L×A be an event.
Then the chance measure of 2 is defined as

Ch{2}=
∫ 1

0
Pr {ω ∈ �|M{γ ∈ 0|(γ, ω)∈2} ≥ x} dx. (II.1)

Theorem 8 ( [23]): Let (0,L,M)×(�,A,Pr) be a chance
space. Then

Ch{3× A} =M{3} × Pr{A} (II.2)

for any 3 ∈ L and any A ∈ A. Especially, we have

Ch{∅} = 0, Ch{0 ×�} = 1. (II.3)

Definition 9 (Uncertain Random Variable [23]): An uncer-
tain random variable is a function ξ from a chance space
(0,L,M) × (�,A,Pr) to the set of real numbers such that
{ξ ∈ B} is an event in L × A for any Borel set B of real
numbers.

Random variables and uncertain variables are two special
cases of uncertain random variables. If an uncertain random
variable ξ (γ, ω) does not vary with γ , it degenerates to a
random variable. If an uncertain random variable ξ (γ, ω)
does not vary with ω, it degenerates to an uncertain variable.
Example: Let η1, η2, . . . , ηm be random variables and

τ1, τ2, . . . , τn be uncertain variables. If f is a measurable
function, then

ξ = f (η1, η2, . . . , ηm, τ1, τ2, . . . , τn)

is an uncertain random variable determined by

ξ (γ, ω) = f (η1(ω), . . . , ηm(ω), τ1(γ ), . . . , τn(γ ))

for all (γ, ω) ∈ 0 ×�.

III. SYSTEM BELIEF RELIABILITY AND ANALYSIS
METHOD
A. BELIEF RELIABILITY IN TERMS OF STATE MODE
Belief reliability is a newly proposed reliability metric that
aims to measure the reliability of uncertain random sys-
tems affected by both aleatory and epistemic uncertainties
[22]. In the framework of belief reliability theory, we are
usually interested in two factors: a system state variable
which describes system function or failure behaviors, and
a feasible domain of the state variable representing failure
criteria. Since the state variable always embodies two kinds
of uncertainty, the belief reliability metric is defined based on
chance theory.
Definition 10 (Belief Reliability [22]): Let a system state

variable ξ be an uncertain random variable, and4 be the fea-
sible domain of the product’s state. Then the belief reliability
is defined as the chance that the system state is within the
feasible domain, i.e.,

RB = Ch{ξ ∈ 4}. (III.1)

In this definition, the system state variable ξ can represent
different physical quantities, for example, the failure time,
performance margin, state mode (interpreted as the function
level in [22]), etc. In this paper, we are mainly concerned
about the circumstance that ξ takes the state mode, denoted
as G, which describes the behavioral status of a system as it
performs its specified function.

Assume the system has k different state modes G = i, i =
0, 1, . . . , k . Among all the state modes, some are used to
describe the functional behavior of the system to perform its
specified function, some are used to describe the degraded
behavior because of the degradations of different levels, and
the rest describe the failure behavior when the system cannot
accomplish its function. Suppose the state mode that ensure
the system to be in the feasible domain is G = j, j = s, s +
1, · · · , k . Then, by setting4 = {s, s+1, . . . , k}, we have the
system belief reliability in terms of state mode:

RB = Ch {G ∈ {s, s+ 1, . . . , k}} . (III.2)

It is noted that Eq. (III.2) shows the belief reliability of
multistate systems. In this paper, we tent to focus on a special
case, where the system only has two state modes, namely,
complete failure with G = 0 and perfectly function with
G = 1. Then the system belief reliability can be described
by

RB = Ch {G = 1} . (III.3)

To calculate the belief reliability given in (III.3), Wen and
Kang [21] proposed a reliability formula using the opera-
tional laws of chance theory, which will be introduced in
section III-B. It is also noted that Eq. (III.3) has two degen-
eration cases. If the state mode is mainly affected by aleatory
uncertainty, the belief reliability will be the classical proba-
bility theory-based reliability of a binary system, which can
be evaluated using statistical methods [3]. If G is mainly
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affected by epistemic uncertainty, the belief reliability will
become the uncertainty theory-based reliability of a binary
system, i.e.,

RB =M {G = 1} . (III.4)

In this case, we need to use the minimal cut theorem
developed by Zeng et al. [27] to calculate the belief reliability.
The theorem is one of the basis of the proposed decompo-
sition method in this paper, so we will further introduce it
in section III-C.

B. BELIEF RELIABILITY ANALYSIS OF UNCERTAIN
RANDOM SYSTEMS
Uncertain random systems refer to the systems with both
uncertain components and random components, where the
two kinds of components are mainly affected by epistemic
uncertainty and aleatory uncertainty respectively. To model
the reliability of uncertain random systems, chance theory is
inevitable to be used. Since the interpretation of state mode
in belief reliability theory is a basic one which is easier and
more directly to be understood, in this paper, we tend to use
the Eq. (III.3) to clarify the belief reliability analysis method
of uncertain random systems.

The belief reliability analysis method of uncertain random
systems include two cases. First, for simple systems which
can be divided into a random subsystem and an uncertain
subsystem, Zhang et al. have provided two belief reliability
formula to calculate their belief reliability [22]. Second, for
the systems that cannot be separated to two subsystems,
called complex systems in this paper, only a complex formula
which is developed by Wen and Kang according to the oper-
ational laws of chance theory, can be used.

Before we introduce the formula, the concept of structure
function should be clarified.
Definition 11 (Structure Function): Let xi(1 ≤ i ≤ n)

denote the state mode of the ith component, where

xi =

{
1, if the ith component is working
0, if the ith component fails

Suppose the system state mode G is a function of the
component state mode vector x = (x1, x2, . . . , xn),
denoted by

G = φ(x) = φ(x1, x2, . . . , xn).

Then, the function φ(·) is called the structure function of the
system.

We can see that the system structure function is a mapping
from {0, 1}n to {0, 1}, where G = 0 and G = 1 denote the
system is failed and working, respectively. Then we can give
the belief reliability formula of uncertain random systems.
Theorem 12 (Wen and Kang [21]): Assume that a Boolean

system has a structure function φ and contains ran-
dom components with belief reliabilities R(P)B,i, i =

1, 2, . . . ,m and uncertain components with belief reliabilities

R(U )
B,j , j = 1, 2, . . . , n. Then the belief reliability of the system

is

RB,S = Ch{G = 1}

=

∑
(y1,...,ym)∈{0,1}m

(
m∏
i=1

µi(yi)

)
·Z (y1, y2, . . . , ym), (III.5)

where

Z (y1, y2, . . . , ym)

=



sup
φ(y1,...,ym,z1,...,zn)=1

min
1≤j≤n

νj(zj),

if sup
φ(y1,...,ym,z1,...,zn)=1

min
1≤j≤n

νj(zj) < 0.5,

1− sup
φ(y1,...,ym,z1,...,zn)=0

min
1≤j≤n

νj(zj),

if sup
φ(y1,...,ym,z1,...,zn)=1

min
1≤j≤n

νj(zj) ≥ 0.5,

µj(yi) =

{
R(P)B,i, if yi = 1,

1− R(P)B,i, if yi = 0,
(i = 1, 2, . . . ,m),

νj(zj) =

{
R(U )
B,i , if zj = 1,

1− R(U )
B,i , if zj = 0,

(j = 1, 2, . . . , n).

In practise, this reliability formula seems to be too compli-
cated for reliability engineers to understand. In addition, it is
easy to find that when computing Z (y1, y2, . . . , ym), we have
to figure out all possible combinations of the values of yi, i =
1, 2, . . . , n and zj, j = 1, 2, . . . , n, and in one computation
process, we also have to make a lot of comparisons to obtain
the value of sup

f (y1,...,ym,z1,...,zn)=1
min
1≤j≤n

νj(zj). In real engineering

application, it may be difficult to utilize. Because of these
limitations, there is a great need to put forward a simpler
method for belief reliability analysis of uncertain random
systems.

C. BELIEF RELIABILITY OF UNCERTAIN SYSTEMS
In this paper, we will develop a decomposition method in
section IV. The main idea is to decompose the uncertain
random system to several uncertain systems with associ-
ated probabilities. Therefore, the belief reliability analysis of
uncertain systems is a crucial problem for the method.

Uncertain systems only consist of uncertain components,
whose belief reliability is obtained using uncertainty the-
ory. Liu first proposed a reliability index theorem using the
operational laws of uncertainty theory to calculate the belief
reliability of uncertain systems [28]. Later, Zeng et al. devel-
oped a more practical method based on the minimal cut set
theorem [19]. In 2018, Zeng et al. extended the minimal cut
set theorem to cut sets, which further simplifies the belief
reliability analysis process [27]. The cut set theorem offers
a possibility to calculate the decomposed uncertain systems
in our method.
Definition 13 (Cut Set and Minimal Cut Set [29]): Let x =

(x1, x2, . . . , xn) be a state mode vector of a system with
structure function φ. If φ(x) = 0, then CS = {i|ξi = 0} is
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called a cut set. Further, if ∀u > x, we have φ(u) = 1, then
CS is called a minimal cut set.
Theorem 14 (Cut Set Theorem [27]): Suppose that an

uncertain system has l minimal cut set CS1,CS2, . . . ,CSl
and (k − l) cut sets CSl+1,CSl+2, · · ·CSk that contain some
minimal cut sets. Then, the system belief reliability can be
calculated by

R(U )
B,S =

∧
1≤i≤k

∨
j∈CSi

R(U )
B,j . (III.6)

IV. THE DECOMPOSITION METHOD
In this section, we will give the simpler and more effi-
cient method based on decompositions of complex systems.
It should be further explained that the so-called complex
systems in this paper uses the concept in [22], i.e., the systems
that cannot be separated into a random subsystem and an
uncertain subsystem, and the proposed method is used to
cope with these kinds of systems. To better demonstrate this
method, we will first give some basic ideas through a small
example. Then, some critical definitions and theorems about
cut sets will be given as the basis of the decomposition
method. An algorithm will be given for belief reliability anal-
ysis of complex uncertain random systems using computers.
Finally, we will analyze the complexity of the method and
compare it with the existed belief reliability formula.

A. BASIC IDEAS
In Theorem 12, we find the difficulty is actually calculating
the Z (y1, y2, . . . , ym) where yi(i = 1, 2, . . . ,m) are the state
combination of random components. In fact, when one group
of yi is determined, there will be a corresponding system sub-
configuration which only consists of uncertain components.
For m random components in a system, there are totally 2m

state sets by considering their all possible combinations of
success or failure, and each state mode set has a probability
p(i), i = 1, 2, . . . , 2m. By evaluating the belief reliability
R(U ,i)B of the sub-configurations, the system belief reliability
can, then, be calculated based on the additivity of the proba-
bility measure, i.e.,

RB,S =
2m∑
i=1

p(i) · R(U ,i)B . (IV.1)

Here we use a small example to illustrate this thought.
Example(k-Out-of-n system): Consider a 2-out-of-4 sys-

tem consisting of two random components and two uncer-
tain components, as shown in Fig.1. The reliabilities of the
four components are RP1,RP2,RU3 and RU4, respectively.
By figuring out all state modes combinations of random
components, we will have 4 state mode sets with associated
probabilities. To obtain the sub-configurations, we need to
replace a random component with a path when the state mode
of it is 1, while we should delete it if the state mode is 0.
Then, 4 sub-configurations and their belief reliabilities can be
acquired, which are shown in Table 1. Therefore, the system

FIGURE 1. An uncertain random 2-out-of-4 system.

TABLE 1. System belief reliability calculation process for
2-out-of-4 system using decomposition method.

FIGURE 2. RBD model for sub-configurations of the uncertain random
2-out-of-4 system.

belief reliability of the 2-out-of-4 system is

RS = RP1RP2 + RP1(1− RP2)(RU3 ∨ RU4)

+(1− RP1)RP2(RU3 ∨ RU4)

+(1− RP1)(1− RP2)(RU3 ∧ RU4). (IV.2)

The result of the example is consistent with the one given
by Wen and Kang [21], which shows the correctness of
the ideas. However, this method cannot be easily applied in
computers. Therefore, we try to use the properties of cut sets
and the cut set theorem to polish the decomposition method.

B. THE CUT SETS OF DECOMPOSED SYSTEMS
The main difficulties in the above example are actually to
replace the component with path or just delete the component.
Since we tend to use the cut set theorem to calculate the belief
reliability of uncertain systems, it is natural to directly use
cut sets of the original system to get the cut sets of uncertain
systems after decomposition. Therefore, we hereby give the
definition of the decomposed uncertain system and show the
property of its cut sets.
Definition 15 (Decomposed System): Assume a system is

composed of n components with structure function φ, and
x = (x1, x2, . . . , xn) is the components’ state mode vector.
If the state mode of the kth component is determined to be
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xdk , where 1 ≤ k ≤ n, then the systemwith structure function
φ(x1, . . . , xdk , . . . , xn) is called the decomposed system of k .
Specially, let us consider an uncertain random sys-

tem which is composed of m random components
and n uncertain components with structure function
φ(u1, . . . , um, v1, . . . , vn), where u = (u1, . . . , um) and
v = (v1, . . . , vn) are the state mode vector of random
and uncertain components, respectively. When the state
mode vector of random components is determined to be
ud = (ud1 , . . . , udm ), the system with structural function
φ(ud1 , . . . , udm , v1, . . . , vn) can be called the decomposed
uncertain system of the determined random components.
Theorem 16: Assume a system has n components with

numbers {1, 2, . . . , n} and CS0 = {c1, c2, . . . , cp} is one of
the minimal cut set of the system. Let xk be the state mode of
the kth component. Then we have (1)

1) If ∃cj ∈ CS0 and xcj = 1 is determined, then CS0\cj
will not be the cut set of the decomposed system of cj
anymore.

2) If ∃cj ∈ CS0 and xcj = 0 is determined, then CS0\cj
will still be the cut set (but not necessarily aminimal cut
set) of the decomposed system of cj when CS0\cj 6= ∅.

Proof: Without loss of generality, we assume a sys-
tem only have 2 minimal cut sets, denoted as CS0 =
{c1, . . . , cj, . . . , cp} and CS1 = {b1, . . . , bq}, and ∀bi, there
is bi 6= cj, i = 1, . . . , q. Suppose the state mode vector
of CS0 and CS1 are x0 = {xc1 , . . . , xcj , . . . , xcp} and x1 =
{xb1 , . . . , xbq}, respectively, so we have φ(x) = 0 if x0 =
0 or x1 = 0. Then, the structure function of the system can
be written as:

φ(x) = φ0(x0) · φ1(x1)

=
[
1− (1− xc1 ) · · · (1− xcj ) · · · (1− xcp )

]
·
[
1− (1− xb1 ) · · · (1− xbq )

]
.

(1) When xcj = 1 is determined, it is easily to find that
φ0(x0) = 1. Then, the structure function of the decom-
posed system of cj becomes

φ(x) = 1 · φ1(x1) = 1− (1− xb1 ) · · · (1− xbq ).

Therefore, the set CS0\cj will not be the cut set of the
decomposed system.

1) When xcj = 0 is determined, we can find that
1 − xcj = 1. If C0\cj 6= ∅, the structure function of
the decomposed system of cj becomes

φ(x) = [1− (1− xc1 ) · · · (1− xcj−1)

·(1− xcj+1) · · · (1− xcp )]

·
[
1− (1− xb1 ) · · · (1− xbq )

]
.

Therefore, the set CS0\cj is still the cut set of the
decomposed system, but we cannot guarantee that it is
still a minimal cut set.

The theorem is proved.

C. ALGORITHM FOR THE DECOMPOSITION METHOD
In this part, we are going to put forward an algorithm for the
decomposition method, which can be applied in computers.
The algorithm is based on Theorem 16, and some basic
assumptions are made first.

(1) The hybrid system includesm random components and
n uncertain components.

(2) All the components are independent, i.e., the failure of
any component will not affect other components.

(3) Each component only has two crisp state modes: failure
with G = 0 and function with G = 1.

The algorithm will first decompose the system by figur-
ing out the state mode combinations of random components
and then obtain the cut sets of each decomposed uncertain
systems. The cut set theorem will be used to calculate the
belief reliability of decomposed uncertain systems. Finally,
the belief reliability of the original system can be easily
acquired using Eq. (IV.1). The algorithm is summarized in
Algorithm 1.

D. COMPLEXITY ANALYSIS
In this part, the computational complexity of the proposed
method is analyzed. To show the advantage of this method,
a comparison of complexity is also performed between the
decomposition method and the reliability formula.
In Algorithm 1, there are three loops. In the first loop,

it will traverse all state mode combinations of random com-
ponents, which will repeat 2m times. Then, in the second and
third loops, the algorithm will adjust the cut sets (at most l
sets) according to the stat mode of each component. Finally,
the belief reliability of the decomposed system is calculated
in the first loop and the computation time will be at most rn.
Therefore, the time complexity of the algorithm will be at
mostO(2m ·(ml+rn)).We consider a worst situation, in which
the number of the minimal cut sets of original system is
l = m+ n and the number of cut sets of decomposed system
is r ≤ l = m+ n. Thus, the complexity of the algorithm will
be less or equal to O(2m · (m+ n)2).
For comparison, let us analyze the complexity of the

reliability formula. The formula may only use two loops.
The first loop of the method using this formula is to iden-
tify the state mode combinations of all random components
(2m times) and obtain the probability of each combination
(m times of multiplication). Then, in the second loop, all the
state modes of uncertain components are recognized and n
times of comparisons are made. The last process is also to
make n times of comparisons to get the Z (y1, y2, . . . , ym).
Therefore, the time complexity of the formula is O(m · 2m ·
(2n · n+ n)) = O(mn · 2m+n).
If there are more random components in the uncertain

random system, i.e., n > m, then the computational com-
plexity of the proposed algorithm will be less thanO(n2 ·2m),
which is much less than that of the formula. If there are more
random components, i.e., m > n, then we have the compu-
tational complexity of the proposed algorithm to be less than
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Algorithm 1 Decomposition Method
Input: Original RBD graph of the system and the belief

reliability of each component
Output: The belief reliability of the system RB,S
1: Identify all the minimal cut sets (MCSs) C1,C2, . . . ,Cl

of the original system.
2: Identify all the state mode vectors X (i)

=

(x(i)1 , x
(i)
2 , . . . , x

(i)
m ) for m random components with

belief reliability R(P)B,j, j = 1, 2, . . . ,m.
3: Set the probability of state sets to be p(i) = 1, i =

1, 2, . . . , 2m.
4: for i = 1 to 2m do
5: Set r = l.
6: for j = 1 to m do
7: Set q1 = 0 and q2 = 0.
8: if s(i)j = 1 then

9: Set p(i) = p(i) · R(P)B,j .
10: for k = 1 to r do
11: if j ∈ Ck then
12: Delete Ck from the group of MCSs.
13: q1 = q1 + 1.
14: end if
15: end for
16: r = r − q1.
17: Reorganize the MCSs as C1, . . . ,Cr
18: else
19: Set p(i) = p(i) ·

(
1− R(P)B,j

)
.

20: for k = 1 to r do
21: if j ∈ Ck then
22: Delete j from Ck .
23: if Ck = ∅ then
24: q2 = 1, break.
25: end if
26: end if
27: end for
28: end if
29: end for
30: if q2 = 1 then
31: R(U ,i)B = 0.
32: else if r = 0 then
33: R(U ,i)B = 1.
34: else
35: R(U ,i)B =

∨
1≤k≤r

∧
j∈Ck R

(U )
B,j .

36: end if
37: end for
38: Calculate system belief reliability by RB,S =

∑2m
i=1 p

(i)
·

R(U ,i)B .
39: return RB,S .

O(m2
· 2m). Thus, in the most extreme cases, our method is

simpler as long as the number of the random components is
not much more than the number of uncertain components.
It also should be noted that we have analyzed the worst case

FIGURE 3. Reliability block diagram of the interested system.

TABLE 2. Belief reliability of the decomposed systems.

of our method, while in most cases, the proposed method
does not cost too much computational resource and is more
understandable in applications.

V. NUMERICAL CASE STUDY AND COMPARISON
In this section, the proposed decomposition method will be
compared with the original belief reliability formula through
a numerical case study. We focus on a system with 3 random
components and 2 uncertain components, shown in Figure 3.
The belief reliability of each component is given as
RP,A = 0.95, RU ,B = 0.9, RP,C = 0.95, RP,D = 0.9 and
RU ,E = 0.85. Then, we use the decomposition method and
the belief reliability formula method to calculate the belief
reliability of the system respectively and compare the two
method.

We first use the proposed decomposition method to calcu-
late system belief reliability. In this method, the minimal cut
sets (MCSs) of the system need to be identified first. Using
the definition of MCS, we can easily obtain the MCSs of this
system to be:

MCS1 = {A},MCS2 = {B,D},MCS3 = {B,C,E}.

Using Algorithm 1, the state mode vectors and the belief
reliability of the decomposed system of each vector can be
obtained, shown in Table 2.

Therefore, the system belief reliability is

RB,S =
∑
i

p(i)RB(U , i) = 0.94501.

In this method, the total calculation times is obtained to be 48.
We also use the belief reliability formula shown in The-

orem 12 to calculate the belief reliability of the example
system. First, the structural function of the system need
to be obtained, which can be calculated using the mini-
mal cut sets identified before. Assume the state mode of
the five components are yA, zB, yC , yD and zE , respectively.
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TABLE 3. System belief reliability calculation process using belief
reliability formula.

Thus, the structural function can be written as:

f (yA, yC , yD, zB, zE ) = [1− (1− yA)]·[1−(1−zB)(1−yD)]

· [1− (1− zB)(1− yC )(1− zE )]

= yA · [yC + (zB · (yD + yE ))]. (V.1)

Then, all the combinations of components state should
be figured out and the belief reliability is calculated
based on equation (III.5). Table 3 shows the whole pro-
cess. It should be noted that in one calculation process,
we have to make several comparisons to obtain the value of

sup
f (y1,...,ym,z1,...,zn)=1

min
1≤j≤n

νj(zj, t). To clarify the computational

cost, we also show the times of calculation in the last column
of the table.

Therefore, the system belief reliability is

RB,S =
∑

(yA,yC ,yD)∈{0,1}3

µ(yA) · µ(yC ) · µ(yD) · Z (yA, yC , yD)

= 0.94501.

We can also get the calculation times of this method to be 76.
From the calculation process of the two methods, we can

find that it is much easier to obtain the system belief relia-
bility through the decomposition method than the reliability
formula. There may be two reasons:

Firstly, the proposed method only requires us to figure out
the state mode combinations of random components, not all
of them. In the decomposition method, since there are 3 ran-
dom components, we need to consider 8 situations according
to the state modes of random components. However, when
using the reliability formula, all 32 state sets should be listed.
This may cause a dramatic increase in computational cost.

FIGURE 4. Structure of the quad redundant servo system.

Secondly, the calculation process of the decomposition
method is more accessible and more understandable. We
only need to know the minimal cut sets of the system in
the proposed method and do not need to face the complex
formula. It is easier for engineers in real applications.

VI. APPLICATION IN REAL SYSTEMS
The proposed method is applied to the belief reliability anal-
ysis of a quad redundant servo system [30] with two new
MOSFET inverse unit (uncertain components). The structure
of the servo system is shown in Fig. 4.

Besides a CAN bus and a motor, the most essential part
of the servo system is the voting module. It consists of 3
units, i.e., central control unit, power drive unit and sensor
unit, each of which has 4 redundancies. A group of the three
units forms one channel of the voting module. The central
control unit is composed of a DSP controller and an FPGA,
which are used to control speed and displacement. The core
device of the power drive unit is a MOSFET inverter, and
this unit will generate control current to drive the motor. The
sensor unit is responsible for collecting the bus current of
the motor. In this system, two MOSFET inverters are new
products which embrace sever epistemic uncertainty, thus
we model them as uncertain components, while others are
regarded as random components.

It is designed that if there are more than two out of
four channels are working, the motor speed will be normal.
If there is only one channel left, the servo system cannot
work normally, but safely.According to the function of the
system, the reliability block diagram (RBD) model of this
system can be established, as shown in Fig. 5. In the model,
A1 ∼ A4 represent the DSP controllers, B1 ∼ B4 denote
FPGAs, C1 ∼ C4 are the MOSFET inverter (C1 and C2
are random components while the other two are uncertain
components), D1 ∼ D4 represent the detection circuits, and
M is the motor. The belief reliability of these components are
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FIGURE 5. RBD model of the servo system.

given as R(P)B,BUS = 0.9999, R(P)B,Ai = 0.999 (i = 1 ∼ 4),
R(P)B,Bi = 0.995 (i = 1 ∼ 4), R(P)B,C1 = R(P)B,C2 = 0.998,

R(P)B,C3 = R(P)B,C4 = 0.98, R(P)B,Di = 0.995 (i = 1 ∼ 4).
Obviously, the whole system is a complex uncertain ran-

dom system where the uncertain components and random
components cannot be separated. In this case, the reliability
formula method cannot work out. To use the decomposi-
tion method, we can first combine some simple subsystem
according to Zhang et al. ( [22]). The simplified RBD is also
shown in Fig. 5 with 6 random components and 2 uncertain
components, whose belief reliabilities are R(P)B,1 = 0.9999,

R(P)B,2 = R(P)B,3 = 0.9871, R(P)B,4 = R(P)B,5 = 0.9890, R(P)B,6 =

0.9995, R(U )
B,7 = R(U )

B,8 = 0.98. Using the proposed method,
we can calculate the system belief reliability to be

RB,S = 0.9989.

VII. CONCLUSION
This paper presents a new method, called the decomposition
method, for belief reliability analysis of complex uncertain
random systems. In this method, the main idea is to decom-
pose the original system according to the state mode vectors
of random components and then calculate the system belief
reliability based on the probability of each vector and the
corresponding belief reliability of the decomposed uncertain
system. By figuring out the properties of cut sets for decom-
posed system, an algorithm for belief reliability analysis of
complex uncertain random systems is first summarized in
this paper. The complexity analysis shows that this algorithm
is more efficient in most cases compared with the belief
reliability formula method. Moreover, a numerical case study
is performed to compare the proposed method with belief
reliability formula method. It is seen that this method is more
understandable for reliability engineers and can be applied
more easily in practice.
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