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ABSTRACT This paper presents a method that can be used for the efficient detection of small maritime
objects. The proposed method employs aerial images in the visible spectrum as inputs to train a categorical
convolutional neural network for the classification of ships. A subset of those filters that make the greatest
contribution to the classification of the target class is selected from the inner layers of the CNN. The gradients
with respect to the input image are then calculated on these filters, which are subsequently normalized
and combined. Thresholding and a morphological operation are then applied in order to eventually obtain
the localization. One of the advantages of the proposed approach with regard to previous object detection
methods is that it is only required to label a few images with bounding boxes of the targets to be trained
for localization. The method was evaluated with an extended version of the MASATI (MAritime SATellite
Imagery) dataset. This new dataset has more than 7 000 images, 4 157 of which contain ships. Using only
14 training images, the proposed approach achieves better results for small targets than other well-known
object detection methods, which also require many more training images.

INDEX TERMS Artificial neural networks, learning systems, object detection, remote sensing.

I. INTRODUCTION
Systems for automatic ship detection are very important for
maritime surveillance operations. They can be used to mon-
itor marine traffic [1], illegal fishing, and sea border activ-
ities, and also during search and rescue operations such as
the detection of bodies lying in the sea [2]. These types of
algorithms are usually based on information gathered from
satellite or aerial images, either by means of visible spectrum
imagery or through the use of SAR-type sensors [3]–[6], and
each one has different advantages and disadvantages.

The detection of small objects in large swaths of imagery is
one of the primary problems in aerial imagery analytics [7],
and is a particularly challenging task in satellite imagery.
The objects of interest in this type of images are often very
small and densely clustered, while in other types of lateral or
general images the targets are much larger and more promi-
nent, as occurs in the ImageNet dataset [8]. Moreover, objects
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viewed from overhead can have any orientation (e.g. ships can
have any heading angle, whereas the traffic lights or trees in
ImageNet are reliably vertical).

Object detection can be addressed using different strate-
gies. The most evident technique is the use of a sliding
window on the input image, which yields a prediction for each
frame until the entire image has been processed. In this case,
the accuracy of the detection varies according to the size of
the window and the overlap used. However, this approach is
very slow and computationally expensive. Most recent works
overcome these limitations by performing classification and
localization simultaneously.

The automatic detection of ships has been an active
research field for decades, and continues to attract increas-
ing interest. The first techniques used for ship detection
were based on hand-crafted descriptors. For example,
Lure et al. [9] and Weiss et al. [10] proposed a detection
system for the tracking of ships using High Resolution
Radiometer imagery. In this work, image features were
first extracted and subsequently classified using similarity
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measures obtained from features. More recent examples
include the use of Boosted Local Structured HOG-LBP
for object localization [11], a multi-fold multiple instance
learning procedure [12], implicit cues from image tags [13],
or image pixel intensity probabilities combined with LBP
descriptors [14]. A complete review of ship detection meth-
ods can be found in [15].

Selecting hand-crafted features that can be employed
to detect targets in images is a challenging task, particu-
larly when objects have a different appearance and size.
Recent image classification techniques have attempted to
deal with this problem by making use of Deep Learning
techniques [16] and, in particular, Convolutional Neural Net-
works (CNN), to perform classification without having to
apply either hand-crafted feature extraction or pre-processing
techniques. The performance of these networks has proven to
be close to the human level, or even better for some types of
tasks. Widely known CNN topologies include Xception [17],
Inceptionv3 [18], ResNet [19], and VGG [20], among others.

For example, Wu et al. [21] classified ships using a CNN
and then unified iterative bounding-box regression and ship
classification in a multi-task network. In Yang et al. [22],
in addition to the bounding boxes, the orientations of the
ships were provided by using a model consisting of five
parts: a Dense Feature Pyramid Network, an adaptive region
of interest alignment, a rotational bounding box regression,
a prow direction prediction, and a rotational non-maximum
suppression. Yu et al. [23] used Haar-like features to obtain
the approximate positions of ships, and then applied a PCNet
architecture to the candidate windows.

Many deep learning methods are dedicated to the detec-
tion of objects in general. A review of those methods can
be found in [24]–[26], while an evaluation of small object
detection can be found in [27], which analyzes the results of
known methods such as YOLO (You Only Look Once) [28],
SSD (Single Shot MultiBox Detector) [29], and Faster
R-CNN [30].

However, these types of techniques also have a number
of disadvantages, principally the fact that, since they are
supervised methods, they need a large amount of labeled
data in order to be trained, which is a very expensive task
in terms of time, resources and effort. In addition, methods
using weakly-supervised techniques usually have a very low
accuracy as regards detecting small objects. Moreover, object
detection networks usually require adaptations when targets
are very small [31], [32], which makes it impossible to apply
this type of methods in a general manner.

In this paper, we propose a weakly-supervised deep learn-
ing method for efficient object detection. The method is
particularly focused on the detection of small ships in satellite
images and requires only a few training data labeled with the
location (bounding boxes) of the ships to obtain their precise
position. The proposed approach addresses the object detec-
tion task on the basis of a network trained for classification.
The low precision of the weakly-supervised algorithms is
improved through the use of a filter selection process. In this

process, the filters learned by the categorical network are
analyzed in order to select only those that will allow targets
to be detected with greater precision. The method calculates
the gradient obtained between the activations of each of these
filters and the input image. It then normalizes and combines
these gradients, in addition to applying a threshold and a
morphological operation, in order to eventually obtain the
location of the targets.

This approach was evaluated with an extended version
of the MASATI (Maritime SATellite Imagery) dataset [1],
to whichmore than one thousand images of ships were added,
in addition to the labeling of their locations. The new dataset
consists of a total of 7,389 aerial images, of which ships
represent only 0.03 % of the pixels.

We also performed a comparison with current state-of-
the-art approaches based on deep learning, and specifically
with RetinaNet [33], Faster R-CNN [30], YOLO v2 [34],
YOLO v3 [35], YOLT [7], and class-activation maps using
backpropagationwithVGG-16 andVGG-19 [36]. The results
of this comparison are very competitive as regards small
objects, particularly when the background is relatively uni-
form, as occurs with the ship detection task, thus demonstrat-
ing that the approach can generalize and learn with very few
images.

The remainder of the paper is organized as follows: The
following section provides a review of the state of the art
of object detection methods; the proposed weakly-supervised
object detection method is described in Section III; the
new version of the MASATI dataset used for evaluation is
described in Section IV; the series of experiments carried out
is detailed in Section V, and finally, the main conclusions of
this work are summarized in Section VI.

II. STATE-OF-THE-ART
In this section, we review the state of the art of object
detection methods, which are, in the scope of this work,
divided into supervised and weakly-supervised object detec-
tion methods.

A. SUPERVISED OBJECT DETECTION METHODS
Object detection methods can be roughly classified [24]
as one-stage detectors (including methods such as YOLO
[28], [34], [35], RetinaNet [33], or SSD [29]), two-stage
detectors (Faster R-CNN [30] or YOLT [7]), cascade
detectors (Bai & Ghanem [37]), and part-based models
(Dai et al. [38]).

One of the first two-stage object detectors was Faster
R-CNN [30], a method consisting of class-agnostic proposals
and class-specific detections. In this work, the authors present
an efficient fully convolutional approach denominated as
Region Proposal Network (RPN) that can be used to propose
regions. The detector further classifies and refines bounding
boxes around those proposals.

One of the best-known single stage object detectors
is YOLO (You Only Look Once) [28]. This architecture
addresses object detection as a regression problem in order
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to obtain spatially separate bounding boxes and associated
class probabilities. A single neural network directly predicts
bounding boxes and class probabilities from full images in
one evaluation. YOLO v2 [34] was an improvement to the
first version. In this new version, the image was divided into
regions, and bounding boxes and probabilities were predicted
for each region. It outperformed previous state-of-the-art
methods, such as Faster R-CNN [30] and SSD [29]. YOLO
v3 [35] is an improvement to YOLO v2 which, despite being
larger, is faster and more accurate.

RetinaNet [33] proposes a focal loss that makes it possible
to train a high-accuracy one-stage detector. The focal loss was
designed to address the one-stage object detection scenario
in which there is an extreme imbalance between foreground
and background classes during training. The name RetinaNet
originates from its dense sampling of object locations in an
input image. Its design comprises an efficient in-network
feature pyramid and the use of anchor boxes.

YOLT (You Only Look Twice) [7] is one of the specific
methods for the detection of ships in satellite imagery. It is a
two-stage detector consisting of a fully-convolutional neural
network with a passthrough layer (similar to identity map-
pings in ResNet [19]) that concatenates the final layer onto
the last convolutional layer, thus giving the detector access to
the finer grained features of this expanded feature map.

A number of existing methods use feature maps for
ship detection and have a similar architecture to Faster
R-CNN (employing a two-step methodology). For example,
Li et al. [39] proposed a topology similarly to Faster R-CNN
(called HSF-Net) that employs a regional proposal network
to generate ship candidates from feature maps. In Huang
et al. [40], a new neural network architecture denominated
as squeeze excitation skip-connection path networks (SESP-
Nets) was proposed. The authors added a bottom-up path
to a feature pyramid network to improve the feature extrac-
tion capability and obtain more accurate and multi-scale
proposals.

B. WEAKLY-SUPERVISED OBJECT DETECTION METHODS
The localization of objects can also be estimated by using
visualization methods, which have localization capabilities,
despite not being explicitly trained to do so. These approaches
use standard CNN trained for classification and analyze the
feature maps (also called activation maps), which are the
output activations of each convolutional filter. Some of these
methods also consider error gradients in order to highlight
those locations that have made the greatest contribution to the
prediction of a particular class. Their output (namely Saliency
Maps or Class-Activation Maps) serves to visually analyze
what a network has learned and also to localize objects within
the image.

One of the first methods for weakly-supervised object
localization from CNN was proposed in [36]. This approach
performs a single backpropagation (BP) pass to obtain the
true gradient, which masks out negative bottom data entries
via the forward ReLU [41]. The class-activation map for an

input image and a given class is computed as the average of
gradients for the filters when the featuremap value is positive.
In the context of this paper, we shall denominate this method
as BP. A more recent technique, denominated as Class Acti-
vation Mapping (CAM), was proposed in [42]. In this case,
the feature maps of the last convolutional layer are spatially
pooled using a Global Average Pooling (GAP) [43] operation
and are linearly transformed using the weights learned from
the final layer to obtain the class-activation map.

The main issue of CAM is that it is necessary to adapt
architectures with fully-connected layers in order to use this
method, and also that it requires the retraining of multiple
linear classifiers (one for each class) after the initial model
has been trained. Grad-CAM (Gradient-weighted Class Acti-
vation Mapping) [44] was introduced to overcome these lim-
itations and to enable its use with any CNN architecture
without having to adapt it.

The proposed method belongs to this group, since it makes
use of the feature maps learned by a CNN and the gradient
obtained for each of the activation maps with respect to the
input layer. However, this method introduces a filter selection
process that uses only those filters that detect the target class
with greater precision. It also combines the selected filers in
order to improve the accuracy of the location and remove
possible false positives.

III. METHOD
Previous weakly-supervised localization methods can help
show the regions from the image that make the greatest con-
tribution to the classification of a particular class. However,
a CNN tends to focus onmore elements than themain target to
be searched, as some of these elements may contribute to the
classification decision. For example, in our case, in addition
to the ships, the network can detect whether there is sea or
coast.

Some examples of this problem can be seen in Figure 1.
The first row shows the original input image, while the second
and third rows show the saliency maps after the application
of backpropagation [36] and Grad-CAM [44], respectively.
Figures 1(a) and (e) clearly show how the attention of the net-
work focuses on other locations rather than the ship targets.
In addition, depending on the architecture and the selected
layer, the precision of localization may be very poor when
the layer activation is high in a wide zone of the input image
(see Figures 1 (b), (c) and (d)).
This occurs because a feature hierarchy is learned in the

different convolutional layers of the CNN, from the low-level
features (such as edges, corners, etc.) to the last convolutional
layers (which are usually those employed to calculate the
heatmaps or visual saliency), from which high-level features
are obtained. However, in the last layers, filters are usually
activated with different elements in the image, and the clas-
sification is eventually performed by using a combination of
activations. This means that, for classification, some filters
are activated that do not necessarily contain the target object,
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FIGURE 1. Examples of saliency maps from backpropagation [36] and Grad-CAM [44]. The first row shows
the original images, in which ships are marked with a bounding box.

but rather other elements in the image that help perform the
classification.

Figure 2 shows a subset of feature maps from different
filters for a sample image, which contains coast and one ship.
As can be seen, most of the filters do not have activations in
the target location, and those filters that detect the ship also
have activations for other elements from the imagewhichmay
be helpful for classification.

A. SCHEME OF THE PROPOSED METHOD
The objective of the proposed approach is to use only
those filters with high activation values for the target object.
Figure 3 shows a scheme of the method. First, a categorical
CNN is trained for classification. Once the weights have
been learned, a Filter Selection process is performed to select
the set of filters that maximize the precision as regards the
location of the target class. Finally, in the inference stage,
a new image is classified using the CNN and, if the predicted
class corresponds to the target class, the subset of filters that
was selected in the previous stage is then used to calculate its
position in the image.

Steps 1 (Train CNN) and 2 (Fit FS) of the scheme in
Figure 3 correspond to the training stage of the method, while
step 3 corresponds to the inference stage, once the training
stage has finished. Details of the steps in this method are
provided in the following sections.

B. STEP 1 – TRAIN THE CNN
In this first step, a categorical CNN is trained for classifica-
tion. In the experimentation, we evaluated two widely-known
topologies of CNN for categorical classification, VGG-
16 and VGG-19 [20]. These two architectures were selected
because they obtained a good result for the classification of

this dataset (close to 100%, as will be seen in the evaluation
section), and also because they are frequently used as a basis
for localizationmethods such as SSD [29], Faster RCNN [30]
and CAM [42], among others.

VGG-16 has 13 convolutional and 3 fully-connected lay-
ers, whereas VGG-19 is composed of 16 convolutional and
3 fully-connected layers. Both topologies use dropout [45],
max-pooling [46] and ReLU [41] activation functions.

Fine-tuning was performed for training, and the net-
works were initialized with the pre-trained weights from the
ILSVRC dataset,1 and then trained with the classes from
our dataset. This process usually speeds up the training and
obtains better results when domains are similar [47]. The
last fully-connected layer of the pretrained networks was
modified to match the number of classes in our dataset, as is
usual in transfer learning tasks.

Training was performed by means of standard backprop-
agation using Stochastic Gradient Descent [48] and consid-
ering the adaptive learning rate method proposed in [49].
In the backpropagation algorithm, categorical crossentropy
was used as the loss function between the CNN output and
the expected result. The training stage lasted a maximum
of 500 epochs with early stopping when the loss did not
decrease during 10 epochs. The mini-batch size was set to
32 samples.

C. STEP 2 – FIT FILTER SELECTION
Once the CNN had been trained for classification, we pro-
ceeded to fit the filter selection algorithm. This process basi-
cally consisted of selecting the most relevant filters from this
network for the location of a target class c. This was done

1ILSVRC is a 1,000 classes subset from ImageNet [46], a generic purpose
database for object classification.
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FIGURE 2. Example of the activations (feature maps) obtained when classifying a coast sample containing a ship. The
top-left image shows the input sample, and the others display activations of a random subset of filters from the
VGG-16 last convolutional layer. Ships are marked with a bounding box only if the activation detected it correctly.

FIGURE 3. Scheme of the proposed method.

by calculating the subset of filters Fc
⊆ F from all the

possible filters F in the selected convolutional layer l whose
average localization results were over a given threshold α.
This subset of filters was subsequently used in the inference
stage to obtain the location of targets for unseen images.

In order to obtain the subset Fc, we first calculated the
localization results obtained for each filter f ∈ F . This was
done by computing the prediction set P(i)l,f for an input image
i and a filter f from layer l, as follows:

P(i)l,f = Blobs((G̃(i)
l,f > β)⊕ s) (1)

where the set G̃(i)
l,f contains the normalized gradients in the

range [0, 1] obtained for the filter f in layer l (see Equation 2).
Only those values over a threshold β were selected for these
gradients, thus allowing us to obtain a binary matrix of the
same size R(w×h)

→ [0, 1](w×h), where w and h are the
width and height of the input image, respectively. A dilation

morphological operation (denoted by ⊕) was then applied
with a structuring element s. Since the noise was removed by
the thresholding operation, this dilation was intended to close
small gaps and increase the size of the detections after thresh-
olding. Finally, the function Blobs calculated the groups of
connected pixels (or blobs), returning a list of bounding boxes
containing the detected blobs.

The gradients G(i)
l,f of the filter f of layer l with respect

to an input image i were computed by performing a single
backpropagation pass, calculating the partial derivative of the
activation map A(i)l,f (also known as the feature map) obtained
for the filter f with respect to the input image space I and
evaluated at the image I (i). The gradients obtained were then
rescaled in the range [0, 1] using the function r , as follows:

G̃(i)
l,f = r

(
∂A(i)l,f
∂I

∣∣∣
I (i)

)
(2)

where A(i)l,f represents the activation map obtained by the
filter f of layer l when the input image i is processed by the
previously trained CNN.

As stated previously, the normalized gradients G̃(i)
l,f were

used in Equation 1 to calculate the prediction set Pl,f by
selecting only the higher activations.

Once the prediction set P(i)l,f had been obtained for all the
selected input images I c of a given class c, it was possible to
calculate the subset of filtersFc that would be used to predict
the location of that class in the inference stage. To do this,
the Intersection over Union (IoU) between the prediction set
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P(i)l,f and the ground-truth was computed for all the images in
that class. Only those filters whose average IoU was greater
than a threshold α were selected from this result. Formally,
the subset of filters Fc is calculated as follows:

Fc
=

f ∈ F |
1
|I c|

|I c|∑
i=1

IoU (P(i)l,f ,B
(i)
g ) > α

 (3)

where B(i)g are the ground-truth localizations for the image i
and class c, and |I c| represents the cardinality of the set I c

with the input images of class c.
In order to calculate the IoU of the predictions obtained

for an input image i, each predicted bounding box from the
setP(i)l,f wasmapped onto the ground truth (B(i)g ) bounding box
with which it had a maximum IoU overlap. A detection was
considered to be positive if the area overlap ratio between the
predicted bounding box and the ground truth bounding box
exceeded a certain threshold λ according to Equation 4.

IoU (P(i)l,f ,B
(i)
g ) =

area(P(i)l,f ∩ B
(i)
g )

area(P(i)l,f ∪ B
(i)
g )

(4)

where area(P(i)l,f ∩ B
(i)
g ) denotes the intersection between the

object proposal and the ground truth bounding box, and
area(P(i)l,f ∪ B

(i)
g ) denotes the union.

Once this stage was computed, the selected subset of filters
Fc for each target class cwas stored to be used in the inference
stage for unseen images.

The influence of the different configuration parameters
for the proposed method is evaluated in Section V-B, which
provides a summary of the values selected.

D. STEP 3 – INFERENCE STAGE
Once steps 1 and 2 (corresponding to the training stage) have
been completed, it is possible to use the proposed method to
calculate the location of the ships. In the inference stage (see
Figure 3), an input sample is forwarded through the trained
model, and if the prediction for any of the target classes is
positive (in our case, if a ship is detected), the feature maps
of the network for that class are used to obtain its precise
localization.

This is done by following the same steps as in Equation 1,
but performing the sum of the gradients obtained from the
selected subset of filters Fc. The function FS(i, c, l) calcu-
lates the localization of targets for a given class c for an input
image i using the pre-calculated subset of filters Fc from
layer l, as follows:

FS(i, c, l) = Blobs
(((

1
|Fc|

|F c
|∑

f=1

G̃(i)
l,f

)
> β

)
⊕ s

)
(5)

where |Fc
| represents the cardinality of the set Fc.

As can be seen, Equation 5 is similar to Equation 1. How-
ever, Equation 1 calculates the prediction for a single filter,
whereas Equation 5 performs the combination of the set of
selected filters Fc.

Note that during the inference stage, the proposed approach
performs classification and localization simultaneously, as it
is based on the filter activations obtained by classifying the
image, that is, it is not necessary to perform any additional
forward pass of the image through the network in order to
calculate the localization.

IV. DATASET
The proposed method for the precise detection of ships
was evaluated with an extended version of the MASATI
(MAritime SATellite Imagery) dataset [1], which we will
denominate as MASATI v2. For this work, we increased the
size of this dataset by adding 1,177 new samples in order to
balance the number of prototypes for the different classes.
This new dataset contains a total of 7,389 satellite images in
the visible spectrum. In this new version, the labeling with
the bounding box for the ships’ location was also included,
in addition to the labeling at the class level. The new version
of this dataset is freely available for the scientific community
at http://www.iuii.ua.es/datasets/masati.

Images of different sizes were captured from Microsoft
Bing maps in RGB, as these sizes were dependent on the
region of interest to be registered in the image. In general,
the average image size had a spatial resolution of around
512×512 pixels. The dataset was compiled at different times
of the year and from different regions in Europe, the USA,
Africa, Asia, the Mediterranean Sea and the Atlantic and
Pacific Oceans.

Methods for automatic ship detection from optical imagery
are affected by many factors, such as lighting or weather con-
ditions. The proposed dataset considers a great variety of pos-
sible situations, thus enabling the proposed CNN approaches
to obtain generic features. Figure 4 shows some examples
from the MASATI v2 dataset.

Each image was manually labeled according to the follow-
ing seven classes: ship, coast & ship, detail,multi, sea, coast,
and land. Table 1 shows the sample distribution of each class.
The ‘‘ship’’ class represents images in which a single ship
appears within the image. The multi class describes images
with two or more instances of ships. The ships in these two
classes have lengths of between 4 and 10 pixels, with a
bounding box area of between 6 and 154 pixels. The ‘‘coast &
ship’’ class represents images in which one ship is close to the
coast and has similar dimensions to the two classesmentioned
previously. The ‘‘detail’’ class contains images with a single
ship with a length of between 20 and 100 pixels. This class
was used only to enhance the training process.

The most challenging class is ‘‘multi’’, since these
images contain many examples of ships per image (a total
of 1,966 ships are labeled in this class, and each image
contains an average of 7 ships, although some images contain
up to 82 ships). In addition, this class includes examples of
both open sea and coast.

We evaluated the proposed method by creating two sets,
one denominated as ‘‘simple set’’, which included all the
classes, with the exception of the samples from ‘‘multi’’, and
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FIGURE 4. Image examples of different classes from the MASATI v2 dataset. The first four rows show the ship classes, while the three
lower rows show the non-ship categories. The dataset samples are highly varied and the categories ‘‘Ships’’, ‘‘Ships & coast’’ and ‘‘multi’’
contain challenging images.

TABLE 1. Distribution of the classes in the MASATI v2 dataset.

another denominated as ‘‘complex set’’, which included all
the classes. This allowed us to carry out a better evaluation
of the proposed method by first analyzing the precision of
the detection of a single instance of small objects and then

analyzing its behavior when multiple objects from the same
class appeared.

Each of these two sets was divided into two, using 80%
of the samples for training and the remaining 20% for the
evaluation. These partitions did not overlap (i.e., the test set
did not contain any of the samples seen during training) and
the same percentage of samples of each class was kept in
each partition. The same training and validation partitions
were used to perform the experiments with all the methods,
including the compared approaches.

With regard to the ship categories, we manually labeled
bounding boxes with the exact locations of each ship in the
image. This was done by using the LabelImg2 tool, which

2Tzutalin. LabelImg. Git code (2015). https://github.com/tzutalin/
labelImg
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generates XML files in PASCAL VOC format. These data
were used to validate the results of the proposed localization
method.

V. EXPERIMENTS
In this section, we show the experimentation carried out for
the different parts of the proposed method using the dataset
described in Section IV. We first evaluated the first stage of
the process, i.e. the results of the categorical CNN network,
after which we analyzed the filter selection process by eval-
uating different parameter values. Finally, we compared the
results obtained by the proposed approach with other state-
of-the-art methods.

A. CATEGORICAL CNN
The first step of the proposed method involves training the
categorical CNN network. As indicated in Section III-B, this
is done by training the VGG-16 and VGG-19 networks using
the dataset and the classes described in Section IV.

In order to evaluate the performance of this experiment,
three evaluationmetrics that are widely used for classification
were chosen: Precision, Recall and F-measure (F1). These
metrics can be calculated using the following equations:

Precision =
TP

TP+ FP
(6)

Recall =
TP

TP+ FN
(7)

F1 =
2 · TP

2 · TP+ FN+ FP
(8)

where TP (True Positives) denotes the number of posi-
tive class samples correctly classified, FN (False Negatives)
denotes the number of positive class samples that were mis-
classified, and FP (False Positives) denotes the number of
predictions of the positive class that are incorrect.

Table 2 shows the average results (in percentages) obtained
for the two sets considered (simple and complex sets). As can
be seen, both networks obtain excellent average results, close
to 100%, when discriminating between the different classes
in the simple set.

Reliable results are also obtained in the case of the complex
set, although they are slightly lower owing the complexity
of the new samples. Note that the VGG-16 network obtains
better results than VGG-19 for the simple set, but that this
behavior is reversed for the complex set. This difference may
be motivated by the complexity of the network and the num-
ber of parameters to learn, since it may perform overfitting
for simple data, although in this case, the differences are very
small.

Having shown how the networks to be used are trained,
we shall now evaluate the second step of the proposed
method: the filter selection stage.

B. FILTER SELECTION
In this section, we evaluate the filter selection process by ana-
lyzing the influence of the different hyperparameters. In order

TABLE 2. Results obtained with the categorical CNN for the two sets
considered (simple and complex sets).

to simplify this analysis, we use the simple set, given that the
results obtained for the complex set and the observed trends
for the different hyperparameters were quite similar. Finally,
the results obtained for the complex set are also reported.

The categorical networks trained for the simple set in the
previous section are now employed to analyze the localiza-
tion accuracy for the ship class obtained using the proposed
method. In this case, we have merged the samples from the
‘‘ships’’ and ‘‘coast & ship’’ classes. This is because, as can
be seen in Figure 3, the image is classified first and, in the case
of obtaining a class that contains a ship, the filter selection
method is used to recover its position in the image. The
‘‘detail’’ category was used only to improve the accuracy of
the categorical networks (in order to provide more examples
of ships at different scales). Since the ships in this class are
centered and occupy almost the entire image, finding their
location is not an issue.

The results are also evaluated using the F1 metric
(Equation 8), but in this case we measure the objects (or
ships) whose location was correctly detected. This is done
by calculating the bounding box of the predicted objects (P),
which is then paired with the bounding box of the ground
truth (B) with which it has a higher IoU (using Equation 4).
A predicted bounding box P is considered to be properly
localized if IoU(P,B) ≥ λ. In this case, we set λ = 0.5 (a
threshold value commonly used in this type of tasks, such as
in PASCAL VOC), and calculate the metric F1, considering
the correct detections to be TP (when IoU ≥ λ), the wrong
detections to be FP (i.e., when a P does not overlap with
any B), and those cases in which a ground truth object is not
detected to be FN. Note that if multiple detections of the same
object are predicted, only the first one is counted as a positive
while the rest are counted as negative.

We first evaluated the influence of the training set size used
to select the filters. This was done by conducting an exper-
iment using an incremental training set, i.e., we took only
one training image, performed the filter selection process and
evaluated the result obtained. This process was then repeated
with two training images, and so on, until 100 images had
been evaluated (we stopped the experiment at this size since
the results did not improve). In order to evaluate the influence
of the training size, we froze the remaining parameters of the
method, selecting the penultimate convolution layer of each
network, a size |Fc

| = 4, β = 0.8 and a square structuring
element of size 7 × 7. Figure 5a shows the result of this
experiment. As can be seen, in both cases it is sufficient to
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FIGURE 5. Localization results (F1 %) obtained by varying (a) the size of the training set and (b) the layer of the network from which the filters are
selected (given in percentage with respect to 100% of the total network depth).

label between 14 and 20 training images with bounding boxes
to obtain the best accuracy and we, therefore, eventually set
the size of the training set to only 14 labeled images.

Figure 5b shows the influence of the CNN layer selected
for the localization calculation (variable l of Equation 3).
This was done by computing the result obtained with all the
layers from each of the two network models evaluated, while
the remaining parameters were set to the aforementioned
values. Since the VGG-16 network has a total of 18 layers
and VGG-19 has 21, in this figure we represent the result as a
function of the layer depth, where 100% of the depth means
the last layer of the network. As can be seen, the results in
the first part of both networks were not good (up to 40%
of depth). However, as expected, better localization results
were obtained in the last layers of the networks (from 70%
of depth), from which the higher level representations of the
imageswere extracted. The layer ‘‘block5_conv2’’ was, there-
fore, eventually selected for VGG-16, and ‘‘block4_conv3’’
for VGG-19 (see the full network architecture in [20]).

Another important variable to analyze is the number of
filters selected in order to obtain the localization, that is,
the size of the set |Fc

| in Equation 5, which can be adjusted by
modifying the threshold value α. For this experiment, we also
used the best layer previously selected (which, in both cases,
contains 512 filters), a training set of 14 images, β = 0.8 and
a structuring element of 7 × 7. Figure 6a shows the results
obtained by varying the number of filters used to calculate the
location. As can be seen, a maximum is obtained for the two
network models when using between 3 and 5 filters, and the
best results are, in both cases, obtained with 4 filters. These
filters were selected by setting the α threshold to 0.458 for
VGG-16 and 0.454 for VGG-19.

Figures 6b and 6c show a histogram of the average IoU
obtained for each of the filters in the selected layer of the
VGG-16 and VGG-19 networks, respectively. The vertical
coordinate of this graph was truncated to a maximum value
of 30 filters in order to facilitate its visualization, since the
first column, corresponding to the range [0, 0.005] of IoU,
contains 33% of the filters of VGG-16 and 6 % of those of

VGG-19. Upon analyzing the results of VGG-16, it will be
noted that 63.87 % of filters have an IoU that is lower than
0.2 and that only 13.48 % exceed 0.4, with the maximum
value obtained by an individual filter being 0.4603. In the case
of VGG-19, a lower percentage of filters does not exceed 0.2
(53.52 %) and more filters exceed 0.4 (25.00 %), with a very
similar maximum value of 0.4604.

Another parameter to be analyzed is the size of the thresh-
old β (see Eqs. 1 and 5). As before, we set the rest of the
parameter values to the best ones found and varied this param-
eter only in the range [0, 1]. Figure 7a shows that better results
are obtained with higher values for this threshold, i.e., when
selecting only those pixels with the highest activations. The
specific value selected for VGG-16 was β = 0.94, while that
for VGG-19 was β = 0.82.
Finally, we also analyzed the influence of the size of the

structuring element s (see Eqs. 1 and 5) that is used for
the dilation of the result obtained from the filters’ activation
before calculating the bounding box with the position of
the detected objects. The influence of this parameter was
assessed by varying the size of the structuring element
between 3 × 3 and 13 × 13, and setting the remaining
parameters to the best ones found in the previous experiments.
Figure 7b shows the result of this experiment. As can be seen,
the result remains fairly stable when varying this parameter,
and improves only slightly for the kernel size 7 × 7, which
was why we eventually selected this size.

Table 3 shows the best hyperparameters found after car-
rying out the experimentation for both the simple and the
complex sets. As can be seen, the results obtained with each
of the networks for the two sets are very similar. In both,
the same number of training images was used, the same layer
was employed to extract the filters and the same kernel size
was utilized. Variations occur only as regards the number
of filters selected and the threshold β. In the case of the
complex set, it would appear to be beneficial to combinemore
filters so as to obtain a more precise detection. With respect
to the threshold β, a high value allows only the most likely
detections to be selected, so in the case that the number of
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FIGURE 6. (a) Localization results (F1 %) obtained when varying the number of filters in the set |Fc |. Figures (b) and (c) show the
histogram with the average IoU obtained by each of the filters in the selected layer from the VGG-16 and VGG-19 networks, respectively.

FIGURE 7. Localization results (F1 %) when varying (a) the threshold β and (b) the structuring element s size.

targets is reduced (as in the simple set), it is, therefore, better
to use a higher value. However, in the case of the complex set,
it is better to reduce this threshold slightly when attempting
to detect many more objectives.

Figure 8 shows an example of the filters obtained for an
input image, along with the process of adding up the result
until the final prediction is obtained. A challenging image of
a coast with a ship (located in the upper-left part) has been
selected, for which most of the methods compared (as will be
seen in the next section) make mistakes. The first row of this
image shows the input image and the output obtained, while
the second row shows the gradient obtained for the four filters

selected. The last row shows, in the first column, the result
for the filter 35, and in the following columns, the result of
the incremental sum with the previous predictions. A higher
activation value is indicated using dark red. As will be noted,
when using only filter number 35, the prediction made is
wrong (it detects a coast projection as a ship), but thanks to the
combination of the four filters, the algorithm correctly detects
the position of the ship.

C. COMPARISON
Having analyzed the different parameters of the proposed
method and determined the best configuration (see Table 3),
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TABLE 3. Configuration for each of the networks with the Filter Selection method obtained for the simple and complex sets. The size of the training set is
not a parameter of the algorithm but it was evaluated to analyze its influence on the results. The α parameter also includes the number of selected filters
in parentheses.

FIGURE 8. Example of the process performed to calculate the location of a ship. The first row shows
the input and the output images, marking the bounding box of the detected ship in the upper-left part.
The second row shows the gradients obtained by the four selected filters for the input image. The third
row shows the process of incrementally adding up the result obtained. A higher activation value is
indicated in dark red.

we will now compare the results obtained for the simple and
complex sets with those of other state-of-the-art methods.
In particular, we have compared our approach with the fol-
lowing methods (already described in the introduction):

• Visual saliency with backpropagation (BP) [36] using
the VGG-16 and VGG-19 models.

• SelAE [5]: This approach uses a Selectional Auto-
Encoder (SAE) network specialized in the segmentation
of oil spills. It returns a probability distribution to which
a threshold is applied in order to select the pixels to be
segmented.

• Faster R-CNN (FRCNN) [30] and RetinaNet [33],
which yielded competitive results for ship detection in
SAR images in [50]. Both models use a ResNet50 net-
work initialized with pre-trained weights from ILSVRC.
Training included data augmentation, and the size of the
anchors was adjusted to the average size of the bounding

boxes from our dataset in order to improve the accuracy
with small objects.

• YOLO v2 [34], YOLO v3 [35] and YOLT [7] initialized
with pre-trained weights from ILSVRC. These models
were also trained with data augmentation, adjusting the
size of the anchors as occurred with the previous meth-
ods. In the case of YOLT, the parameter ‘‘min retain
prob’’ was set to 0.35, as [7] stated that the highest F1
score was obtained using values of between 0.3 to 0.4.

For this comparison, in addition to the metrics (Precision,
Recall and F1) previously used at the object detection level,
we show the average value of the IoU obtained, alongwith the
Average Precision (AP), given that these metrics are widely
used to evaluate object detection methods, such as in PAS-
CAL VOC challenge. The most recent PASCAL’s challenge
AP metric has been used (by interpolating all points rather
than using a fixed set of uniformly-spaced recall values) [51].
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TABLE 4. Comparison of the results obtained for the simple set using the proposed method (VGG-16/19 + FS) and other state-of-the-art methods. These
results were calculated by employing a threshold of λ = 0.5 in the IoU metric to consider a correct detection. The two best results for each metric are
marked in bold type.

This metric calculates the mean value in the recall interval
[0, 1], which is equivalent to the area under the curve (AUC)
of the Precision-Recall curve (PRC).

Table 4 shows the results of the comparison with other
methods obtained for the simple set. For each metric, the two
best results are marked in bold type. In general, the proposed
method appears among the two best in all the metrics, with
the exception of the average IoU, although this indicates only
that the accuracy of the detected area is slightly lower, being
necessary to analyze the other metrics in order to count the
number of correct detections. Upon observing F1, it will be
noted that the best results are obtained with VGG19+FS
(our proposal) and with YOLO v3, and that the proposed
method is 1.19% better than YOLO v3. Note that the pro-
posed approach has been trained using only 14 images labeled
with the location, while YOLO v3 used the entire dataset with
the bounding boxes. In the case of the AP metric, note that
the proposed method has obtained the best results for the two
network models to which it has been applied.

With regard to the results obtained for the complex set
(see Table 5), the proposed method also obtained competitive
results. The best results with the F1 metric were obtained
by VGG-19+FS followed by YOLT. The result obtained
with VGG-16+FS was also, in this case, among the best.
The YOLO v2 and v3 methods did not perform so well
when dealing with multiple objectives, and in this case, other
approaches that are more oriented toward the detection of
multiple small objects, such as YOLT or SelAE, obtained
better results. The latter were the two that obtained the best
results for the AP metric, although the proposed approach
also obtained results close to them. It should be noted that
the remainingmethods used the complete training set, labeled
with the location of the ships, while the proposedmethod used
only 14 labeled images for this purpose.

We also analyzed the capability of the different methods
evaluated to generalize when processing images with a differ-
ent number of targets to those it was trained to detect, and also
verified whether they can extrapolate the knowledge learned
using a small subset of the training data to the full dataset.
The results of this experiment are shown in Table 6. In this

case, we analyzed only the F1 and AP metrics for each of the
tests performed.

The first two columns in this table show the results
obtained when evaluating the different methods with the
complex set but using the models trained with the simple set.
In this case, the methods that best generalize are SelAE and
VGG19+FS, with the latter being only 1.6% of F1 below.
Please recall that SelAE was trained using all the images and
by applying data augmentation (signifying that it may help
to generalize better). As shown previously, some methods,
such as YOLO and BP, are very dependent on the training set,
which cannot generalize well when processing images with a
greater number of targets, even though the objects and the
type of images are the same (up to 50% worse in the case of
YOLO v3 or 46% in the case of VGG16+BP).

In the central and last columns in this table, the learn-
ing and generalization capabilities are evaluated by training
the different methods on a reduced set of data (using the
same number of images as in the proposed method, that is,
only 14). It is, therefore, also possible to evaluate how the
other methods behave when a large amount of training data
is not available. As can be seen, the results obtained worsen
considerably for all the methods compared, decreasing by
between 30% and almost 70% in some cases. For the simple
set (central columns), the compared method that works best
with few data is YOLO v3 followed by RetinaNet, and for the
complex set (columns on the right) it is YOLT, which obtains
a fairly stable result in both cases. However, upon comparing
these results with those of the proposed method, there is
a very significant difference, showing their generalization
capability.

Figure 9 shows a comparison of the results obtained with
the different methods. An example of each method is selected
(see the columns in the figure) for some of the images that
were most difficult. The bounding boxes of the detections
obtained are marked for each result (TP in green and FP
in red), and a colored circle has been added in a corner
to indicate whether the detection was successful (green),
whether the detection failed (red), or whether the targets were
detected but false positives were also obtained (blue). As will
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FIGURE 9. Example of results obtained by the different methods, including the proposed method (VGG19 + FS). Examples of each type of
method for some of the images that were most difficult are shown. The bounding boxes of the correctly detected ships (TP) are marked in
green and the incorrect detections (FP) in red. FN are not marked. A colored circular indicator has also been added to facilitate the visualization
of a correct (green), incorrect (red), or partially correct (blue) detection.

be noted, the most reliable methods are SelAE, YOLO v3 and
VGG19+FS, which detected all the targets and yielded only
some FP. Some images that may appear to be simple, such

as those shown in the 4th and 5th rows, are problematic for
the BP, RetinaNet and YOLT methods, principally owing to
the small size of the objects to be detected. The last two
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TABLE 5. Comparison of the results obtained for the complex set using the proposed method (VGG-16/19 + FS) and other state-of-the art methods.
These results were calculated by employing a threshold of λ = 0.5 in the IoU metric to consider a correct detection. The two best results obtained for each
metric are marked in bold type.

TABLE 6. Evaluation of the generalization capabilities of the different methods analyzed. In the first columns, we compare the results obtained when
training with the simple set but using the complex set (with more targets) for testing. The central and last columns show the results obtained when
training with a reduced amount of data but evaluating on the full test set. For each metric and column, the two best results are marked in bold type. In all
cases, a threshold of λ = 0.5 is used in the IoU metric to consider correct detection.

rows show examples for the multi class, and in this case,
the SelAE, YOLT and VGG19+FS methods also obtain the
best detection results.

VI. CONCLUSIONS
This work presents a weakly-supervised approach for object
detection that can be applied to CNN classification models.
The proposed method is specialized in the detection of small
objects (that is, objects that occupy a very small percentage
of pixels within the image) from satellite images. The local-
ization is performed by applying a Filter Selection process in
order to obtain the set of filters that allow the target class to be
detected with greater precision. The gradients are calculated
on these filters with respect to the input image, and are then
normalized and combined. A thresholding and a morpholog-
ical operation are subsequently applied to eventually obtain
the location. Thismethodmakes it possible to adapt a network
that has already been trained for classification to a network
for object detection, using only a few images labeled with the
corresponding bounding boxes for localization.

This approach was evaluated with an updated version of
the MAritime SATellite Imagery (MASATI) dataset, which
was extended for this work. We have specifically increased
the number of samples from the 6,212 that were employed
in the previous version of MASATI to 7,389 in this new
version, principally by adding new samples to the ‘‘coast
& ship’’ and ‘‘multi’’ classes. We have additionally labeled
the ground-truth with the location of ships, which was not
provided in the previous version.

The results obtained when analyzing the different parame-
ters of the proposedmethod show that, in general, this method
needs to be trained with between only 14 and 20 images con-
taining the location of ships in order to obtain precise results.
When employing more than 20 images, the score remains
stable and there are no significant improvements. In addition,
it was also observed that the best location results are obtained
when using the last (deepest) layers of the network. With
regard to the filters in the selected layer, the method needs to
combine between only 4 and 5 filters to calculate the locations
of ships.
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When compared to other state-of-the-art methods, the pro-
posed approach is able to achieve the best average scores for
the detection of a single target. It obtains similar results to
YOLT and YOLO v3, but with the difference that it requires
only a few labeled samples. When calculating the location of
multiple targets, the method obtains reliable results. It yields
the best results according to the F1 metric, and similar results
to YOLT, SelAE and YOLO v3 according to the AP and the
IoU metrics. In addition, when analyzing the generalization
capacity by evaluating the method for the localization of
multiple objectives but using the model trained for single
objectives, or when training with a reduced set of images,
the proposed method is also among those that obtain the best
results.

As future work, we intend to carry out more exhaus-
tive experiments with the proposed method by evaluating it
with other generic object detection datasets, analyzing the
results with larger targets, and also evaluating the extension
to multi-class.
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