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ABSTRACT For an integer ` > 2, the `-component connectivity of a graph G, denoted by κ`(G),
is the minimum number of vertices whose removal from G results in a disconnected graph with at least `
components or a graph with fewer than ` vertices. This is a natural generalization of the classical connectivity
of graphs defined in term of the minimum vertex-cut and a good measure of vulnerability for the graph
corresponding to a network. So far, the exact values of `-connectivity are known only for a few classes of
networks and small `’s. It has been pointed out in component connectivity of the hypercubes, International
Journal of Computer Mathematics 89 (2012) 137–145] that determining `-connectivity is still unsolved for
most interconnection networks such as alternating group graphs and star graphs. In this paper, by exploring
the combinatorial properties and the fault-tolerance of the alternating group graphs AGn and a variation of
the star graphs called split-stars S2n , we study their `-component connectivities. We obtain the following
results: 1) κ3(AGn) = 4n − 10 and κ4(AGn) = 6n − 16 for n > 4, and κ5(AGn) = 8n − 24 for n > 5 and
2) κ3(S2n ) = 4n− 8, κ4(S2n ) = 6n− 14, and κ5(S2n ) = 8n− 20 for n > 4.

INDEX TERMS Alternating group graphs, component connectivity, interconnection networks, split-stars,
vulnerability.

I. INTRODUCTION
An interconnection network is usually modeled as a con-
nected graph G(V ,E), where the vertex set V (= V (G))
represents the set of processors and the edge set E(= E(G))
represents the set of communication channels between pro-
cessors. For a subset S ⊆ V (G), the graph obtained fromG by
removing all vertices of S is denoted by G− S. In particular,
S is called a vertex-cut of G if G − S is disconnected. The
connectivity of a graph G, denoted by κ(G), is the cardinality
of a minimum vertex-cut of G, or is defined to be |V (G)| − 1
when G is a complete graph. For making a more thorough
study on the connectivity of a graph to assess the vulnerability
of its corresponding network, a concept of generalization
was first introduced by Chartrand et al. [9]. For an integer
` > 2, the generalized `-connectivity of a graph G, denoted
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by κ`(G), is the minimum number of vertices whose removal
from G results in a graph with at least ` components or a
graph with fewer than ` vertices. For such a generalization,
a synonym was also called the general connectivity [38] or
`-component connectivity [32]. Since there exist diverse
definitions of generalized connectivity in the literature
(e.g., see [28], [29]), hereafter we follow the use of the
terminology ‘‘`-component connectivity’’ (or `-connectivity
for short) to avoid confusion.

A. PREVIOUS RESULTS OF `-CONNECTIVITY
So far, the exact values of `-connectivity are known only
for a few classes of networks and small `’s. For example,
`-connectivity is determined on hypercubeQn for ` ∈ [2, n+
1] (see [32]) and ` ∈ [n + 2, 2n − 4] (see [51]), folded
hypercube FQn for ` ∈ [2, n + 2] (see [50]), dual cube Dn
for ` ∈ [2, n] (see [49]), hierarchical cubic network HCN (n)
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for ` ∈ [2, n+1] (see [19]), complete cubic network CCN (n)
for ` ∈ [2, n + 1] (see [20]), and generalized exchanged
hypercube GEH (s, t) for 1 6 s 6 t and ` ∈ [2, s + 1]
(see [21]). Note that the number of vertices of graphs in
the above classes is an exponent related to n. Also, it has
been pointed out in [32] that determining `-connectivity is
still unsolved for most interconnection networks such as star
graphs Sn and alternating group graphs AGn. The closest
results for the two classes of graph were given in [17], [18],
but these are asymptotic results. Recently, Guo [26] and
Guo et al. [27] determined the {3, 4}-connectivity of
twisted cubes and locally twisted cubes, respectively. Also,
Chang et al. [3], [4] determined the {3, 4}-connectivity of
alternating group networks ANn. Note that the two classes
of AGn and ANn are definitely different. See also Table 3
in the final section for the details of the above component
connectivities.

B. LITERATURE RELATED TO ALTERNATING
GROUP GRAPH AND SPLIT-STARS
In this paper, we study `-connectivity of the n-dimensional
alternating group graph AGn and the n-dimensional split-
stars S2n (defined later in Section II), which were introduced
by Jwo et al. [33] and Cheng et al. [16], respectively, for
serving as interconnection network topologies of computing
systems. The two families of graphs have received much
attention because they have many nice properties such as
vertex-transitive, strongly hierarchical, maximally connected
(i.e., the connectivity is equal to its regularity), and
with a small diameter and average distance. In particular,
Cheng et al. [14] showed that alternating group graphs and
split-stars are superior to the n-cubes and star graphs under
the comparison using an advanced vulnerability measure
called toughness, which was defined in [22]. For the two fam-
ilies of graphs, many researchers were attracted to study fault
tolerant routing [12], fault tolerant embedding [5], [6], [42],
matching preclusion [2], [11], restricted connectivity [15],
[25], [35], [36], [48] and diagnosability [10], [25], [30],
[34]–[36], [41]. Moreover, alternating group graphs are also
edge-transitive and possess stronger and rich properties on
Hamiltonicity (e.g., it has been shown to be not only pancyclic
and Hamiltonian-connected [33] but also panconnected [6],
panpositionable [40] and mutually independent Hamilto-
nian [39]). The following structural property disclosed by
Cheng et al. [18] is of particular interest and closely related
to `-component connectivity. They showed that even though
linearly many faulty vertices are removed in AGn, the rest
of the graph has still a large connected component that con-
tains almost all the surviving vertices. Therefore, this com-
ponent can be used to perform original network operations
without degrading most of its capability. For more further
investigations on alternating group graphs and split-stars, see
also [13], [46], [54].

C. APPLICATIONS OF `-CONNECTIVITY
AND OUR CONTRIBUTIONS
A multiprocessor system is a collection of autonomous pro-
cessors linked together to enable parallel processing, where
each processor has its own local memory and processors
exchange data over a high-speed communication network by
a technique known as ‘‘message passing’’. It is well known
that the reliability of multiprocessor systems is an important
issue for parallel computing. In particular, it must be highly
fault-tolerant to ensure that the system will still function
properly with a small number of processor failures. Hence,
calculating the number of residual components in a faulty
network will help to comprehend the vulnerability of the
network. Then, further finding out the large connected com-
ponents which are available in the surviving networkwill help
to achieve fault tolerance. In general, the surviving network
can be used as a functional subsystem without degrading
the performance if it possesses enough big component [23].
The `-connectivity is concerned with the relevance of the
cardinality of a minimum vertex-cut (i.e., a set of faulty
processors) and the number of residual components caused by
the vertex-cut. Accordingly, finding `-connectivity for certain
interconnection networks is a good measure of robustness
for such networks. The contribution of this work is that we
obtain the `-connectivity of alternating group graphs AGn and
split-stars S2n for the certain cases of ` = 3, 4, 5. Our main
results include the following: (i) κ3(AGn) = 4n − 10 and
κ4(AGn) = 6n − 16 for n > 4, and κ5(AGn) = 8n − 24
for n > 5; (ii) κ3(S2n ) = 4n − 8, κ4(S2n ) = 6n − 14, and
κ5(S2n ) = 8n− 20 for n > 4.
The remaining part of this paper is organized as follows.

Section II formally gives the definition of alternating group
graphs and split-stars. In addition, we introduce some pre-
liminary results that will be used later. Section III deter-
mines the `-component connectivity of AGn for ` = 3, 4, 5.
Section IV determines the `-component connectivity of S2n
for ` = 3, 4, 5. The last section contains our concluding
remarks.

II. PRELIMINARIES
We first provide Table 1 that contains most of the important
notations used in this paper.

For n > 3, let Zn = {1, 2, . . . , n} and p = p1p2 · · · pn
be a permutation of elements of Zn, where pi ∈ Zn is the
symbol at the position i in the permutation. Two symbols pi
and pj are said to be a pair of inversion of p if pi < pj and
i > j. A permutation is an even permutation provided it has
an even number of inversions. Let Sn (resp., An) denote the
set of all permutations (resp., even permutations) over Zn.
An operation acting on a permutation that swaps symbols at
positions i and j and leaves all other symbols undisturbed
is denoted by gij. The composition gijgk` means that the
operation is taken by swapping symbols at positions i and j,
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TABLE 1. Notations.

and then swapping symbols at positions k and `. For 3 6
i 6 n, we further define two operations, g+i and g−i on An
by setting g+i = g2ig12 and g−i = g1ig12. Accordingly, pg

+

i
(resp., pg−i ) is the permutation obtained from p by rotating
symbols at positions 1, 2 and i from left to right (resp., from
right to left). Taking A5 as an example, if p = 13425, then
pg+4 = 21435 and pg−4 = 32415.
Recall that the Cayley graph Cay(X , �) on a finite group

X with respect to a generating set � of X is defined to have
the vertex set X and the edge set {(p, pg) : p ∈ X , g ∈ �}.
We now formally give the definition of alternating group
graphs and split-stars as follows.

Definition 1 (see [33]): The n-dimensional alternating
group graph, denoted by AGn, is a graph consisting of the
vertex set V (AGn) = An and two vertices p, q ∈ An
are adjacent if and only if q ∈ {pg+i , pg

−

i } for some
i = 3, 4, . . . , n. That is, AGn = Cay(An, �) with � =
{g+3 , g

−

3 , g
+

4 , g
+

4 , . . . , g
+
n , g
−
n }.

A path (resp., cycle) of length k is called a k-path (resp.,
k-cycle). Clearly, from the above definition, AG3 is isomor-
phic to a 3-cycle. As a Cayley graph, AGn is vertex-transitive.
Also, it has been shown in [33] that AGn contains n!/2 ver-
tices, n!(n−2)/2 edges, and is an edge-transitive and (2n−4)-
regular graph with diameter b3n/2c − 3. It is well known
that every edge-transitive graph is maximally connected, and
hence κ(AGn) = 2n − 4. For n > 3 and i ∈ Zn, let
AGin be the subgraph of AGn induced by vertices with the
rightmost symbol i. Like most interconnection networks, AGn
can be defined recursively by a hierarchical structure. Thus,
AGn is composed of n disjoint copies of AGin for i ∈ Zn,
and each AGin is isomorphic to AGn−1. If a vertex u belongs

FIGURE 1. Alternating group graphs AG3 and AG4.

to a subgraph AGin, we simply write u ∈ AGin instead of
u ∈ V (AGin). An edge joining vertices in different subgraphs
is an external edge, and the two adjacent vertices are called
out-neighbors to each other. By contrast, an edge joining
vertices in the same subgraph is called an internal edges,
and the two adjacent vertices are called in-neighbors to each
other. Clearly, every vertex of AGn has 2n − 6 in-neighbors
and two out-neighbors. For example, Fig. 1 depicts AG3 and
AG4, where each part of shadows in AG4 indicates a subgraph
isomorphic to AG3.

Cheng et al. [16] propose the Split-star networks as alter-
natives to the star graphs and companion graphs with the
alternating group graphs.

Definition 2 (see [16]): The n-dimensional split-star,
denoted by S2n , is a graph consisting of the vertex set
V (S2n ) = Sn and two vertices p, q ∈ Sn are adjacent
if and only if q = pg12 or q ∈ {pg+i , pg

−

i } for some
i = 3, 4, . . . , n. That is, S2n = Cay(Sn, �) with � =
{g12, g

+

3 , g
−

3 , g
+

4 , g
+

4 , . . . , g
+
n , g
−
n }.

In the above definition, the edge generated by the operation
g12 is called a 2-exchange edge, and others are called 3-
rotation edges. Let V i

n be the set of all vertices in S2n with
the rightmost symbol i, i.e., V i

n = {p : p = p1p2 · · · pn−1i,
pj ∈ Zn \ {i} for 1 6 j 6 n − 1}. Also, let S2:in denote the
subgraph of S2n induced by V i

n. Clearly, the set {V i
n : 1 6

i 6 n} forms a partition of V (S2n ) and S2:in is isomorphic
to S2n−1. It is similar to AGn that every vertex v ∈ S2:in
has two out-neighbors, which are joined to v by external
edges. Let S2n,E and S2n,O be subgraphs of S2n induced by the
sets of even permutations and odd permutation, respectively,
in which the adjacency applied to each subgraph is precisely
using the edge of 3-rotation. Clearly, S2n,E is the alternating
group graph AGn, and S2n,O is isomorphic S2n,E via a mapping
φ(p1p2p3 · · · pn) = p2p1p3 · · · pn defined by 2-exchange.
Accordingly, there are n!/2 edges between S2n,E and S2n,O,
called matching edges. Fig. 2 depicts S24 , where dashed lines
indicate matching edges.

An independent set of a graphG is a subset S ⊆ V (G) such
that any two vertices of S are nonadjacent inG. For u ∈ V (G),
we define NG(u) = {v ∈ V (G) : (u, v) ∈ E(G)}, i.e., the
set of neighbors of u. Moreover, for S ⊆ V (G), we define
NG(S) = {v ∈ V (G) \ S : ∃ u ∈ S such that (u, v) ∈ E(G)}.
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FIGURE 2. Split-star S2
4 .

When the graph G is clear from the context, the subscript in
the above notations are omitted. In what follows, we present
some useful properties of AGn, which will be adopted later.

A. ALTERNATING GROUP GRAPHS AND
THEIR PROPERTIES

Lemma 1 (see [30]): ForAGn with n > 4, the following
properties hold:
(1) There are (n − 2)! external edges between any two

distinct subgraphs AGin and AG
j
n for i, j ∈ Zn and i 6= j.

(2) The two out-neighbors of every vertex of AGn are con-
tained in different subgraphs.

(3) If u, v are two nonadjacent vertices of AGn, then |N (u)∩
N (v)| 6 2.
Lemma 2 (see [18]): Let F be a vertex-cut of AGn with

|F | 6 4n−11. If n > 5, then one of the following conditions
holds:
(1) AGn−F has two components, one of which is a singleton

(i.e., a trivial component).
(2) AGn − F has two components, one of which is an edge,

say (u, v). In particular, |F | = |N ({u, v})| = 4n− 11.
Also, if n = 4, the above description still holds except for
the following two exceptions. In both cases AG4−F has two
components, one of which is a 4-cycle and the other is either
a 4-cycle (if |F | = 4) or a 2-path (if |F | = 5).
For example, F = {1234, 2143, 3412, 4321} and

F = {1234, 2143, 3412, 4321, 2314} are two exceptions of
AG4 − F described in Lemma 2, respectively (see Fig. 3).

FIGURE 3. Two exception cases of AG4 − F , where the set of gray vertices
is a vertex-cut.

A graph is said to be hyper-connected [30], [36] or tightly
super-connected [1] if each minimum vertex-cut creates

exactly two components, one of which is a singleton. Since
κ(AG4) = 4, the first exception illustrates that AG4 is not
hyper-connected. Here we point out a minor flaw in the liter-
atures (e.g., see Proposition 2.4 in [30] and Lemma 1 in [36]),
whichmisrepresents thatAG4 is hyper-connected. As amatter
of fact, AG4 is isomorphic to the line graph of Q3 (i.e., a 3-
dimensional hypercube), and the latter is contained in a list of
vertex- and edge-transitive graphswithout hyper-connectivity
characterized by Meng [37]. For n > 5, since κ(AGn) =
2n− 4 < 4n− 11, by Lemma 2, AGn is hyper-connected.
The following results are extensions of Lemma 2.
Lemma 3 (see [17]): For n > 5, if F is a vertex-cut of

AGn with |F | 6 6n−20, then one of the following conditions
holds:
(1) AGn − F has two components, one of which is a single-

ton or an edge.
(2) AGn − F has three components, two of which are

singletons.
Lemma 4 (see [30]): For n > 5, if F is a vertex-cut of

AGn with |F | 6 6n−19, then one of the following conditions
holds:
(1) AGn − F has two components, one of which is a single-

ton, an edge or a 2-path.
(2) AGn − F has three components, two of which are

singletons.
Lemma 5 (see [36]): For n > 5, if F is a vertex-cut of

AGn with |F | 6 8n−29, then one of the following conditions
holds:
(1) AGn − F has two components, one of which is a single-

ton, an edge, a 2-path or a 3-cycle.
(2) AGn−F has three components, two of which are single-

tons or a singleton and an edge.
(3) AGn − F has four components, three of which are

singletons.
Lemma 6: Let S be an independent set ofAGn for n > 4.

Then the following assertions hold.
(1) If |S| = 3, then |N (S)| > 6n− 16.
(2) If |S| = 4, then |N (S)| > 8n− 24.

Proof: Since AGn is vertex-transitive, one may choose
the identity permutation, denoted by e, as a vertex in S. Since
AGn is (2n− 4)-regular, if |S| = 3 (resp., |S| = 4) and there
exists no common neighbor between any two vertices of S,
then |N (S)| = 3(2n − 4) = 6n − 12 > 6n − 16 (resp.,
|N (S)| = 4(2n − 4) = 8n − 16 > 8n − 24), as required.
In what follows, we assume that N (e) ∩ N (S \ {e}) 6= ∅ and
let N+ = {eg+i : i ∈ Zn \ {1, 2}} and N− = {eg−i : i ∈
Zn \ {1, 2}}. Clearly, N (e) = N+ ∪ N− and every vertex in
N (e) has the symbol 1, 2 or n at the last position. We further
define

N++ = {(eg+i )g
+

j : i, j ∈ Zn \ {1, 2} and i 6= j},

N+− = {(eg+i )g
−

j : i, j ∈ Zn \ {1, 2} and i 6= j},

N−+ = {(eg−i )g
+

j : i, j ∈ Zn \ {1, 2} and i 6= j},

N−− = {(eg−i )g
−

j : i, j ∈ Zn \ {1, 2} and i 6= j}.
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FIGURE 4. Illustration of Lemma 6, where each operation g+i or g−i is
attached to an edge between vertices (from left to right).

Since (eg+i )g
+

j = (eg−j )g
−

i , the two sets N++ and N−− are
identical. If x = (eg+i )g

+

j = (eg−j )g
−

i , then x has the symbol j
at the first position and symbol i at the second position. In this
case, we have N (e) ∩ N (x) = {eg+i , eg

−

j }, which meets the
upper bound of Lemma 1(3) (see Fig. 4(a) for an illustration).

Claim 1: For any two distinct vertices x, y ∈ N++,
|N (x) ∩ N (y)| 6 1. Moreover, if z ∈ N (x) ∩ N (y), then
z ∈ N (e).

Proof of Claim 1: Let x = (eg+i )g
+

j and y = (eg+i′ )g
+

j′ .
Consider the following situations: (i) i = i′ and j 6= j′. In this
case, if there exists a common neighbor, say z, of x and y,
then z = xg−j = ((eg+i )g

+

j )g
−

j = ((eg+i′ )g
+

j′ )g
−

j′ = yg−j′ .

Thus, z = eg+i ∈ N+ (see, e.g., x = 43215, y = 53241
and z = 31245 in Fig. 4(a)); (ii) i 6= i′ and j = j′. In this
case, if there exists a common neighbor, say z, of x and y,
then z = xg−i = ((eg+i )g

+

j )g
−

i = ((eg+i′ )g
+

j′ )g
−

i′ = yg−i′ .
Thus, z = eg−j ∈ N− (see, e.g., x = 43215, y = 45312
and z = 24315 in Fig. 4(a)); (iii) i 6= i′ and j 6= j′. In this
case, it is clear that N (x) ∩ N (y) = ∅ (see, e.g., x = 43215
and y = 54321 in Fig. 4(a)). This settles Claim 1.

On the other hand, the two sets N+− and N−+ are not
identical. Since every vertex in N(e) has two neighbors in
N+− ∪ N−+ and no two vertices of N(e) share a common
neighbor, if x ∈ N+−∪N−+, then |N (e)∩N (x)| = 1. In fact,
every vertex inN+− has the symbol 1 at the first position, and
every vertex in N−+ has the symbol 2 at the second position.
Thus, bothN+− andN−+ are independent sets. Since the two
symbols 1 and 2 are fixed in the first two positions for vertices
in N+− and N−+ respectively, every vertex in N+− can be
adjacent to at most one vertex of N−+, and vice versa (see
Fig. 4(b) for an illustration).

Claim 2: For any two distinct vertices x, y ∈

N+− or x, y ∈ N−+, |N (x) ∩ N (y)| 6 1.
Proof of Claim 2:Without loss of generality, we consider

x, y ∈ N+−. Let x = (eg+i )g
−

j and y = (eg+i′ )g
−

j′ . Consider the
following situations: (i) i = i′ and j 6= j′. In this case, if there
exists a common neighbor, say z, of x and y, then z = xg+j =
((eg+i )g

−

j )g
+

j = ((eg+i′ )g
−

j′ )g
+

j′ = yg+j′ . Thus, z = eg+i ∈ N
+

(see, e.g., x = 14235, y = 15243 and z = 31245 in Fig. 4(b));
(ii) i 6= i′ and j = j′. In this case, if there exists a common
neighbor, say z, of x and y, then z = xg+i = ((eg+i )g

+

j )g
+

i =

((eg+i′ )g
+

j′ )g
+

i′ = yg+i′ (see, e.g., x = 14235, y = 13425 and
z = 21435 in Fig. 4(b)); (iii) i 6= i′ and j 6= j′. In this case,
it is clear that N (x) ∩ N (y) = ∅ (see, e.g., x = 14235 and
y = 15324 in Fig. 4(b)). This settles Claim 2.

Note that two vertices x ∈ N+− and y ∈ N−+ may have
two common neighbors (see, e.g., x = 14235 ∈ N+− and
y = 32415 ∈ N−+ in Fig. 4(b). Then N (x) ∩ N (y) =
{43215, 21435}).

Claim 3: If x ∈ N+−∪N−+ and y ∈ N++, either x and
y are adjacent or |N (x) ∩ N (y)| 6 1.

Proof of Claim 3:Without loss of generality, we consider
x ∈ N+−. Let x = (eg+i )g

−

j and y = (eg+i′ )g
+

j′ . Consider
the following situations: (i) i = i′ and j = j′. In this case,
we have y = (eg+i′ )g

+

j′ = ((eg+i )g
−

j )g
−

j = xg−j , and thus x
and y are adjacent. (ii) i = i′ and j 6= j′. In this case, if there
exists a common neighbor, say z, of x and y, then z = xg+j =
((eg+i )g

−

j )g
+

j = ((eg+i′ )g
+

j′ )g
−

j′ = yg−j′ . Thus, z = eg+i ∈ N
+

(see, e.g., x = 14235, y = 53241 and z = 31245 in Fig. 4);
(iii) i 6= i′. In this case, it is clear that N (x) ∩ N (y) = ∅. This
settles Claim 3.
We are now ready to conclude the proof of the lemma. Let

v0 = e andNi,j = N (vi)∩N (vj) for any tow vertices vi, vj ∈ S.
Consider the following conditions:
For (1), let S = {v0, v1, v2}. Since N (v0) ∩ N (S \ {v0}) 6=
∅, at least one vertex vi for i = 1, 2 belongs to the sets
N++ ∪ N+− ∪ N−+. If v1, v2 ∈ N+− ∪ N−+, then
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|N0,1| = |N0,2| = 1. Since |N1,2| 6 2 by Lemma 1(3),
it implies |N0,1 ∪ N0,2 ∪ N1,2| 6 4. If v1, v2 ∈ N++, then
|N0,1| = |N0,2| = 2. By Claim 1, we haveN1,2 ⊂ N0,1∪N0,2.
Thus, |N0,1 ∪N0,2 ∪N1,2| 6 4. If v1 ∈ N+− ∪N−+ and v2 ∈
N++ (resp., v2 ∈ N+− ∪ N−+ and v1 ∈ N++), by Claim 3
either v1 and v2 are adjacent, which contradicts that S is an
independent set, or |N1,2| 6 1. Since |N1,2| 6 1 = |N0,1| and
|N0,2| = 2, it follows that |N0,1∪N0,2∪N1,2| 6 4. Therefore,
we have |N (S)| = 3(2n−4)−|N0,1∪N0,2∪N1,2| > 6n−16 for
all above situations. Also, it is clear that if v1 /∈ N++∪N+−∪
N−+ or v2 /∈ N++ ∪ N+− ∪ N−+, then |N (S)| > 6n− 16.

For (2), let S = {v0, v1, v2, v3}. SinceN (v0)∩N (S\{v0}) 6=
∅, at least one vertex vi for i = 1, 2, 3 belongs to the sets
N++∪N+−∪N−+. Let I = Z3∪{0} and J = |

⋃
i,j∈I ,i 6=j Ni,j|.

If v1, v2, v3 ∈ N++, then |N0,i| = 2 for i ∈ Z3 and Ni,j ⊂
N0,i ∪ N0,j for i, j ∈ Z3 and i 6= j (by Claim 1). Thus, J = 6.
If v1, v2 ∈ N++ and v3 ∈ N+− ∪ N−+, we have |N0,1| =

|N0,2| = 2, |N0,3| = 1, N1,2 ⊂ N0,1 ∪ N0,2 (by Claim 1), and
|N1,3|, |N2,3| 6 1 (by Claim 3). Thus, J 6 7. If v1 ∈ N++

and v2, v3 ∈ N+− (resp., v1 ∈ N++ and v2, v3 ∈ N−+),
we have |N0,1| = 2, |N0,2| = |N0,3| = 1, |N2,3| 6 1 (by
Claim 2), and |N1,2|, |N1,3| 6 1 (by Claim 3). Thus, J 6 7.
If v1 ∈ N++, v2 ∈ N+− and v3 ∈ N−+, we have |N0,1| =

2, |N0,2| = |N0,3| = 1, |N2,3| 6 2 (by Lemma 1(3)), and
|N1,2|, |N1,3| 6 1 (by Claim 3). Thus, J 6 8. If v1, v2, v3 ∈
N+− (resp., v1, v2, v3 ∈ N−+), then |N0,i| = 1 for i ∈ Z3
and |Ni,j| 6 1 for i, j ∈ Z3 and i 6= j (by Claim 2). Thus,
J 6 6. If v1, v2 ∈ N+− and v3 ∈ N−+ (resp., v1, v2 ∈ N−+

and v3 ∈ N+−), we have |N0,i| = 1 for i ∈ Z3, |N1,2| 6 1
(by Claim 2), and |N1,3|, |N2,3| 6 2 (by Lemma 1(3)). Thus,
J 6 8. Therefore, we have |N (S)| = 4(2n−4)−J > 8n−24
for all above situations. Also, if vi /∈ N++ ∪ N+− ∪ N−+

for any i ∈ Z3, we have |N (S)| = |N (S \ {vi})| + |N (vi)| >
(6n− 16)+ (2n− 4) > 8n− 24. �
Form Fig. 1 it easy to check that the set S = {e =

1234, (eg+3 )g
+

4 = 4321, (eg+4 )g
+

3 = 3412} (resp., S = {e =
1234, (eg+3 )g

+

4 = 4321, (eg+4 )g
+

3 = 3412, ((eg+4 )g
−

3 )g
+

4 =

2143}) is an independent set of AG4 such that N (S) = 8.
Clearly, these examples show that the bounds on the asser-
tions of Lemma 6 are tight for n = 4. Indeed, based on this
observation, the following properties can easily be proved by
induction on n.

Remark 1: For n > 4, the following assertions hold:

(1) The set S = {e, (eg+i )g
+

j , (eg
+

j )g
+

i } for i, j ∈ Zn \ {1, 2}
and i 6= j is an independent set such thatN (S) = 6n−16.

(2) The set S = {e, (eg+i )g
+

j , (eg
+

j )g
+

i , ((eg
+

j )g
−

i )g
+

j } for
i, j ∈ Zn \ {1, 2} and i 6= j is an independent set such
that N (S) = 8n− 24.

B. SPLIT-STARS AND THEIR PROPERTIES
Lemma 7 (see [13], [15], [16]): For S2n with n > 4,

the following properties hold:

(1) S2n is (2n− 3)-regular and κ(S2n ) = 2n− 3 for n > 2.
(2) The two out-neighbors of every vertex in S2:in are

contained in different subgraphs and these two

out-neighbors are adjacent. For any two vertices in
the same subgraph S2:in , their out-neighbors in other
subgraphs are different. There are 2(n − 2)! external
edges between any two distinct subgraphs S2:in and S2:jn
for i, j ∈ Zn and i 6= j.

(3) If x, y are any two vertices of S2n , then

|N (x) ∩ N (y)| 6


1 if d(x, y) = 1;
2 if d(x, y) = 2;
0 if d(x, y) > 3,

where d(x, y) stands for the distance (i.e., the number of
edges in a shortest path) between x and y in S2n .
Lemma 8 (see [13]): For n > 4, if F is a vertex-cut of

S2n with |F | 6 4n − 8, then one of the following conditions
holds:
(1) S2n−F has two components, one of which is a singleton.
(2) S2n − F has two components, one of which is an edge,

say (u, v). If (u, v) is a 2-exchange edge, then |F | =
|N ({u, v})| = 4n − 8; otherwise, F = F1 ∪ F2, where
F1 = N ({u, v}), |N (u) ∩ N (v)| = 1, and |F2| 6 1.

(3) S2n − F has three components, two of which are sin-
gletons, say u and v. Moreover, F = N (u) ∪ N (v) and
|N (u) ∩ N (v)| = 2, hence |F | = 4n− 8.
Lemma 9 (see [34]): For n > 5, if F is a vertex-cut of

S2n with |F | 6 6n− 17, then one of the following conditions
holds:
(1) S2n−F has two components, one of which is a singleton,

an edge or a 2-path.
(2) S2n − F has three components, two of which are single-

tons.
Lemma 10 (see [34]): For n > 5, if F is a vertex-cut of

S2n with |F | 6 8n− 25, then one of the following conditions
holds:
(1) S2n−F has two components, one of which is a singleton,

an edge, a 2-path or a 3-cycle.
(2) S2n − F has three components, two of which are single-

tons or a singleton and an edge.
(3) S2n − F has four components, three of which are

singletons.
Lemma 11: Let S be an independent set of S2n for n > 4.

Then the following assertions hold.
(1) If |S| = 2, then |N (S)| > 4n− 8.
(2) If |S| = 3, then |N (S)| > 6n− 14.
(3) If |S| = 4, then |N (S)| > 8n− 20.

Proof: Recall that S2n contains two copies of AGn,
namely S2n,E and S2n,O. For notational convenience, we simply
write NS2n (U ), NS2n,E (U ) and NS2n,O (U ) as N (U ), NE (U ) and

NO(U ) for any subset of vertices U ⊂ V (S2n ), respectively.
Consider the following conditions:

For (1), let S = {v1, v2}. By Lemma 7(3), v1 and v2 has at
most two common neighbors, |N (S)| = |N (v1)| + |N (v2)| −
|N (v1) ∩ N (v2)| > 2(2n− 3)− 2 = 4n− 8.
For (2), let S = {v1, v2, v3}. We consider the following

cases.
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Case 2.1: Three vertices v1, v2, v3 are contained in a com-
mon subgraph.Without loss of generality, assume v1, v2, v3 ∈
S2n,E . Since S2n,E is isomorphic to AGn, by Lemma 6(1),
|NE (S)| > 6n − 16. Since each vertex of {v1, v2, v3} is
joined a neighbor by a matching edge, we have |N (S)| =
|NE (S)| + |NO(S)| > (6n− 16)+ 3 > 6n− 14.
Case 2.2: Three vertices v1, v2, v3 are distributed in

two distinct subgraphs. Without loss of generality, assume
v1, v2 ∈ S2n,E and v3 ∈ S2n,O. Since both S2n,E and S2n,O
are isomorphic to AGn, by Lemma 1(3), |NE ({v1, v2})| >
2(2n − 4) − 2 = 4n − 10 and |NE (v3)| = 2n − 4. Thus,
|N (S)| > |NE ({v1, v2})|+ |NO(v3)| > (4n−10)+ (2n−4) =
6n− 14.
For (3), let S = {v1, v2, v3, v4}. We consider the following

cases.
Case 3.1: Four vertices v1, v2, v3, v4 are contained in

a common subgraph. Without loss of generality, assume
v1, v2, v3, v4 ∈ S2n,E . Since S2n,E is isomorphic to AGn,
by Lemma 6(2), |NE (S)| > 8n − 24. Since each vertex of
{v1, v2, v3} is joined a neighbor by a matching edge, we have
|N (S)| = |NE (S)| + |NO(S) > (8n− 24)+ 4 = 8n− 20.
Case 3.2: Four vertices v1, v2, v3, v4 are distributed equally

in two distinct subgraphs. Without loss of generality, assume
v1, v2 ∈ S2n,E and v3, v4 ∈ S2n,O. By Lemma 1(3),
|NE ({v1, v2})| = |NO({v3, v4})| > 2(2n− 4)− 2 = 4n− 10.
Thus, |N (S)| > |NE ({v1, v2})| + |NO({v3, v4})| > 8n− 20.
Case 3.3: Four vertices v1, v2, v3, v4 are distributed

nonequally in two distinct subgraphs. Without loss of gen-
erality, assume v1, v2, v3 ∈ S2n,E and v4 ∈ S2n,O. Since
both S2n,E and S2n,O are isomorphic to AGn, by Lemma 6(1),
|NE ({v1, v2, v3})| > 6n − 16 and |NO(v4)| = 2n − 4. Thus,
|N (S)| > |NE ({v1, v2, v3})| + |NO({v4})| > 8n− 20. �

III. THE `-COMPONENT CONNECTIVITY OF AGN
Lemma 12: For n > 4, κ3(AGn) = 4n− 10.
Proof:By Lemma 2, if F is a vertex-cut with |F | 6 4n−

11, thenAGn−F has exact two components. Thus, κ3(AGn) >
4n − 10. We now prove κ3(AGn) 6 4n − 10 as follows. For
n > 4, since AGn is pancyclic, let (w, x, y, z,w) be a 4-cycle.
Also, let F = N ({w, y}). By Lemma 1(3), we have N (w) ∩
N (y) = {x, z}. Since every vertex of AGn has 2n−4 neighbors
and w and y share exactly two common neighbors, we have
|F | = 2(2n − 4) − 2 = 4n − 10. Clearly, the removal of F
from AGn results in a surviving graph with a large connected
component and two singletons w and y. This attains the upper
bound. �

Suppose that S is an independent set with the maximum
cardinality in AG4 and let F = V (AG4) \ S. Obviously,
|S| = 4 (e.g., S = {1234, 2143, 3412, 4321}) and F is
a vertex-cut of AG4. Thus, κ4(AG4) 6 8. From the max-
imality of S, if we choose a vertex u ∈ S, the remaining
three vertices of S are determined involuntary. Since AG4 is
vertex-transitive, F is the unique vertex-cut of size 8 (up to
isomorphism) inAG4 such thatAG4−F has four components.
Thus, there is no vertex-cut F with |F | 6 7 such that AG4−F

FIGURE 5. An illustration of Lemma 12, where a shape of cloud indicates
the large component of AGn − F .

contains four components. This shows that κ4(AG4) > 8. As a
result, we have the following lemma.

Lemma 13: κ4(AG4) = 8.
We denote by c(G) the number of components in a graphG.

Hereafter, we suppose that F is a vertex-cut of AGn and,
for convenience, vertices in F (resp., not in F) are called
faulty vertices (resp., fault-free vertices). For each i ∈ Zn,
let Fi = F ∩ V (AGin), Gi = AGin − Fi, fi = |Fi|, and c(Gi)
be the number of components of Gi. Also, let I = {i ∈ Zn :
Gi is disconnected} and J = Zn \ I . In addition, we adopt the
following notations:

FI =
⋃
i∈I

Fi, FJ =
⋃
j∈J

Fj, AGIn =
⋃
i∈I

AGin, and

AGJn =
⋃
j∈J

AGjn.

Lemma 14: κ4(AG5) > 14.
Proof:LetF be a vertex-cut ofAG5 with |F | 6 13. Since

each subgraph AGi5 is isomorphic to AG4, we have κ(AGi5) =
4. If |I | > 4, then |F | > 4|I | > 16, a contradiction.
Thus, |I | 6 3. By the definition of J , Gj is connected for
j ∈ J . If I = ∅, then J = Z5. By Lemma 1(1), there are
(5 − 2)! = 6 independent edges between AGi5 and AGj5 for
i, j ∈ J with i 6= j. Since |F | 6 13 < 3 × (5 − 2)!,
every Gi is connected to at least two subgraphs Gj and Gk for
j, k ∈ J \ {i} when I = ∅. This further implies that AG5 − F
is connected, a contradiction. So, 1 6 |I | 6 3. Let H be
the union of components of AG5 − F such that all vertices
of H are contained in

⋃
i∈I V (Gi). We claim that AGJ5 − FJ

is connected and c(H ) 6 2. Thus, counting together with the
component that contains AGJ5 − FJ as a subgraph, AG5 − F
contains c(H ) + 1 6 3 components and the result follows.
We now prove our claim by the following three cases:
Case 1: |I | = 1. Without loss of generality, assume I =
{1}. In this case, G1 is disconnected and f1 > κ(AG1

5) = 4.
By Lemma 1(1), since |FJ | = |F | − f1 6 13 − 4 = 9 <
2 × (5 − 2)!, every Gi for i ∈ J is connected to at least
two subgraphs Gj and Gk for j, k ∈ J \ {i}. This further
implies that AGJ5 − FJ is connected. By the definition of H ,
we have V (H ) ⊆ V (G1) andH is not connected to AGJ5−FJ .
Since by Lemma 1(2) every vertex of H has exactly two
faulty out-neighbors in FJ , 2|V (H )| 6 |FJ | 6 9, which
implies |V (H )| 6 4. If |V (H )| = 4, then |F | − f1 =
|FJ | > 2|V (H )| = 8. It follows that f1 6 |F | − 8 6
13 − 8 = 5 = 4 × 4 − 11. By Lemma 2, G1 has two
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components, and thus c(H ) 6 c(G1) = 2. If |V (H )| = 3,
then c(H ) 6 2. Otherwise, H contains three singletons (i.e.,
an independent set of three vertices), and by Lemma 6(1),
|F | > |NAG5 (V (H ))| > 6 × 5 − 16 = 14, a contradiction.
Also, if |V (H )| 6 2, it is clear that c(H ) 6 |V (H )| 6 2.
Case 2: |I | = 2. Without loss of generality, assume I =
{1, 2}. Then, both G1 and G2 are disconnected graphs and
f1, f2 > 4. By Lemma 1(1), since |FJ | = |F | − f1 − f2 6
13−8 = 5 < (5−2)!, AGJ5−FJ is connected. There are two
subcases as follows:
Case 2.1: f1, f2 ∈ {4, 5}. For i ∈ {1, 2}, since fi 6

4× 4− 11, by Lemma 2, there are four situations as follows:
(i) Gi contains a singleton and a larger component that is
connected to AGJ5 − FJ ; (ii) Gi contains an edge and a larger
component that is connected to AGJ5 − FJ ; (iii) Gi contains
two disjoint 4-cycles; and (iv) Gi contains a 4-cycle and a
2-path (See Fig. 6). By Lemma 1(2), every vertex of V (Gi)
has exactly two out-neighbors. In the latter two situations,
since |FJ | + fj 6 5 + 5 = 10 < 2|V (Gi)| where j ∈ I \ {i},
it implies that at least one component ofGimust be connected
to AGJ5 − FJ . Thus, H contains at most one component of Gi
for i = 1, 2. This shows that c(H ) 6 2.

FIGURE 6. An illustration of Case 2.1 in Lemma 14, where a shape of
cloud indicates the large component: (i) and (ii) occur when fi 6 5,
(iii) occurs when fi = 4, and (iv) occurs when fi = 5.

Case 2.2: f1 > 6 (resp., f2 > 6). Then |FJ | = |F |−f1−f2 6
13 − 6 − 4 = 3. By Lemma 1(2), if a vertex u ∈ Fj
have two fault-free out-neighbors, say u1 and u2, in H , then
u1 ∈ V (G1) and u2 ∈ V (G2) (or vice versa). In this case,
the vertex u must be the form with a permutation 12 · · · k
where k ∈ J . Clearly, u1 = 2k · · · 1 and u2 = k1 · · · 2.
So u1 and u2 are adjacent in H . Since |FJ | 6 3, H contains
at most three components, say Hi for i = 1, 2, 3 if they exist
(See Fig. 7). Now, we show that c(H ) 6 2 by contradiction.
Suppose that there exists a vertex vi ∈ V (Hi) for every
i ∈ {1, 2, 3}. Since Hi and Hj are not connected in H for any
i, j ∈ {1, 2, 3} with i 6= j, {v1, v2, v3} is an independent set
of AG5. Clearly, NAG5 (V (Hi)) is a vertex-cut of AG5 for each
i ∈ {1, 2, 3}. Since AG5 is hyper-connected, |NAG5 (V (Hi))| >
κ(AG5) = |NAG5 (vi)|. By Lemma 6(1), |F | > |NAG5 (V (H1)∪
V (H2) ∪ V (H3))| > |NAG5 ({v1, v2, v3})| > 6× 5− 16 = 14,
a contradiction.
Case 3: |I | = 3. Without loss of generality, assume I =
{1, 2, 3}. Since |F | 6 13 and fi > 4 for i ∈ I , it implies |FJ | =
|F |−f1−f2−f3 6 13−3×4 = 1. By Lemma 1(1), AGJ5−FJ
is connected. Also, we have fi 6 |F |−fj−fk 6 13−4−4 = 5

FIGURE 7. An illustration of Case 2.2 in Lemma 14.

for each i ∈ I where j, k ∈ I \{i}with j 6= k . Since fi ∈ {4, 5},
through an argument similar to Case 2.1, we can show that H
contains at most one component of Gi, say Hi if it exists, for
i = 1, 2, 3. If any two Hi and Hj are connected in H for i, j ∈
I , then c(H ) 6 2. Otherwise, through an argument similar to
Case 2.2 by considering an independent set {v1, v2, v3}where
vi ∈ V (Hi), we can show that at least one component Hi for
i ∈ I does not exist. Thus, c(H ) 6 2. �

Lemma 15: For n > 4, κ4(AGn) = 6n− 16.
Proof: If n = 4, the result is proved in Lemma 13.

For n > 5, the upper bound κ4(AGn) 6 6n − 16 can be
acquired from Remark 1(1) by considering the removal of
N ({v0, v1, v2}), where {v0, v1, v2} is an independent set of
AGn and |N ({v0, v1, v2})| = 6n − 16. Thus, the resulting
graph has four components, three of which are singletons.
Lemma 14 proves the lower bound κ4(AGn) > 6n − 16 for
n = 5, and we now consider n > 6 as follows.
Let F be any vertex-cut of AGn such that |F | 6 6n − 17.

Lemma 4 shows that the removal of a vertex-cut with no
more than 6n − 19 vertices in AGn results in a disconnected
graph with at most three components. To complete the proof,
we need to show that the same result holds when 6n− 18 6
|F | 6 6n − 17. Recall I = {i ∈ Zn : Gi is disconnected}
and J = Zn \ I . By definition, Gj is connected for all j ∈ J .
Since |F | 6 6n − 17 < (n − 2)! when n > 6, AGJn − FJ
remains connected for arbitrary J . Since AGin is isomorphic
to AGn−1, we have κ(AGin) = 2n − 6. If |I | > 4, then
|F | > |I | × (2n− 6) > 8n− 24 > 6n− 17, a contradiction.
Also, if I = ∅, then AGn − F is connected, a contradiction.
Thus, 1 6 |I | 6 3. Let H be the union of components
of AGn − F such that all vertices of H are contained in⋃

i∈I V (Gi). In the following, we will show that c(H ) 6 2.
Thus, counting together with the component that contains
AGJn − FJ as a subgraph, AGn − F contains c(H ) + 1 6 3
components. We consider the following three cases:
Case 1: |I | = 1. Without loss of generality, assume I =
{1}. In this case, V (H ) ⊆ V (G1). We analyze the number of
faulty vertices of FJ as follows. For |FJ | 6 7, since every
vertex of H has exactly two faulty out-neighbors in FJ by
Lemma 1(2), 2|V (H )| 6 |FJ | 6 7, which implies |V (H )| 6
3. If |V (H1)| = 3, then c(H ) 6 2. Otherwise, H1 contains
three singletons (i.e., an independent set of three vertices),
and by Lemma 6(1), |F | > |NAGn (V (H ))| > 6n − 16,
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a contradiction. Also, if |V (H )| 6 2, it is clear that c(H ) 6
|V (H )| 6 2. On the other hand, we consider |FJ | > 8. Since
F1 is a vertex-cut of AG1

n and f1 = |F | − |FJ | 6 (6n− 17)−
8 = 6(n − 1) − 19, by Lemma 4, G1 contains at most three
components in which the largest component is connected to
AGJn − FJ . Thus, c(G1) 6 3 and c(H ) = c(G1)− 1 6 2.
Case 2: |I | = 2. Without loss of generality, assume I =
{1, 2}. If f1 > 4n−14 or f2 > 4n−14, then |FJ | = |F |− f1−
f2 6 (6n− 17)− (4n− 14)− (2n− 6) = 3. By Lemma 1(2),
every vertex of H has at least one faulty out-neighbor in FJ .
Thus, c(H ) 6 |V (H )| 6 |FJ | 6 3. If c(H ) = 3, then each
component is a singleton. By Lemma 6(1), |F | > N (H ) >
6n − 16, a contradiction. Thus c(H ) 6 2. We now consider
f1, f2 6 4n−15 = 4(n−1)−11. For i ∈ {1, 2}, by Lemma 2,
Gi contains two components, one is either a singleton or an
edge, and the other is a larger component connecting toAGJn−
FJ . Thus, c(Gi) = 2 for i = 1, 2 and c(H ) 6 c(G1)+c(G2)−
2 = 2.
Case 3: |I | = 3. Without loss of generality, assume I =
{1, 2, 3}. Since |F | 6 6n − 17 and fi > 2n − 6 for i ∈ I ,
it implies fi 6 |F |− fj− fk 6 (6n−17)−2(2n−6) = 2n−5
where j, k ∈ I \ {i} with j 6= k . Since fi 6 2n − 5 <

4(n − 1) − 11 for n > 6, by Lemma 2, for each i ∈ I ,
Gi contains two components, one is a singleton, say vi, and
the other is a larger component connecting to AGJn − FJ .
If {v1, v2, v3} is an independent set of AGn, by Lemma 6(1),
|F | > N ({v1, v2, v3}) > 6n − 16, a contradiction. Thus,
at least two vertices of v1, v2 and v3 are connected, which
implies c(H ) 6 2. �

Lemma 16: κ5(AG5) > 16.
Proof:LetF be a vertex-cut ofAG5 with |F | 6 15. Since

each subgraph AGi5 is isomorphic to AG4, we have κ(AGi5) =
4. If |I | > 4, then |F | > 4|I | > 16, a contradiction. Thus,
|I | 6 3. By the definition of J , Gj is connected for j ∈ J .
If I = ∅, then J = Z5. Through an argument similar to
Lemma 14, we have AG5 − F is connected, a contradiction.
So, 1 6 |I | 6 3. Let H be the union of components
of AG5 − F such that all vertices of H are contained in⋃

i∈I V (Gi).We claim that AGJ5−FJ is connected and c(H ) 6
3. Thus, counting together with the component that contains
AGJ5 − FJ as a subgraph, AG5 − F contains c(H ) + 1 6 4
components and the result follows. We now prove our claim
by the following three cases:
Case 1: |I | = 1. Without loss of generality, assume I =
{1}. In this case, G1 is disconnected and f1 > κ(AG1

5) = 4.
By Lemma 1(1), since |FJ | = |F | − f1 6 15 − 4 = 11 <
2 × (5 − 2)!, every Gi for i ∈ J is connected to at least
two subgraphs Gj and Gk for j, k ∈ J \ {i}. This further
implies that AGJ5 − FJ is connected. By the definition of H ,
we have V (H ) ⊆ V (G1) andH is not connected to AGJ5−FJ .
Since by Lemma 1(2) every vertex of H has exactly two
faulty out-neighbors in FJ , 2|V (H )| 6 |FJ | 6 11, which
implies |V (H )| 6 5. If |V (H )| = 5, then |F | − f1 =
|FJ | > 2|V (H )| = 10. It follows that f1 6 |F | − 10 6
15 − 10 = 5 = 4 × 4 − 11. By Lemma 2, G1 has two

components, and thus c(H ) 6 c(G1) = 2. If |V (H )| = 4,
then c(H ) 6 3. Otherwise, H contains four singletons (i.e.,
an independent set of four vertices), and by Lemma 6(1),
|F | > |NAG5 (V (H ))| > 8 × 5 − 24 = 16, a contradiction.
Also, if |V (H )| 6 3, it is clear that c(H ) 6 |V (H )| 6 3.
Case 2: |I | = 2. Without loss of generality, assume I =
{1, 2} and f1 > f2. Then, both G1 and G2 are disconnected
graphs and f1 > f2 > 4. By Lemma 1(1), since |FJ | = |F | −
f1 − f2 6 15 − 8 = 7 < 3(5 − 2)!, AGJ5 − FJ is connected.
There are three subcases as follows:
Case 2.1: f1, f2 ∈ {4, 5}. Through an argument similar to

Case 2.1 in Lemma 14, we know the result holds.
Case 2.2: f1 > 6 and 4 6 f2 6 5. Then |FJ | = |F | − f1 −

f2 6 15− 6− 4 = 5. Since |FJ | 6 5, by the similar proof of
case 2.2 of Lemma 13, we have |V (H )| 6 5. If |V (H )| = 5,
then f1 = 6 and f2 = 4. We claim c(H ) = 2 6 3. For
i ∈ {1, 2}, let Hi ⊆ H be the set of components such that
all vertices of Hi are contained in Gi. By Lemma 13 and
f1 = 6 < κ4(AG4) = 8, G1 has at most three components
and c(H1) 6 2. By Lemma 2,G2 has two components, one of
which is a singleton or a four cycle and c(H2) = 1. It implies
that c(H ) 6 3 (See Fig. 8 for two situations). If |V (H )| = 4,
then c(H ) 6 3. Otherwise, H contains four singletons (i.e.,
an independent set of four vertices), and by Lemma 6(2),
|F | > |NAG5 (V (H ))| > 8 × 5 − 24 = 16, a contradiction.
Also, if |V (H )| 6 3, it is clear that c(H ) 6 |V (H )| 6 3.

FIGURE 8. An illustration of Case 2.2 in Lemma 16, where a shape of
cloud indicates a component: (i) corresponds to |V (H2)| = 1 and (ii)
corresponds to |V (H2)| = 4.

Case 2.3: f1, f2 > 6. Then |FJ | = |F |− f1− f2 6 15−6−
6 = 3. This implies that c(H ) 6 3.
Case 3: |I | = 3. Without loss of generality, assume I =
{1, 2, 3} and f1 > f2 > f3. Since |F | 6 15 and fi > 4 for
i ∈ I , it implies |FJ | = |F | − f1 − f2 − f3 6 15 − 3 × 4 =
3. By Lemma 1(1), AGJ5 − FJ is connected. Also, we have
fi 6 |F | − fj − fk 6 15 − 4 − 4 = 7 for each i ∈ I where
j, k ∈ I \ {i} with j 6= k . There is at most one i ∈ I such
that fi > 6. Otherwise, |F | > f1 + f2 + f3 > 16 > 15,
a contradiction. We consider the following cases.
Case 3.1: 4 6 f3 6 f2 6 f1 6 5. For i ∈ {1, 2, 3},

by Lemma 12 and fi 6 5 < κ3(AG4) = 6, Gi has two
components and c(Hi) = 1. It implies that c(H ) 6 3.
Case 3.2: 6 6 f1 6 7 and 4 6 f3 6 f2 6 5. For

i ∈ {2, 3}, by Lemma 12 and fi 6 5 < κ3(AG4) = 6,
Gi has two components and c(Hi) = 1. By Lemma 13 and
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f1 6 7 < κ4(AG4) = 8, G1 has at most three components
and c(H1) 6 2. Thus, c(H ) 6 4. We claim c(H ) 6 3.
Suppose not and let Hi for i = 1, 2, 3, 4 be components
of H . Let vi ∈ V (Hi) for i ∈ {1, 2, 3, 4}. Since Hi and
Hj are not connected in H for any i, j ∈ {1, 2, 3, 4} with
i 6= j, {v1, v2, v3, v4} is an independent set of AG5. Clearly,
NAG5 (V (Hi)) is a vertex-cut of AG5 for each i ∈ {1, 2, 3, 4}.
Since AG5 is hyper-connected, |NAG5 (V (Hi))| > κ(AG5) =
|NAG5 (vi)|. By Lemma 6(2), |F | > |NAG5 (V (H1) ∪ V (H2) ∪
V (H3) ∪ V (H4))| > |NAG5 ({v1, v2, v3, v4})| > 8× 5− 24 =
16, a contradiction. �

Lemma 17: For n > 5, κ5(AGn) = 8n− 24.
Proof: For n > 5, the upper bound κ5(AGn) 6 8n − 24

can be acquired fromRemark 1(2) by considering the removal
of N ({v0, v1, v2, v3}), where {v0, v1, v2, v3} is an indepen-
dent set of AGn and |N ({v0, v1, v2, v3})| = 8n − 24. Thus,
the resulting graph has five components, four of which are
singletons. Lemma 16 proves the lower bound κ5(AGn) >
8n − 24 for n = 5, and we now consider n > 6 as
follows.

Let F be any vertex-cut of AGn such that |F | 6 8n − 25.
Lemma 5 shows that the removal of a vertex-cut with no
more than 8n − 29 vertices in AGn results in a disconnected
graph with at most four components. To complete the proof,
we need to show that the same result holds when 8n− 28 6
|F | 6 8n − 25. Recall I = {i ∈ Zn : Gi is disconnected}
and J = Zn \ I . By definition, Gj is connected for all j ∈ J .
Since |F | 6 8n − 25 < (n − 2)! when n > 6, AGJn − FJ
remains connected for arbitrary J . Since AGin is isomorphic
to AGn−1, we have κ(AGin) = 2n − 6. If |I | > 4, then
|F | > |I | × (2n− 6) > 8n− 24 > 8n− 25, a contradiction.
Also, if I = ∅, then AGn − F is connected, a contradiction.
Thus, 1 6 |I | 6 3. Let H be the union of components
of AGn − F such that all vertices of H are contained in⋃

i∈I V (Gi). In the following, we will show that c(H ) 6 3.
Thus, counting together with the component that contains
AGJn − FJ as a subgraph, AGn − F contains c(H ) + 1 6 4
components. We consider the following three cases:
Case 1: |I | = 1. Without loss of generality, assume I =
{1}. In this case, V (H ) ⊆ V (G1). We analyze the number of
faulty vertices of FJ as follows.
Case 1.1: |FJ | 6 11. Since every vertex of H has exactly

two faulty out-neighbors in FJ by Lemma 1(2), 2|V (H )| 6
|FJ | 6 11, which implies |V (H )| 6 5. If |V (H )| = 5, then
c(H ) 6 3. Otherwise, H contains five singletons or three
singletons and an edge. If V (H ) = {v1, v2, v3, v4, v5} =
H ′ ∪ {v5}, where H ′ = {v1, v2, v3, v4}, by Lemma 6(2),
|NAGn (V (H ))| = |NAGn (H

′)| + |NAGn (v5)| − |NAGn (H
′) ∩

NAGn (v5)| > (8n− 24)+ (2n− 4)− 2(4× 1) = 10n− 36 >
8n− 25 for n > 6, a contradiction. Now we assume V (H ) =
{v1, v2, v3, u,w} = H ′ ∪ {u,w}, where H ′ = {v1, v2, v3, }
and (u,w) is an edge. Then, by Lemma 6(1), |NAGn (V (H ))| =
|NAGn (H

′)| + |NAGn ({u,w})| − |NAGn (H
′) ∩ NAGn ({u,w})| >

(6n− 16)+ 2(2n− 4)− 2(3× 2) = 10n− 36 > 8n− 25 for
n > 6, a contradiction. If |V (H )| = 4, then c(H ) 6 3. Other-
wise, H contains four singletons (i.e., an independent set of

four vertices), and by Lemma 6(2), |F | > |NAGn (V (H ))| >
8n− 24, a contradiction. Also, if |V (H )| 6 3, it is clear that
c(H ) 6 |V (H )| 6 3.
Case 1.2: |FJ | > 12. Since F1 is a vertex-cut of AG1

n and
f1 = |F |−|FJ | 6 (8n−25)−12 = 8(n−1)−29, by Lemma 5,
G1 contains at most four components in which the largest
component is connected to AGJn − FJ . Thus, c(G1) 6 4 and
c(H ) = c(G1)− 1 6 3.
Case 2: |I | = 2. Without loss of generality, assume I =
{1, 2} and f1 > f2. Since |F | 6 8n − 25 and fi > 2n − 6 for
i ∈ I , it implies fi 6 |F | − fj 6 6n− 19 where j ∈ I \ {i} with
j 6= i. We consider the following subcases:
Case 2.1: 2n − 6 6 f2 6 f1 6 4n − 15 = 4(n − 1) − 11.

For i ∈ {1, 2}, by Lemma 2, Gi contains two components,
one is either a singleton or an edge, and the other is a larger
component connecting to AGJn − FJ . Thus, c(Gi) = 2 for
i = 1, 2 and c(H ) 6 c(G1)+ c(G2)− 2 = 2.
Case 2.2: 2n − 6 6 f2 6 4n − 15 and 4n − 14 6 f1 6

6n−19. Since f2 6 4n−15 = 4(n−1)−11, by Lemma 2,G2
contains two components, one is either a singleton or an edge,
and the other is a larger component connecting to AGJn − FJ .
Thus c(G2) = 2. If 4n − 14 6 f1 6 6n − 23, by Lemma 15,
f1 < 6(n−1)−16 = κ4(AGn−1), and thusG1 contains at most
three components and the largest component is connected to
AGJn−FJ . Thus, c(G1) 6 3 and c(H ) 6 c(G1)+c(G2)−2 6
3. If 6n − 22 6 f1 6 6n − 19, then |FJ | = |F | − f1 − f2 6
(8n− 25)− (6n− 22)− (2n− 6) = 3. By Lemma 1(2), every
vertex of H has at least one faulty out-neighbor in FJ . Thus,
c(H ) 6 |V (H )| 6 |FJ | 6 3.
Case 2.3: 4n−14 6 f2 6 f1 6 6n−19. In this case, |FJ | =
|F | − fi− f2 6 (8n− 25)− 2(4n− 14) = 3. By Lemma 1(2),
every vertex of H has at least one faulty out-neighbor in FJ .
Thus, c(H ) 6 |V (H )| 6 |FJ | 6 3.
Case 3: |I | = 3. Without loss of generality, assume I =
{1, 2, 3} and f1 > f2 > f3. Since |F | 6 8n−25 and fi > 2n−6
for i ∈ I , it implies fi 6 |F |−fj−fk 6 (8n−25)−2(2n−6) =
4n − 13, where j, k ∈ I \ {i} with j 6= k . We consider the
following subcases:
Case 3.1: fi 6 4n − 16 < 4(n − 1) − 11 for each i ∈ I .

By Lemma 2,Gi contains two components, one is a singleton,
and the other is a larger component connecting to AGJn − FJ ,
and thus c(Gi) = 2. So c(H ) 6 c(G1)+ c(G2)+ c(G3)− 3 =
3× 2− 3 = 3.
Case 3.2: f3 6 f2 6 4n − 16 < f1 6 4n − 13. In this

case, each of Gi for i = 2, 3 contains two components, one
is a singleton, say vi, and the other is a larger component
connecting to AGJn − FJ . Thus c(G2) = c(G3) = 2. Since
f1 6 4n − 13 6 6n − 25 = 6(n − 1) − 19 for n > 6,
by Lemma 4, G1 contains either two components, or three
components and two of which are singletons, say v1 and v′1
(see Fig. 9 for two situations). Since the largest component
of G1 is connected to AGJn − FJ , if c(G1) = 2, then c(H ) 6
c(G1) + c(G2) + c(G3) − 3 = 3 × 2 − 3 = 3. On the
other hand, if {v1, v′1, v2, v3} is an independent set of AGn,
by Lemma 6(2), |F | > N ({v1, v′1, v2, v3}) > 8n− 24, a con-
tradiction. Thus, there exists at least one of edges (v1, v2),
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FIGURE 9. An illustration of Case 3.2 in Lemma 17, where a shape of
cloud indicates a component: (i) corresponds to c(G1) = 2 and
(ii) corresponds to c(G1) = 3.

(v1, v3), (v′1, v2), (v
′

1, v3) and (v2, v3) in AGn, which implies
c(H ) 6 3.
Case 3.3: f3 6 4n − 14 6 f2 6 f1 6 4n − 13. Clearly,

f3 6 |F | − f1 − f2 6 (8n− 25)− 2(4n− 14) = 3 < 2n− 6
for n > 6, a contradiction.
Case 3.4: 4n − 14 6 f3 6 f2 6 f1 6 4n − 3. Clearly,

f1 + f2 + f3 > 3(4n − 14) > 8n − 25 > |F | when n > 6,
a contradiction. �

Theorem 1: κ3(AGn) = 4n−10 and κ4(AGn) = 6n−16
for n > 4, and κ5(AGn) = 8n− 24 for n > 5.

Proof: The result directly follows from
Lemmas 12, 15 and 17. �

IV. THE `-COMPONENT CONNECTIVITY OF S2
N

Lemma 18: For n > 4, κ3(S2n ) = 4n− 8.
Proof:By Lemma 8, if F is a vertex-cut with |F | 6 4n−

9, then AGn − F has exact two components. Thus, κ3(S2n ) >
4n−8. The upper bound κ3(S2n ) 6 4n−8 can be proved using
an argument similar to Lemma 12 by considering that every
vertex of S2n has 2n− 3 neighbors. �

Lemma 19: κ4(S24 ) > 10 and κ5(S24 ) > 12.
Proof: Using the notations established earlier, S24 con-

tains two copies of AG4, say S24,E and S24,O, respectively. Let
F be any vertex-cut of S24 . Let FO = F ∩ V (S24,O) and
FE = F ∩ V (S24,E ). Let H = HO ∪ HE be the union of
small components of S2n −F , where HO and HE are the set of
components such that their vertices are contained in S2n,O and
S2n,E , respectively.
We first prove κ4(S24 ) > 10 by showing that if |F | 6

9, then c(H ) 6 3. Note that there are 4!
2 = 12 > |F |

matching edges between S24,O and S24,E . If both S
2
4,O−FO and

S24,E − FE are connected, then so is S24 − F , a contradiction.
Next, we consider only one of S24,O − FO and S24,E − FE is
connected. Without loss of generality, assume S24,O − FO is
connected. Then 4 = κ(AG4) 6 |FE | 6 9. By Lemma 13,
if 4 6 |FE | 6 7 < 8 = κ4(AG4), then S24,E − FE has at most
three components, and thus c(HE ) 6 2. Since 4!

2 = 12 > |F |,
the largest component of S24,E−FE is connected to S24,O−FO,
and it leads to c(H ) = c(HE ) 6 2. Also, if 8 6 |FE | 6 9,
then |FO| 6 1. Since there are 4!

2 = 12 matching edges
between S24,O and S24,E , every component of size at least 2
in S24,E − FE is part of the component in S24 − F containing

S2n,O − FO, and at most one vertex in S24,E − FE is not part
of this component containing S24,O − FO. Thus, |V (HE )| 6 1
and c(H ) 6 |V (HE )| 6 1. We now consider both S24,O − FO
and S24,E − FE are disconnected. Without loss of generality,
assume |FO| > |FE | > 4. Since |F | 6 9, it implies 4 6
|FE | 6 |FO| 6 5. By Lemma 2, each of S24,O − FO and
S24,E − FE has two components. Thus, c(HO) = c(HE ) = 1.
Since the largest component of S24,E − FE is connected to
S24,O − FO, it leads to c(H ) 6 c(HO)+ c(HE ) = 2.
Next, we prove κ5(S24 ) > 12 by showing that if |F | 6

11, then c(H ) 6 4. Note that there are 4!
2 = 12 > |F |

matching edges between S24,O and S24,E . If both S
2
4,O−FO and

S24,E − FE are connected, then so is S24 − F , a contradiction.
Next, we consider only one of S24,O − FO and S24,E − FE is
connected. Without loss of generality, assume S24,O − FO is
connected. Then 4 = κ(AG4) 6 |FE | 6 11. If 4 6 |FE | 6
7 < 8 = κ4(AG4), we can show that c(H ) 6 2 through a
similar discussion as above. So we assume 8 6 |FE | 6 11,
and this implies |FO| 6 3. Since there are 4!

2 = 12 matching
edges between S24,O and S24,E , every component of size at
least 4 in S24,E − FE is part of the component in S24 − F
containing S2n,O − FO, and at most three vertex in S24,E − FE
is not part of this component containing S24,O − FO. Thus,
|V (HE )| 6 3 and c(H ) 6 |V (HE )| 6 3. We now consider
both S24,O−FO and S24,E −FE are disconnected. Without loss
of generality, assume |FO| > |FE | > 4. Since |F | 6 11,
it implies 4 6 |FE | 6 |FO| 6 7 and at most one i ∈ {E,O}
such that |Fi| > 6. If 4 6 |FE | 6 |FO| 6 5, we can show
that c(H ) 6 2 through a similar discussion as above. Finally,
we consider 6 6 |FO| 6 7 and 4 6 |FE | 6 5. By Lemma 13,
6 6 |FO| 6 7 < 8 = κ4(AG4) implies that S24,O − FO has at
most three components and c(HO) 6 2. Also, by Lemma 2,
4 6 |FE | 6 5 implies that S24,E − FE has two components
and c(HE ) = 1. Since the largest component of S24,E − FE
is connected to the largest component of S24,O − FO, we have
c(H ) 6 c(HE )+ c(HO) 6 3. �

Lemma 20: For n > 4, κ4(S2n ) = 6n− 14.
Proof: For n > 4, the upper bound κ4(S2n ) 6 6n−14 can

be acquired from Lemma 11(2) by considering the removal of
NS2n ({v1, v2, v3}) where {v1, v2, v3} is an independent set of
S2n , and thus the resulting graph has four components, three
of which are singletons. By Lemma 19, we know κ4(S24 ) >
10 = 6 × 4 − 14. So we prove the lower bound κ4(S2n ) >
6n − 14 for n > 5 as follows. Recall that S2n contains two
copies of AGn, say S2n,E and S2n,O, respectively. Let F be any
vertex-cut of S2n such that |F | 6 6n − 15. Lemma 9 shows
that the removal of a vertex-cut with no more than 6n − 17
vertices in S2n results in a disconnected graph with at most
three components. To complete the proof, we need to show
that the same result holds when 6n− 16 6 |F | 6 6n− 15.

Let FO = F ∩ V (S2n,O) and FE = F ∩ V (S2n,E ). Let H =
HO ∪HE be the union of small components of S2n −F , where
HO and HE are the set of components such that their vertices
are contained in S2n,O and S2n,E , respectively. Without loss of
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generality, assume |FO| > |FE |. Since 2(4n− 11) > 6n− 15
for n > 5, we consider the following two cases.
Case 1: |FE | 6 |FO| 6 4n− 12. By Lemma 2, S2n,O − FO

(resp., S2n,E − FE ) either is connected or has two compo-
nents, one of which is a singleton. Let BO (resp., BE ) be the
largest component of S2n,O − FO (resp., S2n,E − FE ). Since
n!
2 − (6n − 15) − 2 > 0 for n > 5, BO and BE belong to
the same component in S2n − F . Note that F is a vertex-cut
of S2n , the singletons in S

2
n,O − FO and S2n,E − FE can remain

singleton or for two of them to form an edge in S2n −F . Thus,
S2n − F has at most three components, i.e. c(H ) 6 2. The
result holds.
Case 2: 4n− 11 6 |FO| 6 6n− 15. It implies that |FE | 6

(6n− 15)− (4n− 11) 6 2n− 4. Note that S2n,E is isomorphic
to AGn and 2n − 4 6 4n − 12 for n > 5, by Lemma 2,
so S2n,E −FE either is connected or has two components, one
of which is a singleton. Thus V (HE ) 6 1 and c(HE ) 6 1.
If S2n,O − FO is connected, note that n!2 − (6n− 15)− 1 > 0
for n > 5, then S2n − F has two components, one of which
is a singleton. The result holds in this case. In the following,
we assume that S2n,O − FO is disconnected, and consider the
following cases:
Case 2.1: 6n − 18 6 |FO| 6 6n − 15. It implies
|FE | 6 (6n − 15) − (6n − 18) = 3, and thus S2n,E − FE
is connected. Note that there are n!

2 matching edges between
S2n,O and S2n,E . Since |FE | 6 3, every component of size at
least 4 in S2n,O − FO is part of the component in S2n − F
containing S2n,E −FE , and at most three vertices in S2n,O−FO
are not part of this component containing S2n,E − FE . Thus,
|V (HO)| 6 3 and |V (H )| = |V (HO)| + |V (HE )| 6 4.
If |V (H )| = 4, then c(H ) 6 2. Otherwise, H contains four
singletons or two singletons and an edge. If H contains four
singletons, by Lemma 11(3), |NS2n (H )| > 8n− 20 > 6n− 15
for n > 5, a contradiction. Now we assume that V (H ) =
{v1, v2, u,w} = H ′ ∪ {u,w}, where H ′ = {v1, v2} and
(u,w) is an edge. Then, by Lemma 11(1) and Lemma 7(3),
|NS2n (V (H ))| = |NS2n (H

′)| + |NS2n ({u, v})| − |NS2n (H
′) ∩

NS2n ({u, v})| > (4n − 8) + 2(2n − 3) − 2 × 3 = 8n − 20 >
6n − 15 for n > 5, a contradiction. If |V (H )| = 3, then
c(H ) 6 2. Otherwise, H contains three singletons, and by
Lemma 11(2), |F | > |NS2n (V (H ))| > 6n−14, a contradiction.
Also, if |V (H )| 6 2, it is clear that c(H ) 6 |V (H )| 6 2.
Case 2.2: 4n − 11 6 |FO| 6 6n − 19. It implies |FE | 6

(6n−15)−(4n−11) = 2n−4, and thus S2n,E−FE is connected.
By Lemma 4, S2n,O − FO either has two components, one
of which is a singleton, an edge or a 2-path, or has three
components, two of which are singletons (See Fig. 10). Let
C be the largest component of S2n,O − FO. Since

n!
2 − (6n −

15) − 3 > 0 for n > 5, C is part of the component in
S2n − F containing S2n,E − FE . Thus, |V (HO)| 6 3 and
|V (H )| = |V (HO)| + |V (HE )| 6 4. Then, through a similar
argument in the above case, we can show that c(H ) 6 2. �

Lemma 21: For n > 4, κ5(S2n ) = 8n− 20.
Proof: For n > 4, the upper bound κ5(S2n ) 6 8n − 20

can be acquired from Lemma 11 by considering the removal

FIGURE 10. An illustration of Case 2.2 in Lemma 20, where a shape of
cloud indicates the large component of S2

n,O − FO.

of NS2n ({v1, v2, v3, v4}) where {v1, v2, v3, v4} is an indepen-
dent set of S2n , and thus the resulting graph has five compo-
nents, four of which are singletons. By Lemma 19, we know
κ5(S24 ) > 12 = 8 × 4 − 20. So we prove the lower bound
κ5(S2n ) > 8n − 20 for n > 5 as follows. Let F be any
vertex-cut of S2n such that |F | 6 8n − 21. Lemma 10 shows
that the removal of a vertex-cut with no more than 8n − 25
vertices in S2n results in a disconnected graphwith at most four
components. To complete the proof, we need to show that the
same result holds when 8n− 24 6 |F | 6 8n− 19.
Let FO = F ∩ V (S2n,O) and FE = F ∩ V (S2n,E ). Let H =

HO ∪HE be the union of small components of S2n −F , where
HO and HE are the set of components such that their vertices
are contained in S2n,O and S2n,E , respectively. Without loss of
generality, assume |FO| > |FE |. Since 2(6n− 19) > 8n− 21
for n > 5, we consider the following cases.
Case 1: |FE | 6 |FO| 6 4n− 12. By Lemma 2, S2n,O − FO

(resp., S2n,E −FE ) either is connected or has two components,
one of which is a singleton. Since n!

2 − (8n− 21)− 2 > 0 for
n > 5, a proof similar to Case 1 in Lemma 20 can show that
c(H ) 6 2.
Case 2: 4n− 11 6 |FE | 6 |FO| 6 6n− 20. By Lemma 3,

S2n,O−FO (resp., S2n,E−FE ) has at most three components, and
|V (HO)| 6 2 (resp., |V (HE )| 6 2). Thus, |V (H )| 6 4. Since
n!
2 − (8n − 21) − 4 > 0 for n > 5, the largest component of
S2n,O−FO is connected to the largest component of S2n,E−FE .
If |V (H )| = 4, then c(H ) 6 3. Otherwise, by Lemma 11(3),
|NS2n (H )| > 8n − 20 > 8n − 21 for n > 5, a contradiction.
Also, if |V (H )| 6 3, it is clear that c(H ) 6 |V (H )| 6 3.
Case 3: 6n − 19 6 |FO| 6 8n − 21. In this case, |FE | 6

8n − 21 − (6n − 19) = 2n − 2 6 4n − 12. By Lemma 2,
S2n,E−FE has at most two components and |V (HE )| 6 1. Thus
c(HE ) 6 1. If S2n,O − FO is connected, note that n!2 − (8n −
21)− 1 > 0 for n > 5, then S2n −F has two components, one
of which is a singleton. The result holds in this case. In the
following, we assume that S2n,O − FO is disconnected, and
consider the following cases:
Case 3.1: 8n − 24 6 |FO| 6 8n − 21. It implies
|FE | 6 (8n − 21) − (8n − 24) = 3, and thus S2n,E − FE
is connected. Then a proof similar to Case 2.1 in Lemma 20
can show that |V (H )| 6 4. If |V (H1)| = 4, then c(H ) 6 3.
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TABLE 2. The comparison of κ(`−2)(AGn) and κ`(AGn) (resp., κ(`−2)(S2
n ) and κ`(S2

n )) for ` = 3,4,5.

TABLE 3. The comparison of h-extra connectivity and `-component connectivity for some networks.

Otherwise, H1 contains four singletons, and by Lemma 11,
|F | > |NS2n (V (H ))| > 8n − 20, a contradiction. Also,
if |V (H )| 6 3, it is clear that c(H ) 6 |V (H )| 6 3.
Case 3.2: 6n − 19 6 |FO| 6 8n − 25. By Lemma 17,

κ5(AGn) = 8n−24. Since 6n−19 6 |FO| 6 8n−25 < 8n−
24, S2n,O − FO has at most four components and c(HO) 6 3.
As before, the largest component of S2n,O − FO is connected
to the largest component of S2n,E −FE . It implies that c(H ) 6
c(HO)+ c(HE ) 6 4. �

Theorem 2: κ3(S2n ) = 4n − 8, κ4(S2n ) = 6n − 14, and
κ5(S2n ) = 8n− 20 for n > 4.

Proof: The result directly follows from
Lemmas 18, 20 and 21. �

V. CONCLUDING REMARKS
In this paper, we study the `-component connectivity of
alternating group graphs and split-stars. For alternating group
graphs, we obtain the results: κ3(AGn) = 4n − 10 and
κ4(AGn) = 6n − 16 for n > 4, and κ5(AGn) = 8n − 24 for
n > 5. For split-stars, we obtain the results: κ3(S2n ) = 4n− 8
for n > 4, and κ4(S2n ) = 6n − 14 and κ5(S2n ) = 8n − 20 for
n > 5. So far the problem of determining κ`(AGn) and κ`(S2n )
for ` > 6 are still open.

Fàbrega and Fiol [24] introduced another evaluation of the
reliability for interconnection networks. Given a graph G and
a nonnegative integer h, the h-extra connectivity ofG, denoted
by κ (h)(G), is the cardinality of a minimum vertex-cut S ofG,
if it exists, such that each component of G − S has at least
h+ 1 vertices. In fact, the extra connectivity plays an impor-
tant indicator of a network’s ability for diagnosis and fault
tolerance [25], [31], [35], [36]. Currently, the known results
of h-extra connectivity for alternating group graphs and split-
stars were proposed in [36] and [35], respectively. Table 2
compares the two types of connectivities for alternating group
graphs and split-stars. From this table, it seems that κ (`−2)(G)
and κ`(G) have strongly close relationship for a network G.
Based on the result κ (`−2)(G) < κ`(G) for G ∈ {AGn, S2n }
and ` ∈ {3, 4, 5}, we know that finding κ`(G) needs more
analyses than that of κ (`−2)(G). An interesting question is that
does the relation always hold for larger `?
As a matter of fact, so far the relationship between the two

types of connectivities is not clear. To provide more compar-
isons between extra connectivity and component connectivity
for other network topologies, we list the currently known
results in Table 3. From this table, we already checked the
following: for hypercubes, we have κ (`−2)(Qn) = κ`(Qn)
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for n > 4 and ` ∈ [2, n − 2]; for folded hypercubes,
we have κ (`−2)(FQn) = κ`(FQn) for n > 8 and ` ∈ [2, n];
for dual cubes, we have κ (`−2)(Dn) > κ`(Dn) for n > 3
and ` ∈ {3, 4}; for alternating group networks, we have
κ (`−2)(ANn) < κ`(ANn) for n > 4 and ` ∈ {3, 4}. As a
remark that the greater of the two types of connectivities is
not absolutely certain, but is determined by the topology of
the network. However, it is valuable to delve further into the
details of this direction.
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