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ABSTRACT In this paper, we focus on the chipless radio-frequency identification (RFID), where the tag
information bits are encoded by the peak/notch pattern appeared in the frequency spectrum of the radar
cross section (RCS) of the tag. In particular, we restrict our attention to a simple yet prevalent ‘‘binary’’
coding method, where a bit 0 or bit 1 is encoded by the absence or presence of the peak/notch, respectively.
We provide an information-theoretic framework for the tag identification based on such a binary coding
method. Our aim is to accommodate more bits in the limited bandwidth without degrading the identification
performance. To this end, we first formulate the detection of each bit as a binary asymmetric channel
(where a signal processing approach is integrated into each interrogation to enhance the underlying channel
quality). Moreover, it is proposed to perform multiple interrogations with majority rule-based detection
(in correspondence to the signal processing approach in each interrogation). Furthermore, we introduce some
error-detecting codes to further improve the performance of tag identification. For instance, motivated by the
asymmetric property of the channel model, we propose to apply the constant weight code and the Berger–
Freiman code (as two representatives of non-systematic and systematic codes, respectively) to the problem
to be addressed in this paper. In addition, an investigation is also conducted into the cyclic redundancy
check (CRC) codes (as a representative of those codes that are not dedicated to the binary asymmetric channel
but could be potentially competitive for error detection). The system’s performance is analyzed through the
key parameters, namely the successful transmission rate, the false identification rate (i.e., the probability
of undetected errors), and the expected number of retransmissions/interrogations. The effectiveness of the
proposed methods is demonstrated by the numerical results.

INDEX TERMS Chipless tags, binary asymmetric channel, error detecting codes, RFID, majority-
rule interrogation, performance analysis, constant weight code, Berger–Freiman code, cyclic redundancy
check (CRC) code.

I. INTRODUCTION
Radio frequency identification (RFID) is a technique that
utilizes radio frequency (RF) waves to detect and identify
information from tags attached to objects. The system com-
prises of two main components: a transponder/tag that con-
tains a sequence of electronic codes used for the identification
of an object, and an interrogator/reader that collects infor-
mation from the tag. The RFID technology has the advan-
tage of automatic detection and non-line of sight operation.

The associate editor coordinating the review of this manuscript and
approving it for publication was Khaled Rabie.

Therefore, it is believed to have the potential to substitute the
widely used barcode technology in the near future. The main
barrier for RFID to replace barcode technique is the high per-
tag price (about 10 cents) of RFID tags compared to barcode
(less than 0.1 cents); while, chipless RFID, which, as its name
suggests, does not contain any digital chip and the price of
which can be made down to one cent if manufactured with
printing technology [1], [2], could be a promising substitute
of barcode technique [23].

Research on chipless RFID tags can be broadly classi-
fied into two main categories: time-domain reflectometry-
based (TDR-based) chipless RFID and frequency-domain
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spectral-signature-based (FDSS-based) RFID. In TDR-based
tags, the RFID reader transmits an ultra-wideband (UWB)
RF interrogation pulse and listens to the reflections or echoes
coming back from the tag [3]–[8]. By varying the structural
properties of the tag, the time of arrival of these echoes can
be controlled, providing a method for passive data storage in
the tag. In FDSS-based tags [9]–[12], the frequency spec-
trum of the interrogation signal sent by the RFID reader
is transformed by the tag to represent data bits. Generally
speaking, an FDSS-based chipless tag consists of several
resonators etched on a common grounded dielectric substrate.
These resonators generate a series of notches at particular
frequencies in the spectrum of the tag’s frequency response.
These notches can be used to encode the tag ID. For instance,
a simple yet prevalent tag-ID coding method is to use a
‘‘binary’’ coding, i.e., encoding a bit 0 or 1 by the absence
or presence of the notch, respectively. In this paper, we focus
our discussion on this ‘‘binary’’ coding method.

In the current single-layer (2-D) design techniques, typi-
cally, each notch in an FDSS-based chipless tag occupies a
bandwidth 100∼200 MHz [13], [14]. In a multilayer (3-D)
design structure, by folding several cascaded commensurate
transmission-line sections into a package, it is possible to
obtain several bits in a bandwidth of 100 MHz, as shown in a
recent paper [24]. In order to accommodate reasonably high
number of bits into a chipless tag, the tag should be operated
in UWB frequency range. In addition, the transmit power
of the reader is extremely low due to the spectral mask for
UWB signals as specified by relevant authorities [15], [16].
As a direct consequence, weak notches in the spectrum of
the backscattered signal might be difficult to be detected or
even disappear in a noisy environment. Then the information
bits corresponding to these weak notches will be erroneously
identified, and so will be the tag ID. Therefore, an effective
detection algorithm is desirable (with a high successful iden-
tification rate). Or, if there are errors, they should be detected
(i.e., with a low false identification rate) and a retransmission
can be automatically triggered. We note that differently from
the problems in communications, to perform multiple times
of interrogations is almost cost-free for the reader (within
acceptable delay in reading time). In addition, the bandwidth
for the FDSS-based chipless tag is very precious, thus it is
also desirable to accommodate more bits within a certain
bandwidth.

In this paper, we address the problem of RFID tag identi-
fication from an information-theoretic perspective. For sim-
plicity, we restrict our attention to the binary coding for the
tag IDs. Our first attempt is to treat the detection of each bit
as a binary asymmetric channel (BAC), and the first insight
gained is that false identification is unavoidable if the tag
IDs are uncoded. In order to improve the performance of
tag identification, we propose three countermeasures. The
first is to take a signal processing approach (e.g., using a
matched filter) before the bit detection takes place. The idea
is to maximize the signal-to-noise ratio (SNR) of the under-
lying channel in the presence of the additive Gaussian noise.

The second is to perform multiple times of interrogations and
then decide each bit of the tag based on a majority rule. The
idea is to increase the successful identification rate of each bit
by further improving the underneath channel quality. Unlike
the signal processing approach that assumes a time-invariant
channel state, this approach does not need this assumption
and thus could be more robust and implementable in practice.
The last but not least, we introduce the error detecting code to
further diminish the false identification rate. That is, if some
bits in the tag are erroneously detected, most of the error
patterns can be detected and a retransmission will be automat-
ically triggered. Combining the signal processing approach
in each interrogation, multiple interrogations & majority rule
based detection, and the error detecting codes, the expected
number of retransmissions/interrogations (i.e., waiting time
for a successful identification) can be made acceptably small.
All these make it possible to accommodate more data within
a fixed bandwidth range, although the channel quality corre-
sponding to each bit detection might be degraded due to the
increased number of bits. Note that applying some kinds of
error detecting/correcting codes to traditional communication
systems is a de facto standard, but the coding performance
is often analyzed under the assumption that the underlying
channel is symmetric. The study of error detecting/correcting
codes in a BAC scenario is far more challenging and as a
consequence only performance bounds of the coded systems
are available in literature [17]. In this paper, we will consider
two classical codes for BAC, namely the constant weight
code and Berger-Freiman code, as representatives of non-
systematic and systematic codes; and one class of codes
well-known for error detection, i.e., the cyclic redundancy
check (CRC) codes, as a representative of those codes that are
not dedicated to BAC but could be potentially competitive.
Precise analytical and numerical results are provided to show
the effectiveness of applying aforementioned codes to the
chipless tag coding problem, which possesses a typical BAC
model.

The rest of the paper is organized as follows. In Section II,
we address the problem formulation of the chipless RFID
tag detection, in which we integrate a signal processing
approach. In Section III, we propose multiple interrogations
with majority rule based detection and its impact is analyzed
from an information theoretic point of view. A preliminary
performance analysis is conducted in Section IV for the
uncoded RFID tags. In Section V, we introduce the error
detecting codes to reduce the false identification rate. Numer-
ical results are presented in Section VI to illustrate the effect
of the proposed signal processing approach and the major-
ity rule based detection, and the performance of the error
detecting coding schemes. Finally, Section VII concludes the
paper.

II. CHIPLESS TAG DETECTION
In this section, we will present the channel model for chipless
tag identification problem. An explication for this issue can
be found in [22]. For the reason of completeness and readers’
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convenience, the channel model will be briefly discussed in
the following.

From an engineering point of view, the effectiveness of
detecting a bit in an FDSS-based chipless tag can be char-
acterized by the depth of the notch, which is determined by
the RCS of the corresponding resonator. The deeper the notch
in the RCS is, the more effectively the tag can represent the
desired bit and more easily the reader can detect the bit.
Fig. 1 gives a typical illustration for the shape of the RCS
of a co-polarized resonator, where we can see that the depth
and bandwidth of the notch change with the material of the
substrate and the size (e.g. the length and width) of the slot
line.

FIGURE 1. RCS changes with material of the substrate and size of the
resonator slot line. In (a), FR 4, Rogers 5880 and Rogers 6010 are three
different dielectric materials for the substrate; in (b), W is the width of the
dipole antenna. [From [18]. Reproduced with permission of 
IEEE 2017.].

We remark that in discussing tag ID coding, one can
equivalently use a peak, instead of a notch, in the frequency
spectrum of the resonator to encode a bit. Mathematically,
it is more convenient to use a peak. Therefore, in the rest
of the paper, we will adopt the peak coding way, and Gpeak
and B, represent the strength and bandwidth of the peak,
respectively.

A. CHANNEL MODEL FOR CHIPLESS TAG DETECTION
Suppose that the peak frequencies in the resonators of a
chipless tag are used to encode the tag ID. More specifically,

the presence and absence of a peak in a specific frequency
(window) are interpreted as ‘‘1’’ and ‘‘0’’, respectively in the
corresponding bit.

To detect the tag, the reader transmits a frequency-
sweeping signal or a UWB signal. Then the spectrum of the
received signal is analyzed in order to decide whether the tag
exists and what the coded bits are if the tag exists. In practical
systems, the tag can be assumed to exist. Suppose that fi is the
resonating frequency of the i-th resonator and its calibrated
receive signal can be expressed as

yi = hi · xi + ni,

where xi = 0, 1 with 1 representing that the i-th resonator is
present while 0 not; ni is an additive white Gaussian noise,
the power spectral density of which is

N0 = kBT0,

where kB = 1.3806 × 10−23 J/K is Boltzmann constant and
T0 = 300 K is reference temperature. The power of the noise
ni added to the calibrated receive signal corresponding to the
i-th resonator is

σ 2
ni = N0 Bi = kBT0Bi.

And, hi > 0 stands for the channel coefficient. Suppose
that the signal undergoes a free-space propagation. Then the
forward and backward channel for the reader-to-tag link can
be modeled with

|HF,i|
2
= |HB,i|

2
=

(
c

4π fid

)2

, (1)

where c is the speed of light, d the distance between the reader
and tag, fi the resonant frequency, and HF,i, HB,i the transfer
functions of the forward and backward channel, respectively.
In this ideal scenario, we have

|hi|2 = |HF,i|
2
|HB,i|

2 GpeakPrd, (2)

where Prd is the reader’s transmit power. If we use σRCS(f )
to denote the RCS of the chipless tag at frequency f , then
Gpeak in equation (2) should be replaced with σRCS(fi). Since
it is assumed that σRCS(fi) is of the same value for different
notches (i.e., σRCS(fi) = Gpeak for different resonant fre-
quencies fi), we directly use Gpeak in equation (2) to simplify
notations. For simplicity, we assume that hi is a constant.
If the reader makes its decision after several rounds (say κs)

of sending and recording the backscattered signals for each
round, then a signal processing approach can be taken to
enhance the SNR of the overall channel. (That is, in this
paper, an interrogation involves of κs rounds of sending and
recording received signals. Detection of bits can be done after
each interrogation). Since both hi and xi are constants in one
interrogation, i.e., κs times of sending and receiving signals,
the received signals vary only due to the noise, i.e.,

yi,j = hi · xi + ni,j, where j = 1, . . . , κs,
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where ni,j, for j = 1, . . . , κs are i.i.d. white Gaussian noise
with variance σ 2

ni . Simply summing up all the received signals
and considering y′i =

1
κs

∑κs
j=1 yi,j, we have

y′i = hi · xi + n′i,

where n′i =
1
κs

∑κs
j=1 ni,j and n

′
i is a white Gaussian noise with

variance σ 2
ni/κs.

The reader makes the following decision according to a
given threshold θth:

x̂i =

{
1, when |y′i| ≥ θth,
0, when |y′i| < θth.

An error occurs if x̂i 6= xi. Clearly, we have two kinds of
errors: where xi = 0 while x̂i = 1 and xi = 1 while x̂i = 0.
The probability of these errors is given as follows:

ε0 : = Pr{x̂i = 1|xi = 0} = Pr
{
|n′i| ≥ θth

}
= Pr

{∣∣∣∣ n′i
σni/
√
κs

∣∣∣∣ ≥ θth

σni/
√
κs

}
= 2Q

(
θth

σni/
√
κs

)
, (3)

ε1 : = Pr{x̂i = 0|xi = 1} = Pr
{∣∣hi + n′i∣∣ < θth

}
= Pr

{
−
hi + θth
σni/
√
κs
<

n′i
σni/
√
κs
< −

hi − θth
σni/
√
κs

}
= Q

(
hi − θth
σni/
√
κs

)
− Q

(
hi + θth
σni/
√
κs

)
, (4)

where Q(·) stands for the Q-function.
So far, the channel for detecting a single bit of a chipless

tag can be regarded as a BAC, which has a probability ε0
that the bit symbol 0 will be read as 1 and a (possibly
different) probability ε1 that the bit symbol 1 will be read as 0.
We denote it as BAC(ε0, ε1). See Fig. 2 (a).
One may argue that the channel can be made symmetric if

the value of parameter θth is properly tuned so that ε0 = ε1.
Even though this is theoretically possible, it is very difficult
in practice to do this kind of tuning since ε1 depends not only
on the reader’s transmit power, which can be fixed for some
specified reading scenarios during a relatively long reading
period, but also on the reading distance, which often varies
constantly, while ε0 does not. Therefore we often have that
ε0 6= ε1.
Note that the capacity of the BAC(ε0, ε1) is [19]

CBAC(ε0,ε1) =
ε0

1− ε0 − ε1
hb(ε1)−

1− ε1
1− ε0 − ε1

hb(ε0)

+ log2

(
1+ 2

hb(ε0)−hb(ε1)
1−ε0−ε1

)
, (5)

where hb(·) is the binary entropy function with hb(ε) =
−ε log2(ε) − (1 − ε) log2(1 − ε). In particular, if ε0 = ε1,

the capacity reduces to the capacity of the binary sym-
metric channel (BSC) with crossover probability ε0, which
is 1− hb(ε0).

FIGURE 2. Channel model for detecting a single bit of a chipless tag.

From equations (1) and (2) we see that hi is different for
a different frequency fi. This will make the analysis below
unnecessarily complicated. To further simplify notations,
we assume that the effect of different frequencies on channel
propagation loss is calibrated so that we can use the center
frequency of the concerned frequency band to calculate hi.

B. SOME OBSERVATIONS
From Fig. 1, it can be seen that a deeper notch occupies a
wider bandwidth. Therefore, if we want to use a deeper notch
to encode a bit for the tag ID (for a more effective detection),
fewer bits can be accommodated in the available frequency
band. On the other hand, if a shallower notch is used, we can
insert more bits to encode the tag ID. Note that by taking
different choices of the notches (i.e., different choices of B
and Gpeak), the corresponding binary asymmetric channel
varies.

To have a close look, we consider the following example
with fixed d = 1 m and f = 7.25 GHz. At the starting point,
we take B = 112 MHz and Gpeak = 8 dB. To ease analysis,
we assume that there is a simple relationship between the
changes of parameters B (in MHz) and Gpeak (in dB): if the
notch bandwidth B is changed to Bα = αB MHz, then
the notch peak gainGpeak is changed toGpeak,α = αGpeak dB
accordingly, where 0 < α ≤ 1. Note that each notch may
correspond to a different chipless tag design as indicated
in Fig. 1.

For a fair and easy comparison, we fix that ε0 = 0.1 (the
choice for this value of ε0 is quite practical in chipless RFID
systems) by taking θth = 1.645σnα for each design (in this
case, the threshold θth needs to be tuned corresponding to
different choices of α), where σ 2

nα = kBT0Bα/κs, and κs is
the number of the rounds (of sending and recording received
signals in one interrogation) taken in the signal processing
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FIGURE 3. BACs corresponding to notches defined by αB and αGpeak, for
fixed κs = 1.

approach. For a fixed κs, ε1 becomes a function of the reader’s
transmit power Prd (see (2) and (4)) as can be observed
in Fig. 3 (a) (where κs = 1).
Remarkably, a shallower notch may correspond to a worse

channel (due to the higher ε1, that results in a smaller chan-
nel capacity as can be observed in Fig. 3 (b)) at the same
transmit power. Or, alternatively, more transmission power
might be required to maintain the same channel quality as the
one by using a deeper notch. Therefore, given the available
frequency band, if using shallower notches, one can use more
bits to code the tag ID; however, errors in each bit may occur
more frequently. The general question of great interest is:
how to increase the information bits of the tag IDs without
degrading the identification performance of the chipless tags?

Another interesting observation (in the case of fixed ε0
and κs) is that, as the reader’s transmit power Prd increases,
the probability ε1 will converge to 0. That is, in the high
transmit power regime, the BAC channel model is reduced to
a Z-channel (ZC), denoted by ZC(ε0, 0) as shown in Fig. 2 (b).
(Note that a ZC(ε0, 0) is in fact a BAC(ε0, 0); and a ZC(0, ε1),
as shown in Fig. 2 (c), is in fact a BAC(0, ε1).)

III. MULTIPLE INTERROGATIONS & MAJORITY
RULE BASED DETECTION
In the previous section, a signal processing approach (that
involves κs rounds of sending and recording the received
signals in one interrogation) is introduced; and a BAC is
formulated for the bit detection that takes place after each
interrogation. However, it is interesting to investigate how
multiple interrogations can help the reader improve its suc-
cessful identification rate quantitatively.

If the reader makes its decision after issuing several rounds
(say 2κ0 + 1) of interrogation commands and recording the
detected bits for each round of interrogation, then a majority
rule can be applied to help identify each bit. That is, the bit 0
will be decoded as 1 after 2κ0 + 1 rounds if it is read as 0 in
less than κ0 + 1 rounds. So the probability ε′0 that a 0 will be
read as 1 at each bit becomes

ε′0 =

κ0∑
κ=0

(
2κ0 + 1
κ

)
(1− ε0)κε

2κ0+1−κ
0 . (6)

Note that ε′0, as an increasing function of ε0, equals to ε0 at
ε0 = 0, 1/2 and 1. Interestingly, for 0 ≤ ε0 ≤ 1/2, we have
ε′0 ≤ ε0; while for 1/2 ≤ ε0 ≤ 1, we have ε′0 ≥ ε0. That is,
applying majority rule may result in a polarization effect in
the error probability of 0→ 1.

Similarly, the probability ε′1 that a 1 will be read as 0 at
each bit becomes

ε′1 =

κ0∑
κ=0

(
2κ0 + 1
κ

)
(1− ε1)κε

2κ0+1−κ
1 . (7)

If applying majority rule after 2κ0 + 1 rounds of interro-
gations, then the channel for detecting a single bit, can be
regarded as a BAC(ε′0, ε

′

1), as shown in Fig. 4. Remarkably,
the channel quality could be polarized according to the values
of ε0 and ε1. See a numerical illustration on such a polariza-
tion effect in Section VI-C.
In this paper, we say that one transmission involves of

2κ0 + 1 rounds of interrogations. Therefore, BAC(ε′0, ε
′

1) is
formulated for the overall channel of bit detection after one
transmission (that involves of 2κ0 + 1 rounds of interroga-
tions; and each interrogation κs rounds of sending and record-
ing received signals for the signal processing approach).

Recall that for a pre-specified κs = 1 and ε0 = 0.1,
we have ε1 → 0 if the reader transmit power is quite
high (as one can observe from Fig. 3 (a)). In this case,
the channel to detect each bit can be regarded as a ZC(ε0, 0)
in the form of Fig. 2 (b). Besides, for those BAC(ε0, ε1) with
0 < ε0 � ε1 < 0.5 (which can be obtained by taking
appropriate choices of κs and θth), after 2κ0+1 rounds, we can
obtain a BAC(ε′0, ε

′

1) with ε
′

0 → 0, then the channel can be
regarded as a ZC(0, ε′1) in the form of Fig. 2 (c). Without
loss of the generality, we restrict our attention to ZC(0, ε′1).
Nevertheless, our discussion, especially coding on ZC(0, ε′1)
can be applied to ZC(ε′0, 0) (with minor modifications).
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FIGURE 4. Channel model for each bit after 2κ0 + 1 interrogations.

IV. UNCODED CHIPLESS TAG ID
Suppose that there are l bits in a chipless tag and assume
that there is no cross-interference between bits. The channel
model for the detection of each bit is a BAC(ε′0, ε

′

1) as shown
in Fig. 4 (b) (for some κs and κ0), where ε′0, ε

′

1 are as defined
in (6) and (7), respectively.

In the uncoded case, l bits can be used to represent 2l tag
IDs (via a one-to-one mapping). Denote the set of binary
sequences of length l to be Cuncoded(l). Then, the rate of
Cuncoded(l) is

RCuncoded(l) = 1. (8)

For a l-bit tag ID, say x ∈ Cuncoded(l), which has a Ham-
ming weight w(x), (i.e., x has w(x) 1’s and l − w(x) 0’s),
the probability of successful identification in one transmis-
sion is (1 − ε′0)

l−w(x)(1 − ε′1)
w(x). Suppose that these 2l IDs

have a uniform distribution. Then the average probability of
successful identification in one transmission is

psucCuncoded(l) =
∑

x∈Cuncoded(l)

1
2l
· (1− ε′0)

l−w(x)(1− ε′1)
w(x)

=
(1− ε′0)

l

2l

l∑
w=0

(
l
w

)(
1− ε′1
1− ε′0

)w
=

(
1−

ε′0 + ε
′

1

2

)l
.

However, if there are errors occurred in the detection,
then the tag ID will be wrongly identified (i.e., the errors
are undetectable). Thus, we have the average probability
of undetectable errors or the false identification rate in one
transmission:

pu.d.e.Cuncoded(l) = 1− psucCuncoded(l) = 1−
(
1−

ε′0 + ε
′

1

2

)l
.

Clearly in the uncoded case, we have psucCuncoded(l)+p
u.d.e.
Cuncoded(l)=1.

And the false identification is unavoidable, since whenever
there are errors occurred (either in the form of 0 → 1 or
1→ 0) in the detection, the tag ID will be falsely identified.

V. ERROR DETECTING CODES
The purpose of using the error detecting codes (over the
uncoded case) is to detect a transmission error so that a
retransmission can be automatically triggered. Suppose that
a code C with weight distribution {wi|0 ≤ i ≤ l} is used to
encode the tag IDs. Thus, each tag ID is a codeword from C.

Clearly, C can be used to encode
l∑
i=0

wi tag IDs. Therefore,

the rate is

RC =

log2
l∑
i=0

wi

l
. (9)

For each tag c ∈ C, in general, we can define the following
events for the transmission over BAC(ε′0, ε

′

1):
• E0 : the tag ID c is correctly transmitted. Thus we have

psucc = Pr{E0} = (1− ε′0)
l−w(c)(1− ε′1)

w(c). (10)

where w(c) denotes the Hamming weight of c ∈ C.
• Eu.d.e. : there are errors occurring but resulting into
another codeword from C (therefore the errors will be
undetectable). We denote

pu.d.e.c = Pr{Eu.d.e.}. (11)

• Ed.e. : there are errors occurring and resulting into
a sequence that is not in C (therefore the errors are
detectable).

pd.e.c = Pr{Ed.e.} = 1− pu.d.e.c − psucc . (12)

Then, the probability that the first κ−1 reads fail (i.e., error
detected) while the κ-th read succeeds is (pd.e.c )κ−1(1−pd.e.c ).
As a result, we have the expected number of retransmissions
for an identification of tag ID c as

T id,t
c =

∞∑
κ=1

κ · (pd.e.c )κ−1(1− pd.e.c )

=
1

1− pd.e.c
=

1
pu.d.e.c + psucc

. (13)

Since each transmission involves of 2κ0+1 rounds of interro-
gations, the expected number of interrogations for a success-
ful identification of tag ID c is

T id,i
c = (2κ0 + 1) · T id,t

c . (14)

Assume that the tag IDs have a uniform distribution. Then
the average probability of successful tag-ID identification
and the average probability of undetectable errors are

psucC =
1
|C|

∑
c∈C

psucc =
1
|C|

l∑
i=0

wi(1− ε′0)
l−i(1− ε′1)

i

= WC
(
1− ε′0, 1− ε

′

1
)
; (15)
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pu.d.eC =
1
|C|

∑
c∈C

pu.d.ec , (16)

where WC(x, y) is the average (homogeneous) weight enu-
merator of the code, and WC(1− ε′0, 1− ε

′

1) is its value at
x = 1− ε′0 and y = 1− ε′1.
The average expected numbers of retransmissions and

interrogations (noting that each transmission involves 2κ0+1
rounds of interrogations) are

T id,t
C =

1
|C|

∑
c∈C

T id,t
c =

1
|C|

∑
c∈C

1
pu.d.e.c + psucc

; (17)

T id,i
C = (2κ0 + 1) · T id,t

C . (18)

A. CONSTANT WEIGHT CODES
A simple idea to encode the chipless tag ID is to use a
constant-weight code CCW(l,w), where w ≤ l/2. That is, each
tag ID has a constant Hamming weight w. Such a code can be
used to encode

( l
w

)
tag IDs. Therefore, the rate is

RCCW(l,w) =
log

( l
w

)
l

. (19)

Note that for a fixed l, RCCW(l,w) is maximized at w = b l2c.
In particular, we have lim

l→∞
RCCW(l,w) = h(wl ). Noticing the fact

that h( 12 ) = 1, we can see that, with the choice of w = b l2c,
RCCW(l,w) approaches to 1 as l increases to infinity.
For each codeword c ∈ CCW(l,w), we have w(c) = w and

thus

psucc = (1− ε′0)
l−w(1− ε′1)

w. (20)

Moreover, the undetectable errors for any codeword c ∈
CCW(l,w) are those occurring in both forms of 0 → 1 and
1→ 0 but the weight does not change. That is,

pu.d.e.c

=

min{w,l−w}∑
i=1

(
w
i

)(
l − w
i

)
(ε′0 · ε

′

1)
i(1− ε′0)

l−w−i(1− ε′1)
w−i.

(21)

As a result, we have the expected number of retransmissions
for an identification of c as

T id,t
c =

1
pu.d.e.c + psucc

. (22)

Note that for CCW(l,w), both psucc and pu.d.e.c depend only on the
Hamming weight w, and so does T id,t

c . Since w is the same
for all the codewords in CCW(l,w), we have

psucCCW(l,w)
= (1− ε′0)

l−w(1− ε′1)
w
;

pu.d.eCCW(l,w)
= pu.d.e.c as defined in (21);

T id,t
CCW(l,w)

is given in (*), as shown at the bottom

of this page;

T id,i
CCW(l,w)

= (2κ0 + 1) · T id,t
CCW(l,w)

.

Especially over ZC(0, ε′1), only errors in the form of 1→ 0
are possible. Then, all errors will be detected if CCW(l,w)
is used (since if there are some ones are read as zeros,
it will result in a sequence with a decreased weight), and
a retransmission will be issued automatically. In this case,
we have ε′0 = 0 and pu.d.e.c = 0 for each c ∈ CCW(l,w). The
average probability of successful transmission, the average
probability of undetectable errors and the expected number
of transmissions/interrogations needed to make a successful
identification become

psucCCW(l,w)
= (1− ε′1)

w
;

pu.d.eCCW(l,w)
= 0;

T id,t
CCW(l,w)

=
1

(1− ε′1)
w ;

T id,i
CCW(l,w)

=
2κ0 + 1
(1− ε′1)

w .

That is, for the ZC(0, ε′1), the constant-weight code
CCW(l,w) permits perfect error detection. The major disadvan-
tage is that it is nonseparable (or nonsystematic), where by
separability we mean that the bits containing the information
to be transmitted and the bits provided for error detection
are distinct. For CCW(l,w), it is impossible to separate the
information bits from the redundant bits.

B. BERGER-FREIMAN CODES
Differently from the constant-weight code CCW(l,w),
the Berger-Freiman code [20], [21] is a systematic code
(i.e., the codeword contains information bits and check bits,
with the information bits and the check bits being sepa-
rated) that permits perfect error detection over a ZC(0, ε′1)
channel.

The Berger-Freiman code CBF(l,k) can be formed as fol-
lows. Given k information bits, count the number of the zeros
in the k information bits and take its binary representation
as the check bits. So the number of the check bits is r =
dlog2(k + 1)e and the length of the codeword is l = k +
dlog2(k + 1)e, where dae stands for the smallest integer that
is larger or equal to a. Clearly, we have

RCBF(l,k) =
k
l
=

k
k + dlog2(k + 1)e

. (23)

Differently from the constant weight codes, the weight
distribution of the Berger-Freiman code {wi|0 ≤ i ≤ l} is
not obvious. Nevertheless, for each codeword c ∈ CBF(l,k),

T id,t
CCW(l,w)

=
1

(1− ε′0)
l−w(1− ε′1)

w +
min{w,l−w}∑

i=1

(w
i

)(l−w
i

)
(ε′0 · ε

′

1)
i(1− ε′0)

l−w−i(1− ε′1)
w−i

. (∗)
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its Hamming weight w(c) can be calculated as follows.
Suppose that there are k0 zeros in the k information bits (i.e.,
(k−k0) ones). Note that in total there are

( k
k0

)
such codewords.

Then,
• if k0 = 0, there are 0 ones in the check bits and the total
Hamming weight is w(c) = k;

• if k0 6= 0, suppose k0 =
s∑
j=1

2ij , where 0 ≤ i1 < i2 <

. . . < is ≤ r − 1. Then there are s ones in the check
bits, and the total Hamming weight w(c) = k − k0 + s,
where 1 ≤ s ≤ r . (Let T = {0, 1, . . . , r − 1}. Denote
S = {i1, i2, . . . , is} ⊆ T with |S| = s, where |S| is
the cardinality of the set S. Then k0 =

∑
i∈S

2i, and the

case of k0 = 0 becomes the special case S = ∅ if we
use ∅ to denote the empty set and define

∑
i∈∅

2i = 0 and

|∅| = 0. In particular, corresponding to each choice of
S ⊆ T with k0 =

∑
i∈S

2i ≤ k, there are
( k
k0

)
codewords

in CBF(l,k).)
Recall that for each codeword c of Hamming weight w(c), the
probability of a successful transmission is (1− ε′0)

l−w(c)(1−
ε′1)

w(c). Thus, we have

psucCBF(l,k) =
1
2k

∑
c∈CBF(l,k)

(1− ε′0)
l−w(c)(1− ε′1)

w(c). (24)

For simplicity, we consider the transmission over a
ZC(0, ε′1) channel (i.e., ε

′

0 = 0). In a ZC(0, ε′1) channel, since
only errors in the form of 1→ 0 are possible, so the number
of zeros in k information bits can be only increased; while
the value of the binary representation in the check bits can be
only decreased. So any errors (appeared in either information
bits or check bits, or both) will lead to an inequality between
the numbers of zeros counted in the k information bits and
represented by the check bits, respectively. As a consequence,
we have pu.d.e.c = 0 for each c ∈ CBF(n,k), i.e., all the errors
will be detected. Thus, we have for a codeword c ∈ CBF(l,k)
over a ZC(0, ε′1) :

psucc = (1− ε′1)
w(c)
;

pu.d.ec = 0;

T id,t
c =

1
pu.d.e.c + psucc

=
1

(1− ε′1)
w(c) ;

T id,i
c =

2κ0 + 1
(1− ε′1)

w(c) .

Suppose that all the tag IDs have a uniform distribution.
We obtain

psucCBF(l,k) =
1
2k
∑
c∈C

(1− ε′1)
w(c)

=
1
2k

∑
S⊆T

k0=
∑
i∈S

2i≤k

(
k
k0

)
(1− ε′1)

k−k0+|S|;

pu.d.eCBF(l,k) = 0;

T id,t
CBF(l,k) =

1
2k
∑
c∈C

1
(1− ε′1)

w(c)

=
1
2k

∑
S⊆T

k0=
∑
i∈S

2i≤k

(
k
k0

)
1

(1− ε′1)
k−k0+|S|

;

T id,i
CBF(l,k) =

2κ0 + 1
2k

∑
S⊆T

k0=
∑
i∈S

2i≤k

(
k
k0

)
1

(1− ε′1)
k−k0+|S|

,

where T = {0, 1, . . . , l − k − 1}.

C. CRC CODES
It is worth mentioning that our analysis is not limited to the
constant weight codes and Berger-Freiman codes, although
they are more dedicated to the BACs (for instance, both
permit perfect error detection over a ZC(0, ε′1) channel).

Another interesting error detection code family, which we
would like to add to our discussion, is the CRC codes [25].
CS codes are widely used in digital networks and storage
devices because of their easy implementation and their burst-
error detection capability, the properties of which are due to
the structure of the codes as shortened cyclic codes. Note
that CRC codes are not dedicated to the BACs. Nevertheless,
we wonder if it can still serve as an appropriate choice in
coding chipless RFID tags.

A CRC code CCRC(l,k) of length l with k information bits
can be specified by a generator polynomial g(x) ∈ F2[x] of
degree l− k. Given k information bits [m0 · · · mk−1], where
mj ∈ F2 for 0 ≤ j ≤ k − 1, one first forms the information
polynomialM (x) as

M (x) =
k−1∑
j=0

mjx j.

To determine the l − k CRC check bits, i.e., [c0 · · · cl−k−1],
where cj ∈ F2 for 0 ≤ j ≤ l − k − 1, one calculates the

corresponding polynomial form C(x) =
l−k−1∑
j=0

cjx j by the

following polynomial division over F2 :

C(x) ≡ x l−kM (x) mod g(x). (25)

In this way, for k information bits [m0 · · · mk−1], one forms
the codeword of length l as [m0 · · · mk−1 c0 · · · cl−k−1].
Clearly a CRC code CCRC(l,k) is systematic, which is similar
to the Berger-Freiman codes; and also linear (i.e., a linear
combination of codewords is still a codeword), unlike the
constant weight codes and the Berger-Freiman codes.
Unfortunately, there is no general formula for the weight

distribution of CRC codes. Even for CRC codes with the
same l, k parameters, the weight distributions can be totally
different due to the different choices of the generator polyno-
mials g(x). Besides, the calculation of pu.d.eCCRC(l,k) is even more

VOLUME 7, 2019 96991



Y. Chen et al.: Information-Theoretic Approach to the Chipless RFID Tag Identification

challenging, especially when we consider a BAC scenario.
Both are open problems to be further studied. A generic brute-
force approach for these two problems has a computation
complexity of O(2k ) and O(22k ), respectively.

For simplicity, we consider the transmission of a CRC code
CCRC(l,k) over a ZC(0, ε′1) channel, where only errors in the
form of 1 → 0 are possible. In this scenario, both constant
weight codes and the Berger-Freiman codes permit perfect
error detection. Unfortunately, this does not apply to the CRC
codes, which can be seen from the fact that every nonzero
codeword could become the zero codeword with a small but
positive probability. More specifically, an undetectable error
to a codeword c ∈ CCRC(l,k) occurs only if c→ c′, for some
c′ ∈ CCRC(l,k) and c′ 6= c. That is, some positions with bit 1
in c change into 0 in c′. In this case, we say that c covers c′

and denote c′ 4 c. Clearly, in this undetectable error event
c→ c′, there are
• w(c− c′) positions with error in the form of 1→ 0;
• 0 positions with error in the form of 0→ 1;
• w(c′) positions in the form of 1→ 1 (note that w(c′) +
w(c− c′) = w(c) since c′ 4 c);

• l − w(c) positions in the form of 0→ 0.
Therefore, for a codeword c ∈ CCRC(l,k) transmitted over
ZC(0, ε′1), we have

pu.d.ec =

∑
c′4c,c′∈C

(ε′1)
w(c−c′)(1− ε′1)

w(c′).

Recall that for c ∈ CCRC(l,k) over ZC(0, ε′1), we have p
suc
c =

(1 − ε′1)
w(c). If the weight distribution of the code CCRC(l,k)

is known, then one can accordingly calculate psucCCRC(l,k) as

defined in (15). Furthermore, pu.d.eCCRC(l,k) , T
id,t
CCRC(l,k) and T

id,i
CCRC(l,k)

could be also calculated according to (16), (17) and (18),
respectively.

VI. NUMERICAL RESULTS
Consider a deep notch defined by taking B = 112 MHz and
Gpeak = 8 dB. At the same time, we consider two shallow
notch alternatives by choosing α = 0.75 and α = 0.5,
respectively (see the assumption made in Section II-B). The
BACs defined by each notch choices are shown in Fig. 3.
Clearly, for a fixed bandwidth l0B, the total bits (correspond-
ing to the total bandwidth l0B) that can be used to encode
the tag ID are l = l0B/(αB), which are l0, 4l0/3 and 2l0,
respectively for three different notch choices corresponding
to α = 1, α = 0.75 and α = 0.5. Here we take l0 = 36. Then
the code length l that can be used for the fixed bandwidth l0∗B
with different notch choices is 36, 48 and 72, respectively.

A. CAPACITY OF L PARALLEL BACS(ε0, ε1)
Fig. 5(a) depicts the capacity of the l parallel BACs (cor-
responding to l notches/peaks defined by αB and αGpeak,

with κs = 1 and κ0 = 0) versus the uncoded rates. As one
can see, the uncoded rates for all possible α are beyond
the capacities of the corresponding BACs. Recall that by

FIGURE 5. Comparisons on effective information bits: Uncoded and
coded cases.

definition, the capacity gives the fundamental limit of a reli-
able transmission with the probability of successful decoding
approaching to 1. Clearly, for the uncoded case, false identi-
fication is unavoidable.

To mitigate this problem, we propose several countermea-
sures. The first is to take the signal processing approach (this
is characterized by the parameter κs) before the bit detection
(for each interrogation); the second is to employ several
rounds of interrogations and then apply the majority rule to
make decision on each bit. Moreover, error detecting codes
are also introduced to further reduce the false identification
rate. As one can see from Fig. 5(b), if the two error-detecting
codes, i.e., the constant-weight codes and Berger-Freiman
codes, are used, the number of the effective information bits
is only slightly less than that of the uncoded case; and the
information rates of the two error-detecting codes approach
to 1 when the code length becomes large.
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FIGURE 6. BACs corresponding to different notch choices with varying κs
and κ0 = 0.

B. EFFECT OF THE SIGNAL PROCESSING APPROACH
In this paper, a signal processing approach, characterized by
the parameter κs, is suggested to be used in the bit detection
in each interrogation. The idea is to enhance the SNR of the
underlying channel and thus to improve the overall channel
quality. The effect of taking such an approach is illustrated
in Fig. 6. In particular, in Fig. 6, we consider the following
choices at the detector:
• The threshold θth is tunable. In this case, for an easy
comparison, we consider the case that θth is tuned such
that the same ε0 is maintained. That is, only ε1 will vary
corresponding to different signal processing parameter
κs. The obtained BAC(ε0, ε1) is shown in Fig. 6 (a).

• The threshold θth is not tunable. In this case, both ε0, ε1
will vary corresponding to different signal process-
ing parameter κs. The obtained BAC(ε0, ε1) is shown
in Fig. 6 (b).

As one can see from Fig. 6 (a), if θth is tunable, then for
κs = 5, a clear improvement on the underlying channel
quality can be observed by the decreasing ε1, which is the

FIGURE 7. BACs corresponding to different notch choices with κs = 1 and
varying κ0.

false detection rate of 1 → 0, whilst maintaining the same
ε0 = 0.1 which is the false detection rate of 0→ 1. That is,
ε1 takes all the benefits from taking the signal processing
approach.

However, if θth is not tunable, then as one can see from
Fig. 6 (b), as κs increases, a smaller ε0 (than the initial
value 0.1) will be obtained; while a larger ε1 will be obtained
at the low transmit power regime and a smaller ε1 will be
obtained at the high transmit power regime. In other words,
ε0 will benefit from taking the signal processing approach;
however, whether ε1 will benefit or not, depends on the
transmit power level (ε1 will benefit only at the high transmit
power regime).

In Fig. 8, we provide the corresponding capacities of the
obtained BACs. As one can see from Fig. 8, it is advan-
tageous to tune θth (over the fixed θth choice) at the low
transmit power regime, since it leads to a BAC with a larger
capacity. However, at the high transmit power region, it is
actually superior to use the fixed threshold θth (such that ε0
can benefit from the signal processing approach as well).
In general, the signal processing approach together with an
optimal choice of θth will improve the underlying channel
quality from the perspective of channel capacity.

C. EFFECT OF MULTIPLE INTERROGATIONS & MAJORITY
RULE BASED DETECTION
In Fig. 7, we illustrate the effect of applying 2κ0+1 rounds of
interrogations and then using the majority rule to further help
to identify each bit. The overall BAC (for each bit after 2κ0+1
rounds of interrogations) is a BAC(ε′0, ε

′

1) where (ε
′

0, ε
′

1) are
as defined in (6) and (7), respectively. Here, in order to better
understand the effect of the majority rule based detection,
we take κs = 1.

An interesting observation from Fig. 7 is that majority
rule based detection has a polarization effect. In particular,
we obtain a smaller ε′1 for ε1 < 0.5; but a larger ε′1 for
ε1 > 0.5. This polarization effect is due to the nature of the
majority vote. Thus, such a strategy is recommended only for
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FIGURE 8. Capacity of BACs corresponding to different notch choices,
κs and κ0.

those BAC(ε0, ε1) with both ε0, ε1 < 0.5. This observation
also implies the advantage of the signal processing approach
especially at the low transmit power regime (e.g.: with tun-
able θth) in improving the underlying channel quality. In the
following, we will focus on the BACs with ε0, ε1 < 0.5,
by assuming that this could be obtained by taking appropriate
choices of κs and θth.

1) COMPARISON TO THE SIGNAL PROCESSING APPROACH
Recall that the signal processing approach is to detect the
bits based on a kind of soft decision; while the majority rule
based detection is a kind of hard decision. Intuitively, for a
fixed value of κs · (2κ0 + 1) (i.e., the total number of rounds
of sending the same signal), taking the former approach
only will perform better than taking the later approach only.
This can be confirmed in Fig. 8 from the capacities of the
respectively obtained BACs. Note that for an easy and fair
comparison, we take κs and κ0 such that κs · (2κ0 + 1) = 5.
Moreover, we observe that
• in Fig. 8(a), at the low transmit power, e.g., when Prd is
less than about 5 dBm, the signal processing approach

(with tunable θth) is superior to the multiple interroga-
tions withmajority rule based detection, due to the larger
capacity of the former BAC;

• in Fig. 8(b), at the high transmit power, e.g., when Prd is
larger than about 0 dBm, the signal processing approach
(with fixed θth) is superior to the multiple interrogations
with majority rule based detection, due to the larger
capacity for its BAC.

In other words, the signal processing approach with an opti-
mal θth performs always better than the multiple interroga-
tions with majority rule based detection (from the capacity
perspective).

However, the signal processing approach assumes that the
channel state is time-invariant which is usually unrealistic in
practice. Furthermore, without the perfect knowledge of the
channel state information, it is difficult to find the optimal
threshold θth in order to yield the best possible performance.
Therefore, it is easier to implement the signal processing
approach with a fixed θth than with an optimally tuned θth.
Interestingly, we notice that the signal processing approach
with a fixed θth and the approach of multiple interrogations
with majority rule based detection have a very similar effect
on the overall BAC, as one can see from Fig. 6(b), Fig. 7, and
Fig. 8(b). Therefore, for simplicity, in the sequel, we simply
take κs = 1 and vary κ0 to further look into the effect of
themultiple interrogationswithmajority rule based detection.
Similar performance can be expected by employing the signal
processing approach with a fixed θth; and better performance
can be expected if combing both strategies in an optimal
manner.

2) EFFECT ON THE PROBABILITY OF
SUCCESSFUL IDENTIFICATION
In Fig. 9, we plot the probability of successful identifica-
tion (i.e., psucC ) and the probability of undetectable errors
(i.e., pu.d.eC ) for the uncoded tag IDs after 2κ0 + 1 rounds
of interrogations. Taking κ0 = 0 and κ0 = 3, respec-
tively, we see a significant improvement on the performance
(i.e., significantly increased psucC and decreased pu.d.eC ). Note
that for the uncoded case, psucC +p

u.d.e
C = 1 and pu.d.eC indicates

the average probability of false identification.
Moreover, we note that if taking κs = 1 and κ0 = 3,

then we have ε′0 = 2.7 · 10−3 and ε′1 � ε′0 in the transmit
power regime 0–7 dBm, where the BAC(ε′0, ε

′

1) could be
approximated by a ZC(0, ε′1).

D. EFFECT OF CONSTANT WEIGHT CODES
AND BERGER-FREIMAN CODES
1) ON THE PROBABILITY OF SUCCESSFUL TRANSMISSION
In Fig. 10, the (average) probability of successful transmis-
sion is plotted for the uncoded case, the constant weight codes
CCW(l,bl/2c) and the Berger-Freiman codes CBF(l,k). As one
can observe from Fig. 10, the employment of CCW(l, bl/2c)
and CBF(l,k) does not bring much gain in the (average) prob-
ability of successful transmission (although CBF(l,k) provides
a probability of successful transmission very close to the one
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FIGURE 9. psuc
Cuncoded(l )

and pu.d.e.
Cuncoded(l )

after 2κ0 + 1 rounds of

interrogations, where κs = 1.

for the uncoded case). Nevertheless, the advantages of using
the error detecting code are to decrease the probability of
undetectable errors (i.e., to reduce the false identification rate
of the tag ID) and to automatically issue a retransmission
(until the tag ID is identified).

Especially, for a shallower notch defined by a smaller α,
although more bits can be used to encode the tag IDs, this
comes with a sacrifice on the performance of the successful
identification rate in one transmission. Nevertheless, such a
price diminishes as the transmission power increases and/or
retransmissions are allowed (in case of a transmission error
being detected).

2) ON THE PROBABILITY OF UNDETECTABLE ERRORS
In Fig. 11, the probability of undetectable errors is plot-
ted for the uncoded case and the case where a constant-

FIGURE 10. Probability of successful transmission, where κs = 1.

weight code CCW(l,bl/2c) is employed. As one can observe
from Fig. 11, the utilization of CCW(l,bl/2c) can significantly
decrease the probability of undetectable errors compared to
the uncoded case by at least one order of magnitude (for
5 dB ≤ Prd ≤ 20 dB).

3) ON THE EXPECTED NUMBER OF RETRANSMISSIONS
OR INTERROGATIONS
In Fig. 12 (a) and Fig. 13 (a), we plot the (average) expected
numbers of retransmissions and interrogations for the con-
stant weight codes CCW(l,bl/2c).Both scenarios of BAC(ε′0, ε

′

1)
and its approximation ZC(0, ε′1) are considered. As can
be seen, the results for BAC(ε′0, ε

′

1) and the correspond-
ing results for ZC(0, ε′1) are almost indistinguishable. This
confirms that ZC(0, ε′1) can be a good approximation of
BAC(ε′0, ε

′

1) as ε
′

1 � ε0.

In Fig. 12 (b) and Fig. 13 (b), we use ZC(0, ε′1) to approxi-
mate BAC(ε′0, ε

′

1) and plot the (average) expected numbers of
retransmissions and interrogations for the cases where either
the constant code CCW(l,bl/2c) or the Berger-Freiman codes
CBF(l,k) are used.

Interestingly, as one can see from Fig. 12, the (average)
expected number of retransmissions can be significantly
decreased (for 5 dB ≤ Prd ≤ 7 dB) as we increase κ0 or
increase α (i.e., decrease the code length). However, it is
not the case for the (average) expected number of interro-
gations, as one can see from Fig. 13. The underlying reason
is that, at the high transmit power regime, most probably no
retransmission is needed and hence the expected number of
interrogations approaches to 2κ0 + 1.
Moreover, we compare the performance on the expected

numbers of retransmissions or interrogations if different
error detecting codes are employed. As one observe from
Fig. 12 (b) and Fig. 13 (b), at α = 0.75 (i.e., l = 48)
and κ0 = 3, Berger-Freiman code shows its superiority to the
constant code CCW(l,bl/2c) due to the much less expected num-
bers of retransmissions and interrogations. However, their
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FIGURE 11. Probability of undetectable errors: Cuncoded(l ) vs.
CCW(l,bl/2c), where κs = 1.

performance is quite close for α = 1 (i.e., a shorter code
length l = 36) and the scenario when more rounds of
interrogations are taken (for instance κ0 = 5).

E. EFFECT OF CRC CODES
In this subsection, we bring CRC codes (as a representative
of those codes that are not dedicated to the BAC but can be
potentially competitive for error detection) into discussion.
The goal is to shed light on their error detection performance
(especially on psucC and pu.d.eC ) over a BAC (which has not
been extensively studied in the literature), by a comparison to
the aforementioned constant codes andBerger-Freiman codes
with the same code length (and the same number of check
digits if possible).

FIGURE 12. Expected number of retransmissions for different κ0, where
κs = 1.

Here we use codes of relatively short lengths (in com-
parison to those in the previous subsections), in order to
obtain an accurate comparison within a reasonable com-
putation complexity. The CRC codes with 5 check digits,
for instance, CCRC(36,31), CCRC(19,14), and CCRC(17,12), are
constructed by the generator polynomial g(x) = x5+ x3+ 1;
and the CRC codes with 4 check digits, for instance,
CCRC(19,15), CCRC(17,13), CCRC(16,12), CCRC(15,11), are con-
structed by the generator polynomial g(x) = x4+x+1.Note
that both polynomials belong to the best general-purpose
CRC polynomials according to [26].

In Fig. 14, we plot the average probability of successful
identification (i.e., psucC ) for the tag IDs codedwith CRC codes
CCRC(l,k), constant codes CCW(l,bl/2c) and Berger-Freiman
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FIGURE 13. Expected number of interrogations for different κ0, where
κs = 1.

codes CBF(l,k), respectively. Under the same channel condi-
tion, we see that
• in the region of 0 dBm ≤ Prd ≤ 5 dBm, the CRC
code CCRC(l,k) has better performance on psucC than
the corresponding constant weight code CCW(l,bl/2c)
and Berger-Freiman code CBF(l,k) with the same code
length l at the low power region; however, its advantage
diminishes as Prd increases. In fact, for psucC > 0.1,
the constant code CCW(l,bl/2c) tends to overtake in the
short code length (e.g.: l = 19); whilst the Berger-
Freiman code CBF(l,k) tends to have performance close
to the CRC codes CCRC(l,k) (for both l = 19, 36).

• in the region of 5 dBm ≤ Prd ≤ 10 dBm, the constant
weight code CCW(l,bl/2c) has slightly better performance
on psucC among these three codes with a short code length

FIGURE 14. Comparison on psuc
C , where κs = 1.

(e.g.: l = 19); whilst CRC codes and Berger-Freiman
codes have very similar performance on psucC , regardless
of the code length. In fact, the code performance on psucC
converges as Prd increases. In general, the coded tag
IDs with more bits may suffer from some decrease on
the psucC .

So for a psucC in an acceptable range, the use of CRC code
CCRC(l,k) does not bring any significant advantage on psucC
over the constant codes CCW(l,bl/2c) and the Berger-Freiman
codes CBF(l,k).
In Fig. 15, we plot the average probability of undetectable

errors (i.e., pu.d.eC ) for the case where a CRC code CCRC(l,k) is
employed. For simplicity we consider the code transmission
over a ZC(0, ε′1).Remarkably, over a ZC(0, ε′1), both the con-
stant codes CCW(l,bl/2c) and the Berger-Freiman codes CBF(l,k)
permit perfect error detection, i.e., pu.d.eCCW(l,bl/2c)

= pu.d.eCBF(l,k) = 0;

whilst for CCRC(l,k), we have pu.d.eCCRC(l,k) > 0.
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FIGURE 15. Comparison on psuc
C over a ZC(0, ε′1).

To get more insight into the behavior of CRC codes over
a ZC(0, ε′1), we consider CRC codes with varying lengths
(i.e., l) and varying numbers of check digits (i.e., l−k). As one
can observe from Fig. 15:

• if we fix the code length l, then the use of a CRC code
CCRC(l,k) with more check bits (i.e., l − k) does not
necessarily lead to better performance, i.e., a decreasing
on pu.d.eC . For instance, we see that in Fig. 15 (a) as
ε′1 > 0.1, pu.d.eCCRC(19,14) < pu.d.eCCRC(19,15) but a reverse behavior
happens as ε′1 decreases as one can see in Fig. 15 (b).
A similar observation can be made for the code pair
CCRC(17,12) and CCRC(17,13);

• if we fix the number of check bits l−k , (i.e.,considering
CRC codes CCRC(l,k) generated by the same generator
polynomial but with varying information bits k), then
a CRC code with a smaller k may not necessarily lead

to a decreasing on pu.d.eC . For instance, pu.d.eCCRC(15,11) <

pu.d.eCCRC(17,13) but p
u.d.e
CCRC(15,11) > pu.d.eCCRC(16,12) , in all the plotted

region of 0.01 ≤ ε′1 ≤ 0.8 in Fig. 15.

So the use of constant codes CCW(l,bl/2c) and Berger-
Freiman codes CBF(l,k) have a clear advantage over CRC
codes CCRC(l,k) on pu.d.eC , especially over a ZC(0, ε′1).

VII. CONCLUDING REMARKS
In this paper, we have studied the problem of RFID tag identi-
fication from an information-theoretic perspective. Focusing
on the so-called binary coding for the tag IDs, we aim to
accommodate more bits in the limited bandwidth range with-
out degrading the RFID tag identification performance within
acceptable small number of retransmissions/interrogations.
To this end, the detection of each bit was formulated as a
binary asymmetric channel. We note that such a formulation
was firstly introduced in [22]. In this paper, we have inte-
grated the signal processing approach into this BAC model
so as to enhance the SNR of the underlying channel and thus
improve the overall channel quality. In addition, the signal
processing approach is compared with the multiple interro-
gations with majority rule based detection. The signal pro-
cessing approach is a kind of soft-decision technique, while
the multiple interrogations with majority rule based detection
is a kind of hard-decision technique. Not surprisingly and
as shown by numerical results, the former yields better per-
formance than the latter. However, the latter is more robust
and easily implementable in practice since it does not need
the assumption of a time-invariant channel as required by the
former.

Note that the idea of accommodating more bits in the lim-
ited bandwidth range may lead to a worse underlying channel
for each bit detection. Therefore, errors may occur more
frequently in each transmission of the RFID tag. An effective
countermeasure we have proposed to address this issue is
to use error detecting codes, the advantages of which are to
decrease the probability of undetectable errors (i.e., to reduce
the false identification rate of the tag ID) and to automati-
cally issue a retransmission in case of errors being detected.
As demonstrated in the numerical results, the employment
of error-detecting codes can significantly diminish the false
identification rate using only a reasonable number of retrans-
missions/interrogations; and the BAC dedicated codes, for
instance, the constant weight codes and the Berger-Freiman
codes perform better than the CRC codes in this scenario.
A final remark is that the proposed framework does not work
for the harsh applications where the tags are subjected to
severe bending or even crumbling so that some bits might
be read always erroneously. It is proposed in [22] to use the
error-correcting codes to encode the RFID tags to tackle this
challenge.
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