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ABSTRACT The next release planning is considered as a cognitive decision-making problem where many
stakeholders provide their judgments and opinions about the set of features that shall be included in the
next release of the software. In multi-tenant Software as a Service (SaaS) applications, planning for the next
release is a significant process that plays important roles in the success of SaaS applications. SaaS providers
shall fulfill the evolving needs and requirements of their tenants by continuously delivering new releases.
The first step in a release development lifecycle is the release planning process. This paper proposes a novel
approach for the next release planning for multi-tenant SaaS applications. This approach is a prioritization
approach that employs a hierarchical fuzzy inference system (HFIS) module to deal with the uncertainty
associated with human judgments. The main objectives of the proposed approach are maximizing the
degree of overall tenants’ satisfaction, maximizing the degree of commonality, and minimizing the potential
risk, while considering contractual, effort, and dependencies constraints. The performance of the proposed
approach is validated against a one from the literature and shows better results from the perspective of overall
tenants’ satisfaction and adherence to the risk.

INDEX TERMS Fuzzy decision making, cognitive fuzzy inference systems, fuzzy inference system
applications, software release planning, software as a service engineering.

I. INTRODUCTION
Utility (pay-per-use) computing has been a trend in recent
years due to its ability to eliminate the overhead expenses of
establishing IT infrastructure and management and mainte-
nance efforts [1]. Multi-tenants Software as a Service (SaaS)
is a utility model that provides a software as a shared cloud
services that can be used via a thin client web-based applica-
tion by a wide range of tenants [2]. The benefits of SaaS for
tenants can be seen in cost reduction in terms of management,
maintenance, and annual licensing [2]. From the provider’s
perspective, the benefits arise from serving a large number
of tenants through a shared, centrally hosted service [1].

The associate editor coordinating the review of this manuscript and
approving it for publication was Yin Zhang.

The success of SaaS applications is highly dependent on its
tenants’ satisfaction, which can be achieved via the fulfill-
ment of their constant, continues, and evolving needs [2].
One of the significant difficulties that face SaaS providers
is that they need to compromise some of the requested new
features to balance the available resources, and at the same
time, maximize the satisfaction of their tenants while ful-
filling technical and contractual constraints. Consequently,
assigning features to new releases shall be considered as a
planning process that involves several factors. The process
of Release Planning (RP) addresses decisions related to the
selection and assignment of features to a set of software
releases while considering the technical, resource, and risk
constraints [3]. According to [4], [5], release planning is
cognitively and computationally difficult. Therefore, human
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intelligence shall be supported by computational intelligence
to deal with the range of interrelated and complex decision
factors. This paper proposes an approach of release planning
for SaaS application. The proposed approach is a prioritiza-
tion and cognitive that employs Hierarchal Fuzzy Inference
Systems (HFIS).The main contribution of this paper is that it
deals with release planning for SaaS applications as uncertain
decision-making problem where human judgments and per-
spectives play the main role. Fuzzy inference system (FIS)
depends on fuzzy reasoning to deal with uncertainty asso-
ciated with human judgments. In FIS, the knowledge of the
experts is converted to fuzzy rules. Then, the estimates that
are provided by stakeholders about the uncertain attributes of
the features are manipulated using these rules, which allow
considering human expertise implicitly and automatically.
We consider planning for only the next release of SaaS
applications due to the extreme dynamics involved in SaaS
applications, which significantly increases the likelihood of
a wide range of changes being required within a short time
period.

The rest of this paper is organized as follows: Related
work is presented in Section 2. Theoretical preliminaries of
this study are presented in Section 3. Section 4 presents the
proposed approach for solving release-planning problem in
SaaS application. Section 5 validate the propose approach
by comparing its performance with an approach from the
literature. Conclusions are presented in Section 6.

II. RELATED WORK
This paper utilizes fuzzy inference systems. These systems
mimic the cognitive activity of the brain, which is based
upon the relative grades of the information acquired by the
natural sensory system [6]. We can say that using fuzzy
inference system in solving release-planning problemmimics
human cognitive in solving similar problems. It is useful to
state that cognitive computing opened the doors for improv-
ing a wide range of smart services. Furthermore, the cog-
nitive computing will make it possible to understand what
happening in the world more deeply [7]. For examples,
Hossain andMuhammad invested the development in big data
oriented wireless, 5G, and Internet of Things technologies
to enhance the healthcare services in [8]. They presented
an emotion aware connected healthcare system. For emotion
recognition, they fused the data captured by multimodality
sensors in the IoT. The data processing is distributed in the
cloudlet, the edge devices, and the cloud. A cognitive Internet
of Things (CIoT)-based framework was proposed for image
authenticity verification [9]. The proposed framework used
opposite color local binary pattern (OC-LBP) for feature
extraction and SVM for classification. An outperforming
accuracy was reported for the proposed framework on two
datasets. Zhang et al. presented a collaborative filtering (CF)
based cross-domain recommender system to improve the
performance of conventional CF-based recommender sys-
tems [10]. The user’s similarity matrix for rating predic-
tions in the target domain can be calculated based on the

historical behaviors of the user in the auxiliary domain. The
authors presented different ways for two domains fusion.
In their proposed system, they addressed the challenge of
cold-start users through association rules with social big data.
The proposed method obtained superior performance over
the conventional CF-based methods. A deep learning based
multimodality system for emotion recognition was presented
in [11]. To extract the features from the input signals, 2D
CNNmodel is used for the audio spectrogram while 3D CNN
model is used for the video signal. Extreme learning machine
and support victor machine are used for feature fusion and
classification respectively. The presented system obtained
comparable performance. Hao et al. proposed emotion-aware
video quality of experience (QoE) based on transfer learn-
ing [12]. They achieved better performance in video QoE by
considering user’s emotional reaction as an important factor
in the watching experience. The users’ emotion data are col-
lected while watching the video. Their emotion obtained via
transfer learning and HMMs. The video content emotion on
the other hand are obtained through statistical methods. The
video QoE is high when the similarity between the emotion
of the users and the emotion of the content is high and vice
versa. The authors found that individual users have different
sensibilities to different influential factors. Based on that
they presented emotion-aware personalized video QoEmodel
with more enhanced prediction. In [13], cognitive computing
technologies is applied to propose a new paradigm, CIoT, that
absorb new capabilities in AI such as deep learning, the CIoT
sensing system, data analytics, and cognition in providing
human-like intelligence.

Many models and approaches in the literature aim to solve
release-planning problems. Genetic Algorithm (GA) is used
inmanyworks in the literature to solve release-planning prob-
lem. In [4], Greer and Ruh proposed the EVOLVE method.
It aimed at the iterative planning of incremental software
development, producing a RP at each increment. The novelty
of the approach is the employment of GA as an optimiza-
tion to find an optimal or near-optimal solution. The fac-
tors of requirement’s priority, effort constraints, requirement
dependency, and stakeholders’ weights are considered when
planning for the next release. Ruhe and The [5] aimed at
achieving maximum stakeholders’ satisfaction through the
gradual reduction of the problem’s size and complexity. They
believe that neither human nor computational intelligence
alone be able to provide adequate decision support. Hence,
they proposed a new hybrid approach (which they call it
EVOLVE∗) combining the strength of mathematical mod-
els with the subtleness of experts’ knowledge and judg-
ment. The advantage of the human intelligence is to handle
soft, fuzzy, and implicit constraints, while the advantage of
computer-based approach is to cover the size and complex-
ity of the solutions. In [14], an extension of EVOLVE∗ is
proposed. Q-EVOLVE II aims at balancing between devel-
opment and test resources based on the list of candidate
requirements, effort, and defects. It employs the tool Release-
Planner with some quality aspects added to the model as a
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plugging called W2RP. In [15], EVOLVE+ is introduced.
It is an approach considers hard (such as budget) and soft
(such as risk) constraints and objectives in the planning pro-
cess. ELECTRE is utilized by EVOLVE+. Authors in [16]
consider the dependencies between candidate requirements.
In that proposed approach, theme-based RP is formulated
as a bi-objective optimization problem that is tackled with
Non-Dominated Sorting Genetic

Algorithm-II (NSGA-II). The aim is to deliver a group of
features in a release that are inter-related, leading to better
release value and customer satisfaction. Each solution of
this optimization problem balances the preference between
individual (stakeholder’s prioritization) and theme-based
planning objectives. Authors in [17] extend EVOLVE∗ in the
perspective of clustering themes. The idea aims at offering
features in a release in consideration to their semantic cohe-
siveness. The authors identified two categories of dependen-
cies: direct (reflect a degree of similarity between features)
and indirect (reflect a degree of dissimilarity between fea-
tures). Directly dependent features have a degree of com-
monality amongst them, while indirect features occurred
in a release is unfavorable. The approach provides three
additional steps on top of the established planning process
of EVOLVE∗, due to its indirect management of themes
while making release decisions. In [18], an extension of
EVOLVE∗ presented to address the problem of feature gen-
eration and selection in industrial settings. The major idea of
the solution proposal was to generate a system release that
fulfills implementable business features; by implementing
new/change software features. The model explicitly links
business strategies with solution planning and solution devel-
opment. The new features will be planned into optional and
mandatory solutions. Fuzzy systems models are used for
solving release-planning problem. In such models, release
planning is considered as a fuzzy decision making problem,
where human judgment relies on individual’s understand-
ing and perception of the problem plays roles in deciding
the importance of features. Reference [19] considers release
planning factors as fuzzy factors and extends EVOLVE∗ to
FUZZY-EVOLVE∗. The available and the required effort are
denoted as fuzzy numbers. The objective function is formed
as a fuzzy membership function. Fuzzy numbers operations
are applied to the fuzzy objective function and fuzzy effort
constraints in order to find the release plan that finds the
optimal degree of satisfaction. In [20], the authors provide
a solution to general release planning problem by prioritizing
the features depending on their ranks generated by a FIS
engine. In [21], Adaptive Network FIS (ANFIS) is used
for generating release plans. In that model, the fuzzy rules
obtained from the experts are adjusted using historical data
about the previous release(s), which provides higher reliabil-
ity than traditional FIS presented in [20].

Integer linear programming (ILP) is used to formulate
release-planning problem. In [3], ILP is used to create a syn-
ergy between the art and science by integrating the generation
of best solutions through the application of computational

algorithms with the reliance on human capabilities to opti-
mize among multiple alternatives. The latter is used to solve
the illness of problem definition. In [2], Binary linear Pro-
gramming (BLP), which is a special case of ILP, is used
to propose a model for release planning in SaaS business
applications. That model aims to identify the requirements
that shall be included in the next release. The model is
designed with the objectives of maximizing both the overall
tenants’ satisfaction, and the degree of commonality of the
requested requirements, while minimizing its’ implementa-
tion risks. In [22], ILP is used to formulate release plan-
ning in software product line (SPL). Because of the nature
of SPL projects, new factors are involved (for example,
resolving the conflicts between the requirements of core
assets and the requirements of various products) [23] pro-
poses a reduction approach for solving the Next Release
Problem (NPR) using the Backbone-based Multilevel Algo-
rithm (BMA). The algorithm employs multilevel reductions
to iteratively downgrade the problem size to construct the
final optimal set of requirements. The authors considered
the factors of customer profits and requirements costs when
constructing the solution. The goal is to maximize profits
from a set of candidate requirements under budget constraint.
The BMA framework is an iterative strategy, that converts
the original problem into multiple levels of independent sub-
problems. It contains three phases: reduction, solving, and
refinement.

This paper deals with release planning for SaaS applica-
tions. It considers some factors that are related to the nature of
SaaS application. For example, the type (or level) of service to
which tenants subscribe is considered. Furthermore, In order
to satisfy the most of tenants, the commonalities of features
are taken into account in the planning process. We formulate
release-planning problem for SaaS in as a prioritization prob-
lemwhere the features are assigned to the next release accord-
ing to their ranks (that ranks are calculated by considering a
set of factors that will be defined later in this paper). From
the literature, we can see that the existing models to release
planning employs human expertise to adjust the solutions that
have been produced by mathematical approaches. So, these
approaches can be used when there are limited numbers
of features and stakeholders. However, this is not the case
in SaaS applications. In SaaS applications, huge numbers
of stakeholders located in different locations in the world
participate in the planning effort, which makes difficult to
adjust solutions manually. It is crucial to find an approach
that allows release management to automatically and implic-
itly incorporate human expertise into the formulized solu-
tion of release-planning problems. Table 1 summarizes the
reviewed models and with a comparison against our proposed
approach.

III. PRELIMINARIES ABOUT FUZZY INFERENCE SYSTEMS
A fuzzy inference system (FIS) [24] is a function that utilizes
linguistic rules to produce output. FIS module is composed
of the following components:
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TABLE 1. Summary of release planning solutions and formulation techniques.

1)The knowledge base which includes the attributes of
the input and output variables (the linguistic values and the
meaning (parameters) of these linguistic values).
Example: risk is a linguistic variable, and we can define

two linguistic values for risk variable: high-risk and low-
risk. The meaning of low-risk may be defined as triangular
fuzzy number with the following parameters [1 4 7], and the
meaning of high-risk may be defined triangular fuzzy number
with the following parameter [4 7 10]

2)The fuzzy rules which takes the following form:
IFX is ATHEN Y is B where X is a linguistic input variable,
A is a linguistic value of X . Y is a linguistic output variable
and B is a linguistic value of Y .
Example: IFrisk is high THEN featurerank is low
In a FIS module, there are usually many rules, and

the maximum number of rule is the result of multiply-
ing the cardinality of the sets representing the linguistic
values.
Example: if X and Y are two linguistic variables and the

number of values that X can take is 3, and the number of
values that Y can take is 4, then the maximum number of
rules is 12

(3)The inference process: this process is responsible for
mapping the crisp input to crisp output. The following steps
are applied:
• Evaluation of conclusion of each rule
• Aggregation of all rules
• Defuzzification which is the process that finds result of
the inference process by calculating the center of gravity.

More information about FIS can be found in [24]

IV. PROBLEM DEFINITION
Let be the current release of a SaaS application, T is a set
of tenants who are subscribed to a SaaS application such that
T= {t1, t2, . . . . . . ,tm,F= {Ft1,Ft2, . . . . . . ,Ftm be a set of
sets features that are requested by the tenants, such that Fti
represents the features requested by a tenant t i. We define

F∗ =
m⋃
i=1

Fti = f 1, f 2. . .f n as the correlated set that includes

all features requested by all tenants, where n≤
∑m

i=1 |Fti|.

A. PROBLEM VARIABLES
It is required to find Fk+1 which is a set of features that will
be added (or modified) in the release (the next release),
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such that Fk+1⊆F∗. Fk+1 shall be selected from F∗ with
taking into account the following factors.

1) The important of each feature in F∗ to each tenant in T :
we define the matrix IMPwith the dimension n×m such that
IMP(i, j) captures the importance of feature i to the tenant j.
2) The Tenants weight (TW ): where the opinions of some

tenants are considered more significantly than other tenants
because, for example, of their business volume or loyalty.
In order tomeasure the actual importance of a feature, the pro-
vided importance of features shall be linked with tenants’
weights [25]. Let TW be an m elements vector where the
element TW (i) ∈ [0, 1] is the weight of tenant i, and∑m

i=1W (i) = 1.
3) The commonality of features: in order to satisfy maxi-

mum number of tenants with less possible effort, it is more
efficient to include the features that are requested by most of
tenants [26]. Let COMMONALITY be an n elements vector
such that COMMONALITY (i) captures the commonality of
features i, and COMMONALITY (i) =

∑m
j=1

(
i∈Ftj

)
. For

example, if a SaaS application is used by 100 tenants, and a
new feature i is requested by 80 tenants then we say that the
commonality of the feature i is 80
4) Risk of features implementation: risk of features shall

be counted when planning for the next release [27]. The risk
associated with a feature is the negative impact of imple-
menting that feature on the quality, delivery time, or cost. Let
RISK be an n elements vector such that RISK (i) captures the
risk of features i, and the risk of features are provided by the
development team.

5) Type of service: many SaaS applications are offered to
the tenants in different types of service (for example, stan-
dard, professional, business). The tenants shall participate
only on estimating the features that he can use. In other words,
a tenant is eligible to provide his judgment only about the
features that will be included in his level of service.We define
S as n×mmatrix, such that S (i, j)= 1 if tenant j is eligible to
estimate feature i else S (i, j) = 0.
6) Effort: estimating available and required effort is an

essential task in release planning [3]–[5]. Required effort of a
feature is the effort needed to analyze, design, implement, and
test that feature. We define EFFORT as an n elements vector
such that EFFORT (i) captures the effort required to imple-
ment features i, and the efforts of features are provided by
the development team. In addition, we define AvailableEffort
which is a numeric that captures the effort available to imple-
ment the release under consideration.

7) Technical dependencies: as in [3], [4], we consider two
types of dependences: 1) coupling where if two features are
technically coupled then they should be included at the same
release. 2) Precedence where if a feature f i precedes a feature
f j then f i should be delivered (or at least implemented and
tested) prior to feature f j. We define DEPENDENCIES as
n×nmatrix such thatDEPENDENCIES (i, j) = 1 if features
i, j are coupled, and DEPENDENCIES (i, j) = 2 if feature i
precedes feature j and DEPENDENCIES (i, j) = 0 if there is
are dependencies between i and j.

B. PROBLEM STATEMENT
In this paper, we consider the next release planning for SaaS
applications as a prioritization process. The features are given
ranks, and the features with the highest ranks are assigned
to the next release while considering effort, type of service,
and technical constraints. Let RANK (i) be the calculated rank
of the feature i. We want to find Fk1⊆F∗, which is a set of
features that shall be included in the next release such that
for features i, j, (i ∈ Fk1) ^(j ∈ (Fk+1 )c) → RANK (i) ≥
RANK (j) and (Fk+1 )c is the complement of Fk+1. Fk+1

represents the features that will not be included in the next
release. The following conditions are satisfied:

1)
∑n

i=1
((
i ∈ Fk+1

)
× EFFORT (i)

)
≤ AvailableEffort

2) S (i, j) = 1 if tenant j is eligible to estimate feature
i else S (i, j) = 0

3) DEPENDENCIES (i, j) = 1 → RANK (i) ==
RANK (j) and DEPENDENCIES (i, j) = 2 → RANK (i) ≥
RANK (j)

V. PROPOSED SOLUTION
Most of variables in release planning are exposed to uncer-
tainty due to inadequate knowledge and ambiguity of
features [28]. In addition, the provided judgments about
importance, risk, and required effort of the features are
subjective and human-dependent. FIS (and its extension
HFIS) are appropriate techniques to handle the uncertainty
caused by human factors. Furthermore, any solution for
release-planning problems shall use human expertise sup-
ported by computational models. In many decision-making
problems, fuzzy rules have proved highly effective in rep-
resenting human expertise [29]. In this paper, we use HFIS
of Mamdani types [24] as the core component to build the
fuzzy rules, and then we combine the stakeholders’ estimates
using these rules to calculate a rank for each feature. The
features with the highest ranks shall be assigned to the next
release.

As it is illustrated in Figure 1, the proposed approach
consists of four processes: data collection, preprocessing,
ranking, and release plan generation.

A. DATA COLLECTION
The release management starts collecting and organizing
the data about the factors of release planning process.
The outputs of this process are Tenants’ Weights (TW ),
type of service matrix (S), Importance of the features
(IMP), risk of features (RISK ), required effort (EFFORT ),
available effort (AvailableEffort), dependencies among fea-
tures (DEPENDENCIES), and commonality of features
(COMMONALITY ). This data can be gathered using a
web-based application developed to this purpose.

B. PREPROCESSING
The inputs to this process are Tenants’ Weights (TW ), type of
service matrix (S), Importance of the features (IMP). We use
these three data structures to produce a vector that contains
the importance of feature while considering the weights of
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FIGURE 1. The proposed solution architecture.

tenants and their eligibility to judge the features. We define
WIMP (weighted importance) as an n elements vector such
that WIMP = IMP. ∗ S ∗ TW where (.∗) is the dot product
operation of matrix.

C. RANKING
The ranking process uses a HFIS engine to calculate a rank
of each feature. The inputs to RANKING process are:
WIMP,RISK ,EFFORT and COMMONALITY vectors.
The output is n×3 matrix, and we call it RANK . It contains

the information of the features after applying ranking pro-
cess. The first column of RANK contains features identifiers
(1 · ·n), the second will include the ranks of the features,
and the third column contains the required effort of the
features. The main component in ‘‘Ranking’’ process is the
FIS engine, which we call FISRANKING.As Figure 2 shows,
FISRANKING is HFIS that has two levels: the first level
includes two parts: L1.1 which is the FIS-sub-module respon-
sible for aggregating importance and commonality, and
L1.2 which is the FIS-sub-module responsible for effort and
risk aggregation. The second level receives the output of the
two sub-modules in the first level to generate rank for features
using predetermined fuzzy rules. It is important to state that
the perspectives of the designer of the FIS engine is the main
player in FIS approach. In other words, the degree of impact

FIGURE 2. Ranking process.

of a fuzzy variable depends on the way it is considered in
the fuzzy rules. The elements of matrix RANK are defined as
follows:
RANK (i, 1) = i,

RANK (i, 2) =
FISRANKING (WIMP (i) ,RISK (i) ,EFFORT (i),
COMMONALITY (i)) , and RANK (i, 3) = EFFORT (i) .
The artifices of FISRANKING are defined as follows:
1)Four input linguistic variables: IMPORTANCEVAR,

RISKVAR,EFFORTVAR andCOMMMNALITYVAR. The lin-
guistic values associated with these variables are defined by
the experts. For example, in our experiments in section VI,
we make IMPORTANCEVAR = {lowimp,midimp, highimp}
Each linguistic variable is associated with an input vec-
tor. IMPORTANCEVAR is associated with WIMP, RISKVAR
is associated with RISK , EFFORTVAR is associated with
EFFORT , and COMMMNALITYVAR is associated with
COMMONALITY

2)If-then fuzzy rules: The rules shall be constructed in
a way that increases the final rank of the highly important
and high commonality features, and minimizes the rank of
high risk and high effort features. The if-then fuzzy rules
in this context are generated by the domain experts. When
designing fuzzy rules, the likelihood of exponential increase
in the total number of rules is a significant issue that should
be taken into account. In our case, the maximum number of
rules is:∏

∀X∈FISVAR |X | where FISVAR = {IMPORTANCEVAR,
RISKVAR,EFFORTVAR,COMMONALITYV ??R}. A huge
number of rules ‘‘may damage the transparency and
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interpretation of FIS as humans are incapable of understand-
ing and justifying hundreds or thousands of fuzzy rules and
parameters’’ [30].Therefore, it is necessary to use one of the
techniques for rules reduction. In this paper, we chose the
hierarchical fuzzy inference system [31], in which the fuzzy
system is built in a hierarchical manner. Hierarchical fuzzy
rules have proved to reduce the number of rules without
affecting the approximation ability of the FIS [31]. In the
hierarchy of fuzzy units, the outputs of lower levels are the
inputs for higher levels. As it is stated, in our proposed
model, we aggregate the inputs related to the development
team and management using one FIS sub-module, and we
aggregate the inputs related to the tenants using another
FIS sub-module. After that, the outputs of these two inter-
mediate FIS sub-modules are aggregated using a third FIS
sub- module, which generates a rank for the feature under
consideration

D. RELEASE PLANNING GENERATION
The first step in this process is that the values of the
RANK matrix are tuned in order to satisfy the dependencies
constraints. For coupling constraints, the ranks of the fea-
tures that are coupled are adjusted to have the same rank,
formally,DEPENDENCIES (i, j) == 1 → RANK [i, 2] =
RANK [j, 2]. For precedence constraints, if feature i precedes
feature j then the rank of i should be greater than the rank of j.
Formally, DEPENDENCIES (i, j) == 2 → RANK [i, 2] =
RANK[j, 2] + ε where ε is a very small number that only
affect the features that have precedence relationship. ε can be
calculated by sorting RANK according to the second column
(ranks). After that we find the minimum difference between
two ranks (let us call minrank) and make ε < minrank(for
example we can make ε =minrank/10).
After this tuning process, a greedy approach is applied; that

is, the features with the highest rank are added to the release
plan. This process is continued for as long as the available
effort is not exceeded.

VI. VALIDATION
This section compares the proposed HFIS-based approach
for release planning for SaaS with the Binary Lin-
ear Programming-based (BLP) approach presented in [2].
As in [2], we compare the two approaches using two per-
formance metrics: the overall tenants’ satisfaction, and the
adherence to the risk. The overall tenants’ satisfaction shows
howmuch tenants are satisfiedwith the application. Themore
tenants’ satisfaction, the more success of the application is.
The adherence to risk shows the degree of the quality of the
new release. As it is stated earlier, the risk of a feature is
the impact of this feature on the schedule and the quality
of the release. If the release plan is adhered to risk, then
it considers the quality and time factors. In order to define
the overall satisfaction, we should first define a formula to
measure the degree of satisfaction for each tenant. Let dsi
be the degree of satisfaction for tenant ti. We define Sats :
T × P(F∗)× P(F∗)→ [01] as a function that calculates the

degree of satisfaction for a tenant as follows:

dsi = Sats
(
i,Fk+1ti ,F

k
+1
)

=

∑n
k=1

(
IMP(k, i)×

(
fk ∈ Fk+1

)
×

(
fk ∈ F

k+i
ti

))
∑n

j=1

(
IMP(j, i)×

(
fj ∈ F

k+1
ti

))
such that P(F∗) is the power set of F∗ and dsi ∈ [1, 0] . In this
calculation, Fk+1ti is the release plan generated according to
the perspective of ti. Note that F

k+1
ti is just used to measure

the degree of satisfaction of a tenant ti about the generated
release plan (Fk+1). This formula calculates the ratio of the
cumulative importance of the features that found in the set
Fk+1ti ∩ Fk+1 to the cumulative importance of the features
that in the set Fk+1ti . If Fk+1ti ⊆ Fk+1, then the degree of
satisfaction of tenant ti is 1(100%), and if Fk+1ti ∩ Fk+1 =
∅, then degree of satisfaction is 0. The overall satisfaction
(OSat) can be calculated as the additive weighting of the
degree satisfactions of the tenants.

OSat =
m∑
i=1

dsi ×W (i)

The maximum value OSat can take is 1, which means that the
degree of satisfaction is 100%. The lowest value is 0, which
means a degree of satisfaction of 0%.
Furthermore, the quality of the projected release plan can

be evaluated bymeasuring the degree towhich it considers the
risk factor. Maximum adherence to the risk factor is desired.
Let Fk+1Risk be the release plan produced by fulfilling techni-
cal, contractual, and resource constraints, and by completely
considering the risk factor, whichmeans that the features with
the lowest risk are assigned to the next release. We define the
adherence to the risk factor (Ad_risk_factor) as follows:

Ad_risk_factor =
|Fk+1risk ∩ F

k+1
|

|Fk+1risk |

Ad_risk_factor is the ratio of the number of features in
Fk+1risk ∩F

k+! to the number of features in Fk+1risk . We say that
a release plan has completely adhered to the risk factor when
Ad_risk_factor = 1.

We use Matlab code to implement HFIS and BLP-based
approaches. We use Monte Carlo simulation to model the
probability of OSat and Ad_risk_factor . We use normal dis-
tribution to generate random values of importance, available
effort, required effort, commonality, service level and eligibil-
ity of tenants, and the technical constraints. After that, we run
two scenarios.
Scenario 1:This scenario considers few numbers of tenants

and features. The number of features which to be planed are
varied from 10 to 20 features, and the number of tenants is
ranged from 5 to 20. The aim of Scenario 1 is to compare
between the proposed approach and the referenced one when
there are limited numbers of features and tenants (which is
not the case in most SaaS applications).
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Scenario 2: This scenario considers medium to huge num-
bers of tenants and features. The number of features which
to be planed are varied from 50 to 200 features, while the
number of tenants is ranged from 50 to 500. The aim of
Scenario 2 is to compare between the proposed approach and
the referenced one when there are medium to huge numbers
of features and tenants (which is the case in most SaaS
applications). To be realistic regarding available effort, in all
scenarios, we make the available effort takes a random value
is in the range of 30% to 80% of the total required effort.

In each scenario, we generate 1000 release plans. For each
release plan, and using the two approaches, we calculate
the cumulative average of the overall satisfaction and the
adherence to risk.

Figure 3 and 4 shows the results of Scenario 1 (few num-
bers of features and tenants). We can see that HFIS-based
approach gives better results in the degree of overall satis-
faction, while BLP-based outperforms the HFIS-based in the
adherence to risk.

FIGURE 3. Overall satisfaction (Scenario 1).

FIGURE 4. Adherence to risk (Scenario 1).

Figure 5 and shows the results of Scenario 2 (medium
to huge numbers of tenants and features). We can see
that HFIS-based approach outperforms BLP-based in both
metrics.

This experiments show that the HFIS-based approach
achieves better results when there are huge numbers of tenets
and features, which is the case in most SaaS applications.

FIGURE 5. Overall satisfaction (Scenario 2).

FIGURE 6. Adherence to risk (Scenario 2).

VII. CONCLUSION
The next release planning is the proceess of selecting themost
promising features that will be included in the next release.
The selected features shall maximize tenants satisfaction and
consider the factors of risk, technical, effort, and type of
service constatints. The variables that control SaaS applica-
tions include: the importance of each feature as perceived
by the different tenants, the decision weights of the tenants,
the potential risks along with the required effort that are
associated with each feature as estimated by the members of
the development team, the available effort allocated to deliver
the release as estimated by release management, the technical
dependencies among features, type of service documents,
and the degree of commonality of features. In this work,
we propse a novel approach for release planning to tackle the
‘‘next release’’ planning problem in SaaS applications. This
approach is aprioritization approach that employs a Hirarichi-
cal Fuzzy Inference System (HFIS) in order to generate a rank
for each feature. The rank of a feature represents its priority
among other features. After that, the ranks are adjusted to
reflict the dependencies constraints. Then, with considering
required and avialable effort, the features are sorted and
prioritized using a greedy approach. The features with the
highest ranks are assigned to the next release. The propsed
approach shows promosing results comaperd to the binary
linear programmimg approach from the perspective of overall
satisfaction and adherence to risk.

As a further line of research, the architecture of SaaS
applications can be considered when release plaiing process
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is conducted. For example, many applications use services
from other vendors which makes the risk of integration a key
factors on the planning process. Furthermore, the reliability
of information can be considered by using another input
from the stakeholder that express their sureness about their
judgments. The application of Z-numbers [32] can be used in
this case.
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