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ABSTRACT In this paper, a new observer is presented for discrete-time nonlinear dynamical systems.
The designed observer is a modified version of the recently developed regularized least square (RLS)
observer. It leads to an estimator with almost zero or very small overshoot while keeping the settling time
of the estimation error very short, a case which cannot be satisfied by the well-known observers available in
the literature. The predicted estimate of the developed estimator is calculated from a weighted average of a
set of predicted estimate of a set of points to be generated around the filtered estimate of the state vector at a
given sampling instant of time. Through this approach, we get a highly accurate result of the predicted state
vector, which intuitively leads to highly accurate filtered estimates of the states. The developed estimator
can deal with highly nonlinear systems, does not need any state transformation, has no restrictions on the
output measurement model, leads to a unique solution, and last but not least avoids the computation of the
Jacobian matrices. The convergence of the proposed observer is analyzed, and the results show its superior
performance when compared with the RLS observer.Moreover, a modified version of the developed observer
is proposed to reduce the computational time while maintaining its main features. Illustrative examples of
highly nonlinear power systems are presented to show the effectiveness of the proposed approach and its
superiority when compared with other well-known observers.

INDEX TERMS Discrete-time nonlinear systems, state estimation, stability analysis, power systems.

I. INTRODUCTION
The design of observers is one of the main pillars of esti-
mation theory as they play a very important role in sys-
tems monitoring and/or control, especially when some of the
states are unmeasurable or expensive to measure. Observers
are used in many applications such as knee stiffness [1],
charge state in batteries [2], inertial navigation systems [3],
glucose regulation in diabetic patients [4], temperature and
emissivity in strip annealing furnaces [5], chaos synchroniza-
tion in secure communication systems [6], brake clutch in
hybrid electrical vehicles [7], rotor crack detection in rotating
machinery [8] and others. Therefore, developing linear and
nonlinear observers with improved performance is always of
interest.

For linear systems, whether deterministic or stochastic,
estimation theory is well developed and the convergence
of any new developed observer can be directly related to
the observability and detectability of the system. On the
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other hand, the design of new observers for nonlinear sys-
tems is a challenging task as there is no general systematic
framework to follow, and it is challenging to prove their
convergence.

In the literature, different techniques have been developed
to address the challenging problem of nonlinear state esti-
mation. These approaches can be classified into two classes.
In the first class, the model is transformed to a new form close
enough to a linear system and hence an observer is designed
using linear system estimation theory [9]–[23]. Observers
designed in this class are greatly dependent on system’s non-
linearities which may lead them to be inapplicable for certain
nonlinear systems. However, once the system is transformed
to the new form, the implementation of the designed observer
is straight forward and often with relatively small compu-
tational time. In the second class, observers are designed
using systematic methodologies regardless of the system’s
nonlinearities being strong or weak [24]–[32]. The simplicity
of the implementation of the second class observers compared
to the first class makes themmore preferable in case of highly
nonlinear systems.
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Observers designed for nonlinear systems satisfying Lips-
chitz condition can be classified in the aforementioned first
class. Among these observers are Thau’s observer [9], Linear
Matrix Inequalities (LMI)-based observer [10], H∞-based
observer [11], Geometric observer [12]–[15], observers based
on sliding mode approach and its variants [16]–[19], and
High Gain (HG) observer [20]–[23]. The main disadvantage
of the observers belonging to this class is that they are not
applicable for all nonlinear systems. For example, some of
these observers necessitate the transformation of the nonlin-
ear system to a specific form which can be either compli-
cated or even impossible for highly nonlinear systems. Others
require some conditions and/or restrictions to be satisfied
such as the global, local, or at least one-sided Lipschitz con-
ditions, linear measurement model, and others which cannot
be easily fulfilled in many practical applications. Overcom-
ing these drawbacks has motivated the development of new
approaches to be classified in the second class as mentioned
earlier.

On the other hand, examples of the well-known observers
belonging to the second class are the Extended Luen-
berger Observer (ELO) [24]–[27], the nonlinear State Depen-
dent Riccati Equation (SDRE) observer [28]–[30], and the
recently developedRLS observer [31], [32]. Unlike the SDRE
observer and the ELO for which the results of the estimated
states are not unique since they depend on the chosen State
Dependent Matrix (SDM) for the former, and the chosen
gain matrix for the later, the result of the RLS observer is
unique since the mathematical structure of the algorithm was
achieved through the formulation and solution of a regu-
larized least-square optimization problem at each sampling
point

Although there is a variety of state estimation techniques
for nonlinear systems as mentioned earlier, there is always
a need to develop new state estimation approaches which
offer improved performance and overcome the drawbacks
of existing estimators. In this paper, a new approach for
nonlinear state estimation belonging to the aforementioned
second class, namely the Smoothed Regularized Least Square
(SRLS) observer, is developed. As usual, the final result is
achieved in a two-step procedure, namely, the prediction step
and the filtering step. It is well known that the better we get
an estimate for the predicted state vector, the better the result
of filtered estimate of the state vector and hence the final
result. Having this in mind, the proposed SRLS estimator
introduces a new approach for the estimation of the predicted
state vector, while the filtered estimate of the state vector is
that of the RLS observer.

The proposed approach uses the exact model of the non-
linear system in the prediction phase of the algorithm rather
than the linearized model as used in the RLS observer. Our
objective is to finally achieve a smooth estimator with a very
small or no overshoot as well as a very short transient period
of the estimation error. The main idea in our approach can be
summarized as follows. It is well known that the performance
of nonlinear systems is highly dependent on the starting point.

Therefore, at the current instant of sampling time, instead of
calculating the predicted estimate of the state vector from its
present filtered estimate, a set of predetermined points around
the present filtered estimate is calculated. This set of points is
propagated through the system model to get a set of predicted
estimates of the state vectors. This set is then used to calculate
a set of predicted outputs through the measurement model.
The weighted averages of these two sets are calculated to get
the final predicted estimates of the state and output vectors.
The weighted averages of the deviation of the elements of the
sets of the predicted states and predicted outputs from their
weighted averages are used to calculate the state dependency
matrix Pxxk+1|k , the output dependency matrix Pyyk+1|k and the
cross dependency matrix Pxyk+1|k . The calculated dependency
matrices are in turn used to calculate the gain matrix to be
used in the filter step. Using such a procedure, it is expected
to get much better estimates of the predicted state and output
vectors which obviously lead to much better filtered estimate
of the state vector as we receive the (k + 1)th measurement.
It is obviously expected that, better filtered estimates of the
states reduce their overshoots at the start of the estimation
process and hence lead to shorter transient period of the
estimation errors. The convergence analysis of the proposed
observer is presented. From this analysis, it is shown that the
SRLS estimator converges to the zero steady state error faster
than the RLS estimator, which is also verified through our
simulation.

In the next section, we further highlight the features
and performance goals that we aim to achieve using the
SRLS observer. Also, numerical simulations are presented to
demonstrate that the proposed approach leads to a superior
performance when compared with the RLS observer and
other well-known nonlinear observers.

The rest of the paper is organized as follows. Section II
presents the motivation and the goals of our research work.
Section III presents the problem formulation for the state esti-
mation of discrete-time deterministic nonlinear systems. The
mathematical structure of the proposed observer is presented
in section IV. SectionV is devoted to the convergence analysis
of the developed approach. In section VI, different examples
are demonstrated to show the effectiveness of the proposed
approach compared with others such as the HG, SDRE, and
RLS observers. Finally, the paper is concluded in section VII.

II. MOTIVATION AND GOALS OF THIS WORK
Observers are used either to monitor the behavior of a given
system or to generate feedback control strategies in observer-
based control systems. Consequently, as the result of the
estimator is improved, the system monitoring and/or the per-
formance of the feedback observer-based controlled system
are improved. In the following, the main drawbacks of some
of the well-known observers are reviewed. Our aim is to
alleviate these drawbacks and hence achieve better state esti-
mation results.

1- Some of the well-known observers, such as the HG and
Thau’s observer, require state transformation and/or
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special form of the output models. Therefore, the type
of system nonlinearities, whether weak or strong, dic-
tates the applicability of these techniques. For some
systems, it can be easily applied while for others, it can
be either difficult or impossible to apply.

2- For Luenberger based-observers, HGO and others,
there is a trade-off between the settling time of the
estimation error and the overshoot at the start of the
estimation process. In other words, to get short tran-
sient period of the estimation error, large overshoot is
observed at the start of the estimation process, and vice
versa. In observer-based control systems, this might
pose a problem as large overshoots may lead to undesir-
able control signals for some applications. On the other
hand, long transient period of the estimation process
delays the achievement of the desired performance of
the controlled system.

3- The SDRE observer and others using similar approa-
ches necessitate the observability or the detectability of
the system at each point in the sampling space in order
to achieve a solution for the static Riccati equation of
the dual problem.Moreover, the result of the estimation
process is not unique since it depends on the chosen
SDM. In some applications, it may be difficult and even
impossible to select a SDM that leads to a convergent
state estimator.

4- Some techniques, such as the RLS estimator, require
the computation of the Jacobian matrix of the system
model which may be difficult for some applications.

Based on the aforementioned drawbacks, the goal of our
research is to develop an observer with the following features:

1- It can be applied to any nonlinear system irrespective
of the type of nonlinearities, output model,. . . etc.

2- It avoids the undesired overshoot at the start of the esti-
mation process while maintaining a very short transient
period of the estimation error.

3- It is directly applicable to the original system rather
than a transformed one.

4- It does not require the computation of the system’s
Jacobian matrix.

5- It has no restrictive conditions and leads to a unique
solution.

6- The solution has to be achieved within a reasonable
average CPU time per sample in order to be applicable
to a wider class of practical applications.

III. PROBLEM FORMULATION
Consider the following discrete-time deterministic nonlinear
system:

xk+1 = fk (xk )

yk+1 = hk+1(xk+1) (1)

where xk ∈ Rn, yk ∈ Rm represent, respectively, the
state and the output measurement vectors; fk (xk ) ∈ Rn :
Rn → Rn is the nonlinear vector function of the states while

hk+1(xk+1) ∈ Rm : Rn → Rm is the nonlinear vector
function of the measurements. The vector functions fk (xk )
and hk+1(xk+1) are assumed to be differentiable with respect
to their arguments xk , xk+1. The vector x0 = xk0 ∈ Rn

represents the initial conditions and finally k ∈ {0, 1, 2, . . .}
is the discrete time instant.

IV. THE MATHEMATICAL STRUCTURE
In this section, the mathematical structure of the RLS estima-
tor is reviewed and that of the SRLS estimator is presented.
Before proceeding with the details, it is of great importance
to clarify the following. The estimation methodologies and
theories for deterministic and stochastic systems are totally
different and cannot be used alternatively. In that regard,
the RLS and SRLS observers are developed for deterministic
systems and are not suitable for state estimation of stochastic
systems. The opposite is also true as the techniques developed
for stochastic systems like the Extended Kalman Filter (EKF)
are not suitable for state estimation of deterministic systems.
Based on this fact, we have never seen in the literature that,
for example EKF has been used to estimate the states of
deterministic nonlinear systems, and the HGO has been used
to estimate the states of stochastic nonlinear systems.
From the first glance, it happened that the mathemati-

cal structure of the RLS observer (and later on, the SRLS
observer) looks similar to that of the EKF. However, they are
entirely different as the EKF is applicable only for stochastic
systems whereas the RLS and SRLS observers are applicable
only for deterministic systems. Moreover, the RLS observer
has been developed in [31], [32] through the formulation
and the solution of RLS estimation problem while those of
KF or EKF rely on the properties of conditional Gaussian
distribution. For interested readers as well as to avoid any
ambiguities, the development of the mathematical structure
of the RLS estimator is presented in appendix A.

A. THE REGULARIZED LEAST SQUARE ESTIMATOR
Since the SRLS estimator is amodified version of the recently
developed RLS estimator [31], [32], then we start firstly with
the presentation of the mathematical structure of the RLS
estimator.

1) PREDICTION STEP OF THE RLS ESTIMATOR
Let us assume that at the sampling instant k th we know the
filtered estimate of the state vector x̂k|k , and its associated
Riccati-like matrix, Pk|k ∈ Rnxn. Then, the predicted estimate
of the state vector x̂k+1|k , its associated Riccati-like matrix
Pk+1|k ∈ Rnxn, and the predicted estimate of themeasurement
vector ŷk+1|k are given by:

x̂k+1|k = fk (x̂k|k ) (2a)

ŷk+1|k = hk+1(x̂k+1|k ) (2b)

Pk+1|k = ÂkPk|k ÂTk + N (2c)

where:

Âk =
∂fk
∂xk

∣∣∣∣
x̂k|k

(3)
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2) FILTER STEP OF THE RLS ESTIMATOR
As we receive the measurement vector yk+1, the filtered esti-
mate of the state vector x̂k+1|k+1, and its associated Riccati-
like matrix, Pk+1|k+1, are given by:

x̂k+1|k+1 = x̂k+1|k + Kk+1(yk+1 − ŷk+1|k ) (4)

Pk+1|k+1 = [I − Kk+1Ĥk+1]Pk+1|k (5)

where the gain matrix Kk+1 is given by:

Kk+1 = Pk+1|k ĤT
k+1[S + Ĥk+1Pk+1|k Ĥ

T
k+1]

−1 (6)

and

Ĥk+1 =
∂hk+1
∂xk+1

∣∣∣∣
x̂k+1|k

(7)

B. THE SMOOTHED REGULARIZED
LEAST SQUARE ESTIMATOR
The main idea of the proposed SRLS estimator is simply as
follows. For both linear and nonlinear systems, it is obvious
that the behavior of any state variable depends on the others
through the system model. Let us define a matrix Pxxk|k ∈
Rnxn in which the element Pxxk|k (i, j) gives a measure of the
dependency of the behavior of the state variable xi on the
state variable xj. Intuitively, at k = 0; the initial conditions
are either due to disturbances or as specified by any other
means. Therefore, xi(0), xj(0) are independent of each other
and hence Pxx0|0 (i, j) = 0 for i 6= j. On the other hand,
at k = 0;Pxx0|0 (i, i) > 0, which represents the possible
range in which the initial value of xi can vary around such
a specified value. With the progress of time (i.e. k > 0) the
dependency between the different states of the system exists
and hence Pxxk|k (i, j) 6= 0.
Assuming that at the sampling instant k we know the

filtered estimate x̂k|k and its associated dependency matrix
Pxxk|k . Aswe receive themeasurement yk+1, it is desired to get
the filtered estimate x̂k+1|k+1 and its associated dependency
matrix Pxxk+1|k+1 . Since for nonlinear systems the perfor-
mance of the system changes dramatically with the starting
point, the following approach is conducted to improve the
estimation accuracy. We firstly predetermine a set of 2n + 1
vectors (to be denoted by X̂k|k ) around the filtered estimate
x̂k|k within the range specified by Pxxk|k . The i

th element
of this set is denoted by x̂ik|k . The system model is then
used to calculate the predicted value x̂ik+1|k for each element
i ∈ {1, 2, . . . , 2n+ 1} of the predetermined set X̂k|k . Finally,
the weighted average of the set of estimated predicted vectors
is calculated to get the final value of the predicted estimate of
the state vector x̂k+1|k , and hence its associated dependency
matrix Pxxk+1|k . Using such an approach, it is expected to
get much better result for x̂k+1|k than that achieved while
using (2-a).

The proposed estimator is implemented in two steps,
namely the prediction step and the filter step. The details of
each are given in the following:

1) PREDICTION STEP OF THE SRLS ESTIMATOR
1- The filtered estimate x̂k|k and its associated dependency
matrix Pxxk|k are used to generate the set X̂k|k of the 2n + 1
predetermined vectors around the estimated value x̂k|k . This
is given by:

X̂k|k = {x̂1k|k x̂2k|k x̂3k|k · · · x̂(2n+1)k|k}
= {x̂k|k x̂k|k+ζ 1 x̂k|k−ζ 1 x̂k|k+ζ 2 . . . x̂k|k + ζ n}

(8)

where ζ i is the i
th column (i = 1, 2, . . . , n) of the matrix Z

defined by:

Z =
√
(n+ λ)Pxxk|k (9)

where λ is a scaling parameter to be specified later on.
The matrix Z can be computed using one of the efficient

factorization techniques such as Cholesky method. Then:

Z (Z)T =
√
(n+ λ)Pxxk|k

(√
(n+ λ)Pxxk|k

)T
= (n+ λ)Pxxk|k (10)

2- By propagating the elements of the set X̂k|k through the
function fk defined by (1), we get:

X̂k+1|k =
{
x̂1k+1|k x̂2k+1|k x̂3k+1|k · · · x̂(2n+1)k+1|k

}
=
{
fk (x̂k|k ) fk (x̂k|k + ζ 1) fk (x̂k|k−ζ 1)
fk (x̂k|k + ζ 2) fk (x̂k|k−ζ 2) . . . fk (x̂k|k−ζ n)

}
(11)

where X̂k+1|k is the set of the 2n + 1 predicted vectors
corresponding to the set X̂k|k of the predetermined vectors.
3- The weighted average is then computed using the formula:

x̂k+1|k =
2n+1∑
j=1

wjx̂jk+1|k (12)

where the weight wj is given by:

wj =


λ

n+ λ
j = 1

1
2(n+ λ)

j 6= 1
(13)

4- The dependency matrix Pxxk+1|k is calculated through the
weighted sum of the squared variations of the elements of
the set X̂k+1|k around the calculated weighted average x̂k+1|k
while using the same weights as defined above. This leads to:

Pxxk+1|k =
2n+1∑
j=1

wj
{
(x̂jk+1|k − x̂k+1|k )(x̂jk+1|k − x̂k+1|k )

T
}
(14)

5- The elements of the set X̂k+1|k are then used to get the
set of predicted outputs Ŷk+1|k through the function hk+1,
as defined by (1). This is given by:

Ŷk+1|k
= {ŷ1k+1|k ŷ2k+1|k ŷ3k+1|k · · · ŷ(2n+1)k+1|k}

= {hk+1(x̂1k+1|k ) hk+1(x̂2k+1|k ) . . . hk+1(x̂(2n+1)k+1|k )}

(15)
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6- The weighted average of the predicted output is computed
using the same weights as defined above. This leads to:

ŷk+1|k =
2n+1∑
j=1

wjŷjk+1|k (16)

7- Using these results, the dependency matrix Pyyk+1|k is
calculated from the weighted sum of the squared variations
of the elements of the set Ŷk+1|k around their average ŷk+1|k .
Finally, the elements of the cross dependency matrix Pxyk+1|k
are estimated from the weighted sum of the variations of the
elements of X̂k+1|k around their average x̂k+1|k multiplied by
the variations of the elements of the set Ŷk+1|k around their
average ŷk+1|k . As a result we get:

Pyyk+1|k =
2n+1∑
j=1

wj
{
(ŷjk+1|k − ŷk+1|k )(ŷjk+1|k − ŷk+1|k )

T
}
(17)

Pxyk+1|k =
2n+1∑
j=1

wj
{
(x̂jk+1|k − x̂k+1|k )(ŷjk+1|k − ŷk+1|k )

T
}
(18)

To avoid singularity, equation (17) is modified by adding a
very small extra term (V ' 10−6Im) to ensure the existence
of P−1yyk+1|k . Therefore, (17) takes the form:

Pyyk+1|k =V+
2n+1∑
j=1

wj
{
(ŷjk+1|k − ŷk+1|k )(ŷjk+1|k − ŷk+1|k )

T
}

(19)

2) FILTERING STEP OF THE SRLS ESTIMATOR
The mathematical structure of the filtering stage of the RLS
observer is used in this step. Therefore, we have:

Kk+1 = Pxyk+1|kP
−1
yyk+1|k (20a)

x̂k+1|k+1 = x̂k+1|k + Kk+1(yk+1 − ŷk+1|k ) (20b)

Pxxk+1|k+1 = Pxxk+1|k − Kk+1Pyyk+1|kK
T
k+1 (20c)

C. COMPARISON BETWEEN THE PREDICTION STEP OF
THE SRLS AND RLS OBSERVERS
Although the procedure used to calculate the predicted esti-
mate of the state vector using the SRLS and the RLS
observers are different, relationships between the results of
these two estimators exist. The details of our analysis to
achieve these relationships are presented in Appendix B.

By expanding (12) while using (11), getting Taylor series
expansion of the expanded equation up to the second order
approximation, and finally after simple mathematical manip-
ulation, x̂k+1|k can be written in the form:

x̂k+1|k = fk (x̂k|k )+ Dk (x̂k|k )+ H .O.T (21)

where:

Dk (x̂k|k ) =
1
2

[
∇
TPxxk|k∇

]
fk (xk )

∣∣∣
x̂k|k

(22)

and ∇ donates for the gradient operator with respect to the
vector x, and H.O.T.is the higher order terms.
Equation (21) is not more than the predicted estimate of the
RLS estimator in addition to the extra terms Dk (x̂k|k ) and the
H .O.T . As will be demonstrated later on, these extra terms
will not only improve the results of the prediction step and
hence the overall performance of the SRLS observer, but also
improves its convergence behavior.

Similarly, by expanding (14) while using (11) and (21),
then after simple algebraic manipulations, one gets:

Pxxk+1|k = ÂkPxxk|k Â
T
k − Dk (x̂k|k )D

T
k (x̂k|k )+ H .O.T (23)

Or:

Pxxk+1|k = ÂkPxxk|k Â
T
k +8k (x̂k|k )+ H .O.T (24)

where:

8k (x̂k|k ) = −Dk (x̂k|k )DTk (x̂k|k ) (25)

and Dk (x̂k|k ) is as defined by (22).
One can notice that (24) is equivalent to (2-c) of the RLS
observer except for the constant matrix N is replaced by
8k (x̂k|k ), in addition to the H.O.T.

The similarities between (16), (17), and (18) and those of
the RLS observer can be achieved by using the same pro-
cedure as presented in Appendix B. This leads to following
results:

ŷk+1|k = hk+1(x̂k+1|k )+ H .O.T (26a)

Pyyk+1|k = Ĥk+1Pxxk+1|k Ĥ
T
k+1 +9k (x̂k|k )+ H .O.T (26b)

Pxyk+1|k = Pxxk+1|k Ĥ
T
k+1 +�k (x̂k|k )+ H .O.T (26c)

where Ĥk+1 is as given by (7), while:

9k (x̂k|k ) = Ĥk+18k (x̂k|k )ĤT
k+1 + H .O.T

�k (x̂k|k ) = 8k (x̂k|k )ĤT
k+1 + H .O.T (27)

From this analysis, although there are similarities between
the outputs of the prediction step resulting from the SRLS
and the RLS observers, two main factors highly improve the
performance of the SRLS estimator. Firstly, the computation
of the Jacobian matrices, especially that of fk , is not required
to get (14), (17), and (18). Secondly, higher order terms in
Taylor series expansion, which are not included in the RLS
observer, will obviously improve the estimation results of the
SRLS observer.

From our detailed analysis of Pxxk+1|k , Pyyk+1|k and
Pxyk+1|k , it has been noticed that higher-order terms in
8k (x̂k ), 9k (x̂k|k ), �k (x̂k|k ) are multiplied by (n + λ)i where
the exponent i increases as the order increases. Therefore,
if (n + λ) > 1, higher order terms will increase and
lead to misleading results. Therefore, to avoid this problem,
the parameter λ is chosen such as:

λ = −n+ α2n (28)

where α is an additional scaling parameter to be chosen such
that (n+ λ) << 1 (e.g. α ' 10−3).

VOLUME 7, 2019 100799



M. F. Hassan, M. Hammuda: New Observer for Nonlinear Systems With Application to Power Systems

Moreover, the terms8k (x̂k ), 9k (x̂k|k ), �k (x̂k|k ) in (24) and
(26) contain higher-order terms of Taylor series expansion of
fk which can affect the state estimation results. Therefore,
the weighting factor w1 in the summation of the squared
variations around the mean can be modified to the form w1 =
λ

n+λ + (1 + β − α2), where β is another scaling parame-
ter which permits the control of the higher order weights.
A reasonable value of this parameter is 2. Therefore, (25) is
modified to take the form:

8k (x̂k ) = −(β − α2)Dk (x̂k|k )DTk (x̂k|k ) (29)

V. CONVERGENCE ANALYSIS
This section is devoted to the convergence analysis of the
proposed algorithm. In order to facilitate the follow-up of
our analysis, the procedure to be used is summarized in the
following steps:
Step 1: The error equation of the estimated state vector

resulting from the SRLS observer is firstly derived.
Step 2: After getting the relationship between the estima-

tion errors resulting from the SRLS and the RLS
estimators, we transform the equation derived in
step 1 to that of the RLS estimator.

Step 3: We prove the convergence of the estimation error
resulting from the RLS estimator to the desired
zero steady state.

Step 4: Through the relation derived in step 2, we show
that the estimation error of the SRLS estimator
converges to the desired zero steady state faster
than that resulting from the RLS estimator.

Before starting, the system described by (1) is assumed to
fulfill the following assumptions:
Assumption 1: The system (1) is affine on the neighbor-

hoods of xk, x̂k|k and xk+1, x̂k+1|k.

Assumption 2: The pair of matrices Âss =
∂f Tk
∂xk

∣∣∣∣T
x̂ss
, Ĥss =

∂hTk+1
∂xk+1

∣∣∣∣T
x̂ss

is observable at the equilibrium point xss. Moreover,

the system (1) is locally observable at the equilibrium point
xss, i.e. there exists an entire non-empty domain �(xss) ⊆
χr (xss) in the neighborhood of the equilibrium point xss such
that for every xk in that neighborhood other than xss the
system is distinguishable from xss.
Assumption 3: The vector functions fk , hk+1; the matrices

Ak =
(
∂f Tk
∂xk

)T
,Hk+1 =

(
∂hTk+1
∂xk+1

)T
and their estimates are

bounded in xk , x̂k|k for all ‖xk‖ ≤ r̄ and
∥∥x̂k|k∥∥ ≤ r̄ where r̄

is a positive scalar.
Assumption 4: The pairs of matrices (Ak ,Hk+1) and their

estimates are observable or detectable for all xk ∈ � and
x̂k|k ∈ � except for a finite number of points.
Step 1 (State Estimation Error of the SRLS Estimator):

As the states and the estimated states converge to xss, then
Âk , Ĥk+1 converge to Ass,Hss respectively. Let:

Âk = Ass +1Âk, Ĥk+1 = Hss +1Ĥk+1,

Kk+1 = Kss +1Kk+1 (30)

where Kss represents the gain matrix at the equilibrium. Now,
we define the following:

xk = x̂k|k + x̃k|k (31)
xk+1 = x̂k+1|k + x̃k+1|k (32)
xk+1 = x̂k+1|k+1 + x̃k+1|k+1 (33)

Substituting from (31) into (1), and according to assumption
1, fk can be expanded using Taylor series to the first order
approximation. Therefore, we get:

xk+1 = fk
(
x̂k|k + x̃k|k

)
(34)

xk+1 = fk
(
x̂k|k

)
+ Âk x̃k|k (35)

Using (21), then (34) takes the form:

xk+1 = x̂k+1|k − Dk (x̂k|k )+ Âk x̃k|k (36)

From which:

x̃k+1|k = xk+1 − x̂k+1|k = Âk x̃k|k − Dk (x̂k|k ) (37)

Again, according to assumption 1, we can expand hk+1
using Taylor series to the first order approximation. Hence,
the output yk+1 while using (32) is such that:

yk+1 = hk+1
(
x̂k+1|k + x̃k+1|k

)
(38)

yk+1 = hk+1
(
x̂k+1|k

)
+ Ĥk+1x̃k+1|k (39)

Using (26-a) while ignoring theH.O.T, then (39) is such that:

yk+1 = ŷk+1|k + Ĥk+1x̃k+1|k (40)
yk+1 − ŷk+1|k = Ĥk+1x̃k+1|k (41)

Substituting from (20-b) into (33) we get:

x̃k+1|k+1 = xk+1 − x̂k+1|k+1
= xk+1 −

[
x̂k+1|k + Kk+1

(
yk+1 − ŷk+1|k

)]
(42)

Using (36) and (40) into (42), one gets:

x̃k+1|k+1 = Âkx̃k|k − Dk(x̂k|k )− Kk+1Ĥk+1x̃k+1|k (43)

Again, substituting from (36) into (43), we have:

x̃k+1|k+1 = Âk x̃k|k − Dk(x̂k|k )

−Kk+1Ĥk+1

[
Âk x̃k|k − Dk (x̂k|k )

]
x̃k+1|k+1 =

[
I − Kk+1Ĥk+1

] [
Âk x̃k|k − Dk(x̂k|k )

]
(44)

Now using (30), equation (44) can be written in the form:

x̃k+1|k+1 =
[
I − (Kss +1Kk+1)

(
Hss +1Ĥk+1

)]∗[(
Ass +1Âk

)
x̃k|k − Dk(x̂k|k )

]
(45)

Collecting terms and simplifying:

x̃k+1|k+1 = φssx̃k|k + ψk (x̃k|k )x̃k|k − Ek (46)

where:

φss = (I − KssHss)Ass
ψk (x̃k|k ) = −

(
Kss1Ĥk+1 +1Kk+1Ĥk+1

)
Ass

+

(
I − Kk+1Ĥk+1

)
1Âk

Ek =

(
I − Kk+1Ĥk+1

)
Dk(x̂k|k ) (47)

100800 VOLUME 7, 2019



M. F. Hassan, M. Hammuda: New Observer for Nonlinear Systems With Application to Power Systems

Step 2 (Transformation of the Estimation Error to That of
the RLS Estimator):

Now define:

x̃k|kRLS = x̃k|kSRLS +1x̃k|k (48)

where x̃k|kRLS , x̃k|kSRLS are, respectively, the errors of the RLS
and SRLS observers.
Substituting from (48) into (46), and assuming that ψk (x̃k|k )
is affine on a neighborhood of x̃k|kRLS , x̃k|kSRLS . Then,
by expandingψk using Taylor series to the first order approx-
imation, we get:

x̃k+1|k+1SRLS = φss
[
x̃k|kRLS −1x̃k|k

]
+ψk (x̃k|kRLS−1x̃k|k )

[
x̃k|kRLS−1x̃k|k

]
−Ek

(49)

OR

x̃k+1|k+1SRLS = φssx̃k|kRLS − φss1x̃k|k

+

[
ψk (x̃k|kRLS )− 9̂k1x̃k|k

]
×
[
x̃k|kRLS −1x̃k|k

]
− Ek (50)

where 9̂k =
∂ψT

k
∂xk

∣∣∣∣T
x̃k|kRLS

Equation (50) can also be rewritten as:

x̃k+1|k+1SRLS + φss1x̃k|k + ψk (x̃k|kRLS )1x̃k|k
+ 9̂k1x̃k|k

[
x̃k|kRLS −1x̃k|k

]
+ Ek

= φssx̃k|kRLS + ψk (x̃k|kRLS )x̃k|kRLS (51)

Since the right hand side (R.H.S) of (51) is the estimation
error resulting from the RLS estimator, then the left hand
side (L.H.S) is obviously x̃k+1|k+1RLS . Therefore, the rela-
tion between the estimation errors resulting from the two
observers is such that:

x̃k+1|k+1SRLS + φss1x̃k|k + ψk (x̃k|kRLS )1x̃k|k
+ 9̂k1x̃k|k

[
x̃k|kRLS −1x̃k|k

]
+ Ek = x̃k+1|k+1RLS (52)

Using (52), we can write (51) as:

x̃k+1|k+1RLS = φssx̃k|kRLS + ψk (x̃k|kRLS )x̃k|kRLS (53)

Step 3 (Convergence Analysis of Estimation Error While
Using RLS Estimator):

Let: Zk+1 = x̃k+1|k+1RLS ,Z0 = x̃(0), then (53) can be
rewritten in the form:

Zk+1 = φk+1ss Z0 +
k∑
j=0

φk−jss ψjZj (54)

Theorem 1: If the solutions of the homogeneous equation:

Zk+1 = φssZk for k ≥ 0 (55)

remain bounded as k →∞, then:
a) The same is true for all the solutions of the homoge-

neous system:

Zk+1 = φkZk for k ≥ 0 where φk = φss + ψk (56)

provided that:

∞∑
k=0

‖ψk‖ <∞ (57)

b) lim
k→∞
‖Zk+1‖ = 0, and the system (56) is locally

exponentially stable.
Proof of Theorem 1:
a) Equation (55) can be rewritten as:

Zk+1 = φk+1ss Z0 (58)

As a result of the assumption that the solution of (58) remains
bounded as k → ∞, there exist a constants c1 such that for
k + 1 ≥ 0: ∥∥∥φk+1ss

∥∥∥ ≤ c1 (59)

Since φk = φss + ψk , then (56) can be written in the
form:

Zk+1 = φk+1ss Z0 +
k∑
j=0

φk−jss ψjZj (60)

Taking the norm of (60), we get:

‖Zk+1‖ ≤
∥∥∥φk+1ss

∥∥∥ ‖Z0‖ + k∑
j=0

∥∥∥φk−jss

∥∥∥ ∥∥ψj∥∥ ∥∥Zj∥∥ (61)

Substituting from (59) into (61), one gets:

‖Zk+1‖ ≤ c1 ‖Z0‖ +
k∑
j=0

c1
∥∥ψj∥∥ ∥∥Zj∥∥ (62)

Let gj = c1
∥∥ψj∥∥, then we have:

‖Zk+1‖ ≤ c1 ‖Z0‖ +
k∑
j=0

gj
∥∥Zj∥∥ (63)

From discrete-time Gronwall lemma [33], we have:

‖Zk+1‖ ≤ c1 ‖Z0‖
k∏
j=0

(1+ gj) ≤ c1 ‖Z0‖ exp

 k∑
j=0

gj


(64)

Using assumption (57), there exists a positive constant c2

such that
∞∑
k=0

∥∥ψj∥∥ ≤ c2. Therefore, we have:
‖Zk+1‖ ≤ c1 ‖Z0‖ exp (c1c2) (65)

Thus, the solution of the homogeneous system (56) is
bounded.
Since the homogeneous system is stable at the equilibrium

point xss, and according to assumption 4, the pair (Âk , Ĥk+1)
is observable or detectable for all x̂k|k ∈ � except for a
finite number of points; then there exist 0 ≤ ε(k + 1) <
1 such that

∥∥φk+1ss

∥∥ = ε(k + 1)k+1 for k + 1 ≥ K .
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FromGronwall lemma while using (57), equation (65) can be
written as:

‖Zk+1‖ ≤ ε(k + 1)k+1 ‖Z0‖ exp (c1c2)

≤ ε̄k+1 ‖Z0‖ exp (c1c2) (66)

where ε̄ = sup {ε(j), j ∈ (K ,K + 1, . . . ,∞)} and 0 ≤ ε̄ < 1.
Therefore, lim

k→∞
‖Zk+1‖ = 0 as lim

k→∞
ε̄k+1 = 0, and hence

the system is locally exponentially stable.
Step 4 (Comparison Between the Speed of Convergence of

the RLS and SRLS Estimators):
From (62), since the term:

{φss1x̃k|k + ψk (x̃k|kRLS )1x̃k|k
+ 9̂k1x̃k|k

[
x̃k|kRLS −1x̃k|k

]
+ Ek}

is a vector with a finite value, it can be written in the form:

φss1x̃k|k + ψk (x̃k|kRLS )1x̃k|k + 9̂k1x̃k|k
[
x̃k|kRLS −1x̃k|k

]
+Ek = θk x̃k+1|k+1SRLS (67)

where θk ∈ Rnxn is a matrix with adjustable parameters to
satisfy (67).

As a result, (51) can be written as:

(I+ θk) x̃k+1|k+1SRLS = φssx̃k|kRLS + ψk (x̃k|kRLS )x̃k|kRLS (68)

Let
∥∥(I+ θk) x̃k+1|k+1SRLS∥∥ = (1+ µk) ∥∥x̃k+1|k+1SRLS∥∥, then

the norm of (68) is given by:∥∥x̃k+1|k+1SRLS∥∥ ≤ 1
(1+ µk)

{
‖φss‖

∥∥x̃k|kRLS∥∥
+
∥∥ψk (x̃k|kRLS )∥∥ ∥∥x̃k|kRLS∥∥} (69)

One can notice that the R.H.S of (69) is that of the RLS
observer divided by (1+ µk). This means that the conver-
gence rate of the SRLS is a scaled version of the RLS
observer with a scaling factor 1

1+µk
< 1. As it is made

clear from (67), such a scaling factor is due to the extra term
θk x̃k+1|k+1SRLS resulting fromDk (x̂k|k ) in (21). SinceDk (x̂k|k )
represents the higher order terms in Taylor series expansion
of fk , then, as expected, the convergence of x̃k+1|k+1SRLS to
the desired zero steady state value will be faster than that
of x̃k+1|k+1RLS .

VI. SIMULATION EXAMPLES
In this section, two illustrative examples of highly nonlin-
ear power systems are presented to show the effectiveness
of the developed SRLS estimator in handling discrete-time
nonlinear estimation problems. For the sake of comparison,
the states of the two systems are also estimated using the HG,
the SDRE, and the RLS observers.

A. EXAMPLE I: SYNCHRONOUS GENERATOR
Consider the system of an uncontrolled synchronous genera-
tor connected to an infinite bus through a transmission line.
The model of the system is given by [34], (70), as shown
at the top of the next page, where x1 = δ is the angular
position (rad); x2 = 1ω = ω − ω0 is the change in angular

speed ω(rad/s) from its nominal value ωo(rad/s); x3 = E ′q
is the q-axis transient EMF of the armature; x4 = Ef is the
field voltage; 1T is the sampling rate; P̄ is the mechanical
power; x ′d is the generator direct-axis transient reactance;
xd , xq are the direct and quadrature-axis current; xe is the
transmission line reactance; T ′d0 is the d-axis open circuit field
time constant (sec); H is the inertia constant (sec); KE is the
exciter gain constant; TE is the exciter time constant (sec); ν
is the infinite bus voltage; and νref is the reference voltage.
The values of the parameters are given in Table 1.

TABLE 1. System parameters of example I.

1) THE HG OBSERVER
To be able to apply this observer, the system should be
transformed to the form [35]:

Fk (xk ) =


0 1 0 0

0 0 c1c2
xq − xe
x ′d + xe

0

0 0 0
1
TE

0 0 0 0

,

C =


1
0
0
0


T

(71a)

3(xk ) =


1 0 0 0
0 1 0 0

0 0 c1c2
xq − xe
x ′d + xe

0

0 0 0
c1c2
TE

xq − xe
x ′d + xe

,
(71b)

S−1CT
=
[
4 6 4 1

]T

1θ =



1 0 0 0

0
1
θ

0 0

0 0
1
θ2

0

0 0 0
1
θ3

 (71c)
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x1k+1 = x1k +1T
(
x2k
)

x2k+1 = x2k +1T
ωo

2H

(
P̄−

ν sin x1k
xq + xe

x3k

)
−1T

ωo

2H

(
ν sin x1k
xq + xe

[
xq
x3k − ν cos x1k

x ′d + xe
− x ′d

x3k − ν cos x1k
x ′d + xe

])
x3k+1 = x3k +1T

1
T ′do

(
x4k − x3k − xd

x3k − ν cos x1k
x ′d + xe

)
x4k+1 = x4k +1T

1
TE

(
−x4k + KEνref

)
−1T

1
TE

KE
√[

xqν sin(x1k )
xq + xe

]2
+

[
x3k − x

′
d
x3k − ν cos x1k

x ′d + xe

]2
yk+1 = x1k+1 (70)

a21 =
1T
x1k

c1

(
P̄− c2

[
xq − x ′d

] x3k − ν cos x1k
x ′d + xe

)
a31 =

1T
x1k

([
x ′d − xd

]
T ′do

)(
x3k − ν cos x1k

x ′d + xe

)
a41 =

{
1T (KE )
TEx1k

νref

−
1T (KE )
TEx1k

√[
xqν sin(x1k )
xq + xe

]2
+

[
x3k − x

′
d
x3k − ν cos x1k

x ′d + xe

]2
Ck (xk ) =

[
1 0 0 0

]
(73)

where θ is chosen to be equal to 2, and:

c1 =
ωo

2H
, c2 =

ν sin(x̂1k )
xq + xe

(72)

2) THE SDRE OBSERVER
By writing the system in the state dependent linear form [36],
we get:

Ak (xk ) =


1 1T 0 0
a21 1 −1T (c1c2) 0

a31 0 1−
1T
T ′d0

1T
T ′d0

a41 0 0 1−
1T
TE


where, (73) as shown at the top of this page. The param-
eters c1, c2 are as given by (72). The weighting matrices
of the dual infinite regulator problem, Q;R, are chosen as
follows:

Q = diag ([0.001; 0.001; 0.001; 0.001])

R = 0.001 (74)

3) THE RLS OBSERVER
The Jacobian matrix Ak of the system is given by:

Ak

=


1 1T 0 0

−1T (c1d1) 1 −1T (c1c2) (1+ c3) 0

−1T (c4v sin x1k ) 0 1−
1T
Td0

(1+ c4)
1T
Td0

−1T
KEd2
TE

0 −1T
KE
TE

d3 1−
1T
TE


Ck+1 =

[
1 0 0 0

]
(75)

where c1, c2 are as given by (72).

c3 =
xq − x ′d
x ′d + xe

, c4 =
xd − x ′d
x ′d + xe

, c5 =
xqv

xq + xe
,

c6 =
x ′d

x ′d + xe
,

c7 =
√[
c5 sin x1k

]2
+
[
x3k − c6

(
x3k − ν cos x1k

)]2
d1 =

v cos x1k
xq + xe

[
(1+ c3)x3k − c3v cos x1k

]
+ c3v sin x1k

[
v cos x1k
xq + xe

]
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d2 =
[(
c25 − v

2c26
)
cos x1k − vc6x3k (1− c6)

]
sin x1k /c7

d3 =
[
c6x3k − x3k − vc6 cos x1k

]
[c6 − 1] /c7 (76)

The matrices P0|0; N ; S, as given in (2-c) and (6), are chosen
as follows:

P0|0 = diag ([1; 1; 1; 1])

N = diag ([0.001; 0.001; 0.001; 0.001])

S = 0.001 (77)

4) THE SRLS OBSERVER
This observer does not need any state transformation or the
computation of the Jacobian matrix. The algorithm is directly
applied while using the matrix Pxx0|0 = diag ([1; 1; 1; 1]) .

FIGURE 1. Estimated states for the synchronous generator in example I.

5) SIMULATION RESULTS OF EXAMPLE I
The initial condition of the state vector and the estimator
are, respectively, given by x0 = [0.9309 1.4001 2.6907]T

and x̂0|0 =
[
0.1 0 1.2 0.1

]T . Fig. 1 shows the estimated
states of the system using the four estimation approaches,
whereas Fig. 2 shows their corresponding absolute state esti-
mation errors (taken as the absolute difference between the
estimated and actual states). For each observer, the maximum
overshoot, the settling time of the estimation error of each
state, and the average CPU time are presented in Table 2.
The reported settling times are taken at the instant the error
responses reaches and remain within ±0.02.
From the demonstrated results, it is clear that the SRLS

observer leads to the shortest settling time with the least
overshoot when compared to the other three observers. More
preciously, and as shown in Table 2, the settling times of the
estimation errors resulting from the SRLS observer (except
for the first state) is less than 8% of the HG observer, 12%

FIGURE 2. Absolute estimation error in the estimated states of example I.

TABLE 2. Comparison between performance the observers in example I∗.

of the SDRE observer, and 22% of the RLS observer. For
the first state, the settling time of the RLS and the SRLS
observers are the same and 25% less than that of the SDRE
observer and 0.17% less than the HG observer. Themaximum
error overshoot of the SRLS observer is less than 5% of the
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RLS observer and much less than that of the HG and the
SDRE observers.

Furthermore, no estimation error overshoot is observed
in the error responses of the first and third states while
using the SRLS observer. The improvements introduced
by the SRLS observer came on the expense of increasing
the average CPU time (0.4 msec) when compared to the
RLS observer (0.1 msec) and the hg observer (0.05 msec).
However, the computational times of the four observers are
within the 1 msec sampling period as used in our simulation.
In the next subsection, we propose a procedure to decrease
the computational time of the SRLS observer with negligible
effects on the achieved results.

FIGURE 3. Difference of the filter step of the SRLS and MSRLS observers.

6) REDUCING THE COMPUTATIONAL TIME
OF THE SRLS OBSERVER
As have been stated in the convergence analysis, the achieved
improvements in the estimated states resulting from the SRLS
observer are contributed to its prediction step due to the extra
terms included in (21). To reduce the computational time of
the SRLS observer without affecting the estimation results,
a modified version of the SRLS observer (MSRLS) is pro-
posed. In this version, equations (2-b), (4), (5), (6), (7) of the
RLS observer are used to calculate ŷk+1|k ,Kk+1,Pk+1|k+1
instead of (16), (18), (19), (20-a), (20-c) which usually need
more computational time. By applying the MSRLS estimator
to the problem at hand, the average CPU time was reduced
by almost 35% of that of the SRLS observer. The difference
between the filtered state estimates of the SRLS and the
MSRLS observers are shown in Fig. 3. From the achieved
results, it is very clear that the differences are negligible
since they are less than 3 × 10−7. Fig. 4 demonstrates the
estimation errors from both observers which are almost iden-
tical. One has to notice that the estimation errors resulting
from the HG and SDRE observers (shown in Fig. 2) are
not displayed in Fig. 4 due to the large differences in their
settling times and overshoots when compared with the SRLS
observer that would have made it difficult for us to clearly
compare the behavior of the SRLS and MSRLS observers.
The preceding results validate the applicability of theMSRLS

FIGURE 4. Estimation error of SRLS and MSRLS observers.

observer as a computationally efficient variant of the SRLS
observer.

B. EXAMPLE II: INDUCTION MACHINE
In this example, the aim is to monitor the behavior of the non-
linear induction machine for which the mathematical model
is given by [37]:

x1k+1 = x1k +1T
(
k1x1k + z1x2k + k2x3k + z2

)
x2k+1 = x2k +1T

(
−z1x1k + k1x2k + k2x4k

)
x3k+1 = x3k +1T

(
k3x1k + k4x3k +

[
z1 − x5k

]
x4k
)

x4k+1 = x4k +1T
(
k3x2k + k4x4k −

[
z1 − x5k

]
x3k
)

x5k+1 = x5k +1T
(
k6z3 + k5

[
x1k x4k − x2k x3k

])
yk+1 =

[
k7x1k+1 + k8x3k+1 k7x2k+1 + k8x4k+1

]T (78)

In the above system, x1, x2 are the components of the stator
fluxes; x3, x4 are the components of the rotor fluxes; and x5 is
the angular velocity. The frequency and the amplitude of the
stator’s voltage are denoted by z1 and z2, respectively; while
z3 represents the load torque. The parameters k1, k2, . . . , k8
depend on the considered drive. The values of these parame-
ters are given in Table 3.

TABLE 3. System parameters of example II.

The HG observer cannot be applied to estimate the states
of this system since the output is a linear combination of the
states.

1) THE SDRE OBSERVER
Although, there are several choices for the A,C matri-
ces, we could not achieve any combination that leads to
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a convergent estimator. Therefore, we failed to apply this
observer to the system at least with the several trails wemade.

2) THE RLS OBSERVER
The Jacobian matrix of the system is given by, (79), as shown
at the bottom of this page. The matrices P0|0,N , S are chosen
as follows:

P0|0 = diag ([10; 10; 10; 10; 10])

N = diag ([0.0001; 0.0001; 0.0001; 0.0001; 0.0001])

S = diag ([0.01; 0.01]) (80)

3) THE SRLS AND THE MSRLS OBSERVERS
Both the SRLS and the MSRLS observers are directly appli-
cable to the system model while the matrix Pxx0|0 is as
given in (80).

4) SIMULATION RESULTS OF EXAMPLE II
The initial conditions of the state vectors of the model and the
observer are chosen as: x0 = [0.2− 0.6− 0.4 0.1 0.3]T and
x̂0|0 =

[
0.5 0.1 0.3 −0.2 4

]T , respectively. The results
of the RLS and the SRLS observers are shown in Figs. 5.
The maximum overshoots and settling times of the estimation
errors are presented in Table 4 in addition to the average
CPU time per sample of each observer. The errors in the
filtering step between the SRLS and the MSRLS are also
shown in Fig. 6, while the estimation errors between the
actual and the estimated states of the two filters are shown
in Fig. 7.

From the achieved results, it can be concluded that the
SRLS observer leads to much better estimated states when
comparedwith the RLS observer.Moreover, the settling times
of the SRLS observer are less than 10% of the RLS observer,
and its maximum overshoots are less than 41% of the RLS
observer. It can also be noticed that no overshoot is observed
in the error responses of the first, third, and fifth states while
using the SRLS observer. The average CPU time per sample
of the SRLS observer is 0.52 msec while that of the RLS
observer is 0.15 msec. However, both are within the chosen
sampling period (1 msec).

It can also be observed from Fig. 7 that the results of the
SRLS and the MSRLS observers are almost identical. The
suggested modification reduced the average CPU time per
sample to 0.33 msec which is almost 60% of the CPU time

FIGURE 5. The estimated states (X1-X5) of the Induction Machine in
example II.

per sample for the SRLS observer. This again supports the
applicability of the MSRLS estimator in practice.

C. DISCUSSION OF THE RESULTS
1- The proposed SRLS estimator and its modified version

(MSRLS) lead to much better estimation results com-
pared with those achieved from the HG, the SDRE, and
the RLS estimators.

2- Unlike other available estimators in the literature, the
developed SRLS estimator and its modified version did
not show any undesired large overshoots at the start
of the estimation process. More specifically, it is clear
from Tables 2,4 and Figs. 1,5 that the overshoot of the
SRLS and the MSRLS observers are almost negligible

Ak =


1+1Tk1 1Tz1 1Tk2 0 0
−1Tz1 1+1Tk1 0 1Tk2 0
1Tk3 0 1+1Tk4 1T (z1 − x5k ) −1Tx4k
0 1Tk3 1T (x5k − z1) 1+1Tk4 1Tx3k

1Tk5x4k −1Tk5x3k −1Tk5x2k 1Tk5x1k 1


Ck+1 =

[
k7 0 k8 0 0
0 k7 0 k8 0

]
(79)
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TABLE 4. Performance comparison between the observers in example II∗.

FIGURE 6. Differences of the filter step of the SRLS, the MSRLS observers.

when compared with the other observer(s). Therefore,
they do not lead to any harmful control strategies when
used to generate control signals in observer-based con-
trolled systems.

3- The transient period of the estimation error is very
short compared to that of the HG, the SDRE and the
RLS estimators. This fact can also be justified from
Tables 2,4 which clearly indicate that the transmission

FIGURE 7. Estimation Errors of the SRLS and the MSRLS observers.

period of the estimation error of the SRLS estimator
is very short relative to the other estimators. This sig-
nificantly enhances the applicability of this observer
whether in monitoring and/or generating state feedback
control strategies.

4- The applicability of the proposed technique has no
limitation. In other words, it can deal with any type of
system nonlinearities (whether strong or weak), needs
no state transformation, can deal with anymeasurement
model (linear or nonlinear), does not have any restric-
tions (such as that in the SDRE approach), and finally
does not need the derivation of the Jacobian matrix
which may be difficult to achieve in some cases.

5- The proposed MSRLS estimator reduces the average
CPU time per sample with a reasonable value (the CPU
time of the MSRLS estimator is more or less 60%
of that of the SRLS estimator) without affecting the
estimation results (the error between the two estimators
is within the value of 10−7). It is obvious that this
increases the domain of its applicability.

6- In principle, the proposed observer can be applied to
estimate the states of large-scale nonlinear systems.
However, in this case it is expected that the numeri-
cal accuracy of the results will not be as good as for
small-scale nonlinear systems. This is simply due to
rounding off resulting from the inversion of relatively
large matrices. For this reason, we are now in the
process of developing a decomposed RLS estimator.
The preliminary achieved results are very encourag-
ing and we hope to finalize this research in the near
future.
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From the preceding results, it is clear that the objectives of
this work, as stated in section 2, have been fully satisfied.

VII. CONCLUSION
In this paper, the SRLS observer is developed as a new
approach for discrete-time nonlinear estimation problems.
Through this approach, the results of the prediction step are
greatly improvedwhich in turn lead to very precise estimation
results. Unlike other available techniques in the literature,
undesired large overshoots, usually taking place at the start
of the estimation process, are avoided while keeping the tran-
sient period of the estimation error very short. In the proposed
observer, a set of predetermined points around the filtered
estimate of the state vector are used to get highly precise
predicted estimates of the states. This obviously leads to
highly improved filtered estimates of the states. The devel-
oped observer overcomes the main drawbacks of the well-
known observers in the literature. It can deal with general
nonlinear systems irrespective of their type of nonlinearities,
leads to a unique solution, and avoids the computation of
the Jacobian matrices which may be difficult to achieve in
some nonlinear systems. The mathematical structure of the
developed approach is presented and compared with the RLS
observer. The convergence of the SRLS observer is analyzed
and the results show that it has better performance when com-
pared with the RLS observer. Illustrative examples of highly
nonlinear power systems are presented to show the effec-
tiveness and the superiority of the proposed approach when
compared with the HG, the SDRE, and the RLS observers.
Moreover, a modified version of the developed observer is
proposed to reduce the computational time while maintaining
the same quality of the estimation results.

APPENDIX A
THE REGULARIZED LEAST SQUARE ESTIMATOR
The idea is to formulate and solve at each sampling point
a regularized least-square estimation problem for nonlinear
discrete-time dynamical systems. Therefore, let us consider
the following nonlinear discrete-time dynamical system:

xk+1 = fk(xk)+ γ k (A-1)

yk+1 = hk+1(xk+1) (A-2)

where xk , yk+1, fk(xk) are as defined in section II, while
γ k ∈ R

n is a vector representing model inaccuracy.
Let x̂k|k ∈ Rn denote for the estimate of xk at the sampling

instant k. Fix the time instant k, and assume that the filtered
estimate x̂k|k has been computed as well as the recursive
solution of the nonlinear matrix discrete Riccati like equation
Pk|k (assumed positive definite).
Given a new measurement yk+1, we pose the problem of

estimating xkagain alongwith γ k by solving the RLS problem
given by:

min
xk,γ k

J =
1
2
{‖xk −x̂k|k

∥∥2
P−1k|k
+
∥∥γ k∥∥2N−1

+
∥∥yk+1 − hk+1(xk+1)∥∥2W−1} (A-3)

where N ∈ Rnxn,W ∈ Rmxm,Pk|k ∈ Rnxn are positive
definite symmetric weighting matrices and Pk|k is as defined
above.
Theorem 1: 1- Given a newmeasurement yk+1, the estimate

of the vectors γ k (to be denoted by γ̂ k|k+1) and xk (to be
denoted by x̂k|k+1) which minimize (A-3) while taking into
consideration (A-1) are given by:

γ̂ k|k+1 = NĤ
T
k+1W

−1
[
yk+1 − ĥk+1(x̂k+1|k+1)

]
(A-4)

x̂k|k+1 = x̂k|k + Pk|kÂ
T
k Ĥ

T
k+1W

−1
[
yk+1 − ĥk+1(x̂k+1|k+1)

]
(A-5)

where x̂k+1|k+1 is the filtered estimate of xk+1 given the set
of measurements

{
y1, y2, . . . , yk, yk+1

}
; Âk is the estimate

of the Jacobean matrix fkusing x̂k|k; ĥk+1(x̂k+1|k+1) is the
estimate of hk+1 using x̂k+1|k+1; and Ĥk+1 is the estimate
of the Jacobean matrix of hk+1 using x̂k+1|k.

2- The filtered estimate x̂k+1|k+1 is given by:

x̂k+1|k+1 = x̂k+1|k + G1k+1

[
yk+1 − ĥk+1(x̂k+1|k)

]
(A-6)

where, x̂k+1|k the predicted estimate of xk+1, and the gain
matrix G1k+1 are given by:

x̂k+1|k = fk(x̂k|k) (A-7)

G1k+1 = Pk+1|kĤ
T
k+1

[
Ĥk+1Pk+1|kĤ

T
k+1 +W

]−1
= Pk+1|k+1Ĥ

T
k+1W

−1 (A-8)

with

Pk+1|k = ÂkPk|kÂ
T
k + N (A-9)

and the matrix Riccati like equation Pk+1|k+1 is given by:

Pk+1|k+1 =
[
P−1k+1|k + Ĥ

T
k+1W

−1Ĥk+1

]−1
= [I− G1k+1Hk+1]Pk+1|k (A-10)

Proof: 1- The necessary conditions of optimality, taking
into consideration (A-1), lead to:

∂J
∂γ k

= 0

⇒ N−1γ k +

(
∂xTk+1
∂γ k

)[
−
∂hTk+1(xk+1)

∂xk+1
W−1yk+1

]

+

(
∂xTk+1
∂γ k

)[
∂hTk+1(xk+1)

∂xk+1
W−1hk+1(xk+1)

]
= 0

(A-11)

Denoting the minimizing argument of xk+1 by x̂k+1|k+1 we
get:

γ̂ k|k+1 = N
∂hTk+1(xk+1)

∂xk+1

∣∣∣∣∣
x̂k+1|k+1

×W−1
[
yk+1 − ĥk+1(x̂k+1|k+1)

]
(A-12)
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Defining x̂k+1|k , the predicted estimate of xk+1 by:

x̂k+1|k = fk(x̂k|k) (A-13)

and let x̂k+1|k+1 = x̂k+1|k + 1x̂k+1|k where 1x̂k+1|k is
the difference between the filtered estimate x̂k+1|k+1 and
the predicted estimate x̂k+1|k. Then, the Jacobean matrix
Ĥk+1(x̂k+1|k+1) of hk+1 is given by:

Ĥ
T
k+1(x̂k+1|k+1) = Ĥ

T
k+1(x̂k+1|k +1x̂k+1|k)

=
∂hTk+1(xk+1)

∂xk+1

∣∣∣∣∣
x̂k+1|k+1

(A-14)

Assume that x̂k+1|k+1 is close to x̂k+1|k that we can approxi-
mate Ĥk+1(x̂k+1|k+1x̂k+1|k) by Ĥk+1(x̂k+1|k). For simplicity
of writing and without introducing any ambiguities, let us
drop the argument of Ĥk+1(·), hence:

Ĥk+1 = Ĥ
T
k+1(x̂k+1|k+1) ∼= Ĥk+1(x̂k+1|k) (A-15)

Using (A-13) into (A-11) we get (A-4).
Also;

∂J
∂xk
= 0

⇒ P−1k|k[xk−x̂k|k]−
∂fTk (xk)
∂xk

[
∂hTk+1(xk+1)

∂xk+1
W−1yk+1

]

+
∂fTk (xk)
∂xk

[
∂hTk+1(xk+1)

∂xk+1
W−1hk+1(xk+1)

]
= 0

From which we get:

x̂k|k+1 = x̂k|k + Pk|k
∂fTk (xk)
∂xk

∣∣∣∣∣
x̂k|k+1

Ĥ
T
k+1W

−1yk+1

−Pk|k
∂fTk (xk)
∂xk

∣∣∣∣∣
x̂k|k+1

Ĥ
T
k+1W

−1ĥk+1(x̂k+1|k+1)

(A-16)

Again, let x̂k|k+1 = x̂k|k + 1x̂k|k, where 1x̂k|k+1 is the dif-
ference between the filtered estimate x̂k|k and x̂k|k+1 resulting
from theminimization of (A-3) with respect to (w.r.t.) xk, then
the Jacobean matrix Â

T
k (x̂k|k+1) of fk is such that:

Â
T
k (x̂k|k+1) = Â

T
k (x̂k|k +1x̂k|k) =

∂fTk (xk)
∂xk

∣∣∣∣∣
x̂k|k+1

Again, assuming that x̂k|k+1 is close to x̂k|k that we can
approximate Âk+1(x̂k|k + 1x̂k|k) by Âk+1(x̂k|k). Therefore,
and after dropping the argument, we get:

Âk ∼= Âk(x̂k|k) (A-17)

Using (A-15) into (A-14) we get (A-5).
2- Introducing the quantity in agreement with the state

equation (A-1):

x̂k+1|k+1 = f(x̂k|k+1)+ γ̂ k|k+1 (A-18)

Substituting from (A-4), (A-5) into (A-16), x̂k+1|k+1 is such
that:

x̂k+1|k+1

= f
(
x̂k|k + Pk|kÂ

T
k Ĥ

T
k+1W

−1
[
yk+1 − ĥk+1(x̂k+1|k+1)

])
+NĤ

T
k+1W

−1
[
yk+1 − ĥk+1(x̂k+1|k+1)

]
(A-19)

Assume that x̂k|k+Pk|kÂ
T
k Ĥ

T
k+1W

−1
[
yk+1−ĥk+1(x̂k+1|k+1)

]
is close to x̂k|k that we can replace f (·) by its first order
approximation, i.e. we assume f (·) affine on a neighborhood
of x̂k|k+Pk|kÂ

T
k Ĥ

T
k+1W

−1[yk+1−ĥk+1(x̂k+1|k+1)], x̂k|k, then:

f
(
x̂k|k + Pk|kÂ

T
k Ĥ

T
k+1W

−1
[
yk+1 − ĥk+1(x̂k+1|k+1)

])
= f(x̂k|k)+ ÂkPk|kÂ

T
k Ĥ

T
k+1W

−1 [yk+1− , ĥk+1(x̂k+1|k+1)]
As a result, the filtered estimate x̂k+1|k+1 takes the form:

x̂k+1|k+1 = f(x̂k|k)+ ÂkPk|kÂ
T
k Ĥ

T
k+1W

−1

×

[
yk+1 − ĥk+1(x̂k+1|k+1)

]
+ NĤ

T
k+1W

−1

×

[
yk+1 − ĥk+1(x̂k+1|k+1)

]
(A-20)

Let:

Pk+1|k = ÂkPk|kÂ
T
k + N (A-21)

Then, by using (A-11), (A-19) and substituting for x̂k+1|k+1
by x̂k+1|k +1x̂k+1|k into (A-18), one gets:

x̂k+1|k +1x̂k+1|k

= x̂k+1|k + Pk+1|kĤ
T
k+1W

−1yk+1
−Pk+1|kĤ

T
k+1W

−1ĥk+1(x̂k+1|k +1x̂k+1|k)

From which 1x̂k+1|k is such that:

1x̂k + 1|k = Pk+1|kĤ
T
k+1W

−1

×

[
yk+1 − ĥk+1(x̂k+1|k +1x̂k+1|k)

]
(A-22)

Again, assume that x̂k+1|k+1 is close to x̂k+1|k, then we can
replace ĥk+1(x̂k+1|k + 1x̂k+1|k) by its first order approx-
imation, i.e. we assume ĥk+1(·) affine on a neighborhood
x̂k+1|k+1, x̂k+1|k therefore (A-20) reduces to:

1x̂k+1|k = Pk+1|kĤ
T
k+1W

−1
[
yk+1 − ĥk+1(x̂k+1|k)

]
−Pk+1|kĤ

T
k+1W

−1Ĥk+11x̂k+1|k

where ĥk+1(x̂k+1|k) is the estimate of hk+1(x) using the pre-
dictive estimate x̂k+1|k.
Let

Pk+1|k+1 =
[
P−1k+1|k + Ĥ

T
k+1W

−1Ĥk+1

]−1
(A-23)

Then, after simple mathematical manipulation, 1x̂k+1|k is
such that:

1x̂k+1|k = Pk+1|k+1Ĥ
T
k+1W

−1
[
yk+1 − ĥk+1(x̂k+1|k)

]
(A-24)
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Using the matrix inversion lemma, it can be shown that:

Pk+1|kĤ
T
k+1

[
Ĥk+1Pk+1|kĤ

T
k+1 +W

]−1
= Pk+1|k+1Ĥ

T
k+1W

−1 (A-25)

Hence, (A-22) takes the form:

1x̂k+1|k = G1k+1

[
yk+1 − ĥk+1(x̂k+1|k)

]
(A-26)

where:

G1k+1 = Pk+1|kĤ
T
k+1

[
Ĥk+1Pk+1|kĤ

T
k+1 +W

]−1
= Pk+1|k+1Ĥ

T
k+1W

−1 (A-27)

Finally, the filtered estimate x̂k+1|k+1 is given by:

x̂k+1|k+1 = x̂k+1|k + G1k+1

[
yk+1 − ĥk+1(x̂k+1|k)

]
(A-28)

Again, by using the matrix inversion lemma, we get:

Pk+1|k+1 =
[
P−1k+1|k + Ĥ

T
k+1W

−1Ĥk+1

]−1
= [I− G1k+1Hk+1]Pk+1|k (A-29)

APPENDIX B
THE RELATION BETWEEN THE PREDICTION STEP
OF THE SRLS AND THE RLS ESTIMATORS
To get the relationships between the SRLS and the RLS
observers, let us firstly expand (12) while using (11).

Therefore, we get:

x̂k+1|k =
λ

n+ λ
x̂1k+1|k +

1
2 (n+ λ)

[x̂2k+1|k + x̂3k+1|k

+ · · · + x̂(2n)k+1|k + x̂(2n+1)k+1|k ] (B-1)

x̂k+1|k =
λ

n+ λ
fk (x̂k|k )+

1
2 (n+ λ)

[fk (x̂k|k + ζ 1)

+ fk (x̂k|k − ζ 1)+ · · · + fk (x̂k|k + ζ n)

+ fk (x̂k|k − ζ n)] (B-2)

Using Taylor series expansion up to the second order approx-
imation, we have:

x̂k+1|k

=
λ

n+ λ
fk (x̂k|k )+

1
2 (n+ λ)

∗

{[
fk (x̂k|k )+ Âkζ 1 +

1
2

[
∇
T21∇

]
fk (xk )

∣∣∣
x̂k|k

]
+

[
fk (x̂k|k )− Âkζ 1 +

1
2

[
∇
T21∇

]
fk (xk )

∣∣∣
x̂k|k

]
+ · · · +

[
fk (x̂k|k )+ Âkζ n +

1
2

[
∇
T2n∇

]
fk (xk )

∣∣∣
x̂k|k

]
+

[
fk (x̂k|k )− Âkζ n +

1
2

[
∇
T2n∇

]
fk (xk )

∣∣∣
x̂k|k

]
+ H .O.T

}
(B-3)

where 2i is the nxn matrix: 2i = ζ iζ
T
i , Âk =

∂f Tk
∂xk

∣∣∣∣T
x̂k|k

, ∇

donates for the gradient operator with respect to the vector x,
and H.O.T. is the higher order terms.
Collecting terms and simplifying, we get:

x̂k+1|k =
λ

n+ λ
fk (x̂k|k )+

n
n+ λ

fk (x̂k|k )+
1

2(n+ λ)

∗

[
∇
T (21 + · · · +2n)∇

]
fk (xk )

∣∣∣
x̂k|k
+ H .O.T

}
(B-4)

Noting that (21 + · · · +2n) = Z (Z )T = (n+λ)Pxxk|k , then
(B-4) takes the form:

x̂k+1|k = fk (x̂k|k )+
1

2 (n+ λ)

[
∇
T (n+ λ)Pxxk|k∇

]
fk (xk )

∣∣∣
x̂k|k

+H .O.T (B-5)

which can be written in the form:

x̂k+1|k = fk (x̂k|k )+ Dk (x̂k|k )+ H .O.T (B-6)

where:

Dk (x̂k|k ) =
1
2

[
∇
TPxxk|k∇

]
fk (xk )

∣∣∣
x̂k|k

(B-7)

Equation (B-6) is not more than the predicted estimate of
the RLS estimator in addition to the extra terms Dk (x̂k|k ) and
the H .O.T .

Similarly, by expanding (14) we get:

Pxxk+1|k

=
λ

n+ λ

[(
x̂1k+1|k − x̂k+1|k

) (
x̂1k+1|k − x̂k+1|k

)T ]
+

1
2 (n+ λ)

{(
x̂2k+1|k − x̂k+1|k

) (
x̂2k+1|k − x̂k+1|k

)T
+
(
x̂3k+1|k − x̂k+1|k

) (
x̂3k+1|k − x̂k+1|k

)T
+ · · · +

(
x̂(2n)k+1|k − x̂k+1|k

) (
x̂(2n)k+1|k − x̂k+1|k

)T
+
(
x̂(2n+1)k+1|k − x̂k+1|k

) (
x̂(2n+1)k+1|k − x̂k+1|k

)T}
(B-8)

Let us consider the first term in (B-8). Substituting for x̂k+1|k
from (B-6) and for x̂1k+1|k from (11), we have:(

x̂1k+1|k − x̂k+1|k
) (
x̂1k+1|k − x̂k+1|k

)T
=
{
fk (x̂k|k )−

[
fk (x̂k|k )+ Dk (x̂k|k )+ H .O.T

]}
∗
{
fk (x̂k|k )−

[
fk (x̂k|k )+ Dk (x̂k|k )+ H .O.T

]}T
= Dk (x̂k|k )DTk (x̂k|k )+ H .O.T (B-9)

Using the same procedure with the second term in (B-8) while
expanding x̂2k+1|k in (11) using Taylor series expansion up to
the second order, we get:(
x̂2k+1|k − x̂k+1|k

) (
x̂2k+1|k − x̂k+1|k

)T
= ==

T
+ H .O.T

(B-10a)
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where:

= = {fk (x̂k|k )+ Âkζ 1 +
1
2
[∇T21∇]fk (xk )

∣∣∣
x̂k|k

− [fk (x̂k|k )+ Dk (x̂k|k )]}

= Âkζ 1 +
1
2

[
∇
T21∇

]
fk (xk )

∣∣∣
x̂k|k
− Dk (x̂k|k ) (B-10b)

Or:(
x̂2k+1|k − x̂k+1|k

) (
x̂2k+1|k − x̂k+1|k

)T
= Âk21ÂTk

+
1
2
Âkζ 1

{[
∇
T21∇

]
fk (xk )

∣∣∣
x̂k|k

}T
− Âkζ 1D

T
k (x̂k|k )

+
1
2

[
∇
T21∇

]
fk (xk )

∣∣∣
x̂k|k

ζ T
1
ÂTk

+
1
4

[
∇
T21∇

]
fk (xk )

∣∣∣
x̂k|k

{[
∇
T21∇

]
fk (xk )

∣∣∣
x̂k|k

}T
−

1
2

[
∇
T21∇

]
fk (xk )

∣∣∣
x̂k|k

DTk (x̂k|k )− Dk (x̂k|k )ζ
T
1
ÂTk

−
1
2
Dk (x̂k|k )

{[
∇
T21∇

]
fk (xk )

∣∣∣
x̂k|k

}T
+Dk (x̂k|k )DTk (x̂k|k )+ H .O.T (B-11)

Repeating the same procedure with the other terms in (28),
adding the results of the expanded terms and simplifying, one
gets:

Pxxk+1|k

=
λ

n+ λ
Dk (x̂k|k )DTk (x̂k|k )

+
1

2 (n+ λ)

{
2Âk (21 + · · · +2n) ÂTk

+ 2n
[
Dk (x̂k|k )DTk (x̂k|k )

]
−

[
∇
T (21 + · · · +2n)∇

]
fk (xk )

∣∣∣
x̂k|k

DTk (x̂k|k )

−Dk (x̂k|k )
{[
∇
T (21 + · · · +2n)∇

]
fk (xk )

∣∣∣
x̂k|k

}T
+

1
2

[
∇
T21∇

]
fk (xk )

∣∣∣
x̂k|k

{[
∇
T21∇

]
fk (xk )

∣∣∣
x̂k|k

}T
+ · · · +

1
2

[
∇
T2n∇

]
fk (xk )

∣∣∣
x̂k|k

×

{[
∇
T2n∇

]
fk (xk )

∣∣∣
x̂k|k

}T}
+ H .O.T (B-12)

Again, using the fact that (21 + · · · +2n) = Z (Z )T =
(n+ λ)Pxxk|k while using (B-7) into (B-12) we have:

Pxxk+1|k

=
λ

n+ λ
Dk (x̂k|k )DTk (x̂k|k )+ ÂkPxxk|k Â

T
k

+
n

(n+ λ)
Dk (x̂k|k )DTk (x̂k|k )− 2Dk (x̂k|k )DTk (x̂k|k )

+
1

4 (n+ λ)

{[
∇
T21∇

]
fk (xk )

∣∣∣
x̂k|k

×

{[
∇
T21∇

]
fk (xk )

∣∣∣
x̂k|k

}T
+ · · +

[
∇
T2n∇

]
fk (xk )

∣∣∣
x̂k|k

×

{[
∇
T2n∇

]
fk (xk )

∣∣∣
x̂k|k

}T}
+ H .O.T (B-13)

Finally, after simple algebraic manipulations, one gets:

Pxxk+1|k = ÂkPxxk|k Â
T
k −Dk (x̂k|k )D

T
k (x̂k|k )+H .O.T (B-14)

Or:

Pxxk+1|k = ÂkPxxk|k Â
T
k +8k (x̂k|k )+ H .O.T (B-15)

where:

8k (x̂k|k ) = −Dk (x̂k|k )DTk (x̂k|k ) (B-16)

One can notice that (B-15) is equivalent to (2-c) of the RLS
observer except for the constant matrix N is replaced by
8k (x̂k|k ), in addition to the H.O.T included in (B-15).
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