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ABSTRACT In recent years, deep convolutional neural networks (CNNs) have been widely used for image
super-resolution (SR) to achieve a range of sophisticated performances. Despite the significant advancement
made in CNNs, it is still difficult to apply CNNs to practical SR applications due to enormous computations
of deep convolutions. In this paper, we propose two lightweight deep neural networks using depthwise
separable convolution for the real-time image SR. Specifically, depthwise separable convolution divides
the standard convolution into depthwise convolution and pointwise convolution to significantly reduce the
number of model parameters and multiplication operations. Moreover, recursive learning is adopted to
increase the depth and receptive field of the network in order to improve the SR quality without increasing
the model parameters. Finally, we propose a novel technique called Super-Sampling (SS) to learn more
abundant high-resolution information by over-sampling the output image followed by adaptive down-
sampling. The proposed two models, named SSNet-M and SSNet, outperform the existing state-of-the-
art real-time image SR networks, including SRCNN, FSRCNN, ESPCN, and VDSR, in terms of model
complexity, and subjective and PSNR/SSIM evaluations on Set5, Set14, B100, Urban100, and Manga109.

INDEX TERMS Super-resolution, depthwise separable convolution, super-sampling, recursive convolution.

I. INTRODUCTION

Image super-resolution (SR) is to convert an observed low
resolution (LR) into a high resolution image (HR) by adding
plausible high-frequency information to improve the visual
quality according to perception of the human visual system.
Since converting from LR image to HR image is an ill-posed
problem, there are infinite solutions of estimated HR image,
such that image SR is a non-trivial task [1].

Conventionally, Bicubic interpolation has been widely
adopted as the traditional method for image SR by using cubic
polynomials to model the image signals, in order to interpo-
late the missing HR pixels [2]. However, the abrupt signal
changes in natural images can hardly be modeled by 3™ order
polynomials, such that adaptive edge-directed interpolation
methods were proposed to model the edge characteristics to
better reconstruct the edges [2]-[4].
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Due to the rapid development of computer hardware,
the processing power of computer has reached a cer-
tain level that learning-based approaches were widely
developed to explicitly learn the relationship of the LR
and HR images using the handcrafted models, which
often involve well-designed components, including fea-
ture extraction, non-linear mapping and reconstruction,
using large external database or sparse representations,
etc, as the source of information for offline supervised
learning [S]-[7].

Recently, with the increasing adaptability of neural net-
works, the generic deep learning models have been proven
to provide end-to-end learning ability. Convolution neural
networks (CNNs) can be trained for mapping the LR image
into the HR image with plausible high-frequency informa-
tion estimated from the deep convolution layers. Specifically,
many super-resolution models based on deep CNNs have
achieved obviously better results than previous approaches
with expenses of higher computations [8]-[10].
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On the other hand, the deep CNNs have been proposed
for image restoration and denoising for remote sensing
image [32] and hyperspectral Image [33], which utilizes
the spatial-temporal-spectral deep residual CNNs to exploit
the multi-modal information for handling image processing
applications for significant performance improvements.

Dong et al. proposed the first CNN model for image
super-resolution called as SRCNN which pre-processes the
LR image by Bicubic interpolation before feeding into the
neural network [11]. Based on SRCNN, Dong et al. proposed
FSRCNN to remove the Bicubic up-sampling of SRCNN by
using the deconvolution layer to reconstruct the HR image
at the last network layer [12]. Specifically, FSRCNN uses
a funnel-shaped network structure, which adopts shrinking,
mapping and expanding as non-linear mapping components
of the network model, in order to reduce the number of model
parameters. FSRCNN uses deconvolution layer at the end of
the model, in order to achieve real-time image SR in some
scenarios.

Shi et al. proposed a CNN model called as efficient
sub-pixel convolutional neural network (ESPCN) which
processes the image in the LR space to reconstruct the
HR image at the last network layer [13]. However, different
from FSRCNN, ESPCN reconstructs the HR image using
the sub-pixel layer to perform pixel shuffling using features
from the preceding convolution layer, instead of using decon-
volution layer for HR image reconstruction to reduce the
computation. Shi et al. proved in the paper that sub-pixel
layer is an order of magnitude faster than deconvolution layer,
which allows ESPCN to implement 1080P video real-time
SR on a single K2 GPU.

Recently, many state-of-the-art super-resolution based on
deep CNNs have been proposed, such as LapSRN [21],
DBPN [22], DRCN [23], DRRN [24]. Although these
networks significantly improve the previous CNNs for
image super-resolution, their network complexity are often
several orders higher than the aforementioned real-time
SR methods [11]-[13]. Hence, there is an essential demand
to develop a new deep CNN for real-time applications which
outperforms the existing real-time SR networks for lower
complexity.

In this paper, we propose two network models to tackle the
weakness of existing state-of-the-art real-time image super-
resolution networks based on deep learning. Specifically,
the proposed networks called as SSNet-M and SSNet uti-
lize depthwise separable convolutions to replace the stan-
dard convolutions, in order to significantly reduce the overall
complexity. To maintain the same level of model parame-
ters, we further introduce the recursive depthwise separa-
ble convolutions to reuse the shared model parameters for
achieving a higher level of image quality through recursive
iterations. Finally, we propose a novel technique for super-
resolution called as super-sampling to over-sample the out-
put image followed by adaptive down-sampling, in order to
improve the generation of final image. The proposed mod-
els are extremely lightweight models with merely 7k and
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22k model parameters, which outperform existing real-time
super-resolution methods based on deep learning, such as
SRCNN [11], FSRCNN [12], ESPCN [13], VDSR [14], in
terms of subjective and objective quality evaluations, and
model complexity.

In summary, our main contributions are as follows:

- We introduce the first recursive depthwise separable con-
volution network for image super-resolution, in order to for-
mulate the real-time models with extremely low complexity,
which improves the image quality while maintaining the same
level of model parameters.

- We propose a novel technique called as super-sampling
for generating the higher quality HR image for super-
resolution. The key step is to over-sample the output image
followed by adaptive down-sampling, in order to extracts
more abundant HR information for the final HR generation.

- In comparisons with existing state-of-the-art real-time
super-resolution models based on deep learning, the proposed
models give obviously better subjective and objective quality
but require lower model complexity in terms of model param-
eters and multiplication operations.

The rest of organization of this paper is as follows.
Section II describes the related works of various techniques
used in our models. Section III gives the details of our recur-
sive depthwise separable convolution networks. Section IV
shows the experimental results and ablation study of the
proposed models. Section V concludes this paper and gives
a future direction of our proposed works.

Il. RELATED WORKS

A. DEPTHWISE SEPARABLE CONVOLUTION

Andrew et al. proposed a depthwise separable convolution
to greatly accelerate the computations of convolution neural
network [15], in which depthwise convolution and pointwise
convolution can be separated from standard convolutions.
It shows that depthwise separable convolutions require much
lower computations with slight performance loss.

Due to the high performance-computation ratio, many
methods in different research fields have begun to apply
depthwise separable convolution to implement the CNN.
Chollet et al. proposed Xception Net, which introduces depth-
wise separable convolution into the task of image classifica-
tion [16]. Xception is based on the inception net v3 proposed
by Szegedy et al., which achieves better performance than
Inception Net v3 with essentially the same parameters as
Inception Net V3 [17]. Hence, it illustrates the practicality
of depthwise separable convolution.

In the field of semantic segmentation, Liang-Chieh et al.
deeply studied Xception and applied depthwise separa-
ble convolution to Atrous Spatial Pyramid Pooling and
decoder modules, and proposed faster and stronger encoders-
decoder network, DeepLabv3 [18]. Inspired by Xception and
ByteNet [19], Lukasz et al. proposed to apply depthwise sep-
arable convolution to machine translation [20]. The method
named as Slice Net achieved better performance while reduc-
ing the amount of model parameters compared to ByteNet.
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FIGURE 1. Proposed SSNet-M model.

FIGURE 2. Proposed SSNet model.

The aforementioned researches has led us to discover
the practicality of applying depthwise separable convo-
lution to real-time image SR to propose SSNet-M and
SSNet models.

B. UP-DOWN-SAMPLING CONVOLUTION FOR IMAGE SR
Lai et al. proposed the Laplacian Pyramid Super-Resolution
Network (LapSRN) to progressively reconstruct the sub-
band residuals of high resolution images [21]. At each pyra-
mid level, LapSRN takes coarse-resolution feature maps
as input, predicts the high-frequency residuals, and uses
transposed convolutions for up-sampling to the finer level.
Compared to gradually up-sampling input image in Lap-
SRN, Muhammad et al. proposed DBPN, which uses a net-
work structure in which up-sampling and down-sampling
are performed alternately to improve the performance of
the model by concatenating the information generated by
these convolution kernels [22]. DBPN has achieved good
results on tasks with large magnifications such as 8x
magnification.

The SSNet-M and SSNet we proposed in this paper are
inherently different from aforementioned methods [21]-[22].
The proposed super-sampling methods estimate the output
image with size larger than the target HR image, and then the
over-sampled output image is adaptively down-sampled by
a convolution kernel to obtain the final output. Such design
can estimate more abundant HR information to be adap-
tively selected (by the convolution kernel) for generating the
final image. On the contrary, LapSRN [21] and DBPN [22]
do not over-sample the output image larger than the target
image.
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C. RECURSIVE CONVOLUTION NETWORK

Kim et al. proposed the deeply-recursive convolutional net-
work (DRCN) [23]. DRCN improves the performance of very
deep super-resolution (VDSR) [14] by using a very deep
recursive layer. Experiments show that when the CNN was
trained to convergence, the parameters of each convolution
layer are very similar. For this reason, the shared convolu-
tion kernels can greatly reduce the model parameters while
preserving the model performance without significant deteri-
oration. Tai et al. further improved DRCN and proposed the
deep recursive residual network (DRRN) [24] which allows
the model to learn local and global features for enhancing the
expressive ability of image signals of the model. DRRN is
a recursive CNN with a depth of 52 layers, but the amount
of model parameters of the DRRN is not very high due to
extensive recursive learning.

Through the study of DRCN and DRRN, the proposed
SSNet model formulates the recursive depthwise separable
convolution network using two shared depthwise separable
convolution layers to greatly improve the performance of the
model while maintaining the minimal model parameters.

lll. PROPOSED METHOD

In this section, we will systematically describe the proposed
lightweight deep models for real-time image super-resolution
and analyze the techniques used in various parts of the
models. In terms of techniques, we will introduce depth-
wise separable convolution, recursive depthwise separable
convolution network, and super-sampling block. In terms
of models, we proposed SSNet-M and SSNet based on
aforementioned skills, as shown in Figure 1 and Figure 2.
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TABLE 1. Network Architectures of ESPCN and Proposed SSNet-M and
SSNet for 4x Super-Resolution.

Proposed SSNet-M Proposed SSNet
ESPCN13] (Non-recursive) (Recursive)
Feature extraction|  Conv(5,64,1) Conv(5,64,1) Conv(5,64,1)

Depthwise-Conv(3,64,32)

Depthwise-Conv(5,64,64)
Pointwise-Conv(1,64,64)
Depthwise-Conv(5,64,64) -
Shared

Nonlinear Pointwise-Conv(1,32,32) | Pointwise-Conv(1,64,64) -
mapping Conv(3,64,32) Depthwise-Conv(3,32,32) Shared
Pointwise-Conv(1,32,32) |Depthwise-Conv(5,64,64) -
Shared
Pointwise-Conv(1,64,64) -
Shared
Conv(3,32,16) Pointwise-Conv(1,32,64) | Pointwise-Conv(1,64,64)
Feature -Pixel shuffling -pixel shuffling -pixel shuffling

reconstruction

(16—1 channel)
-4x Super-resolution|

(64—1 channel)
-8x Super-resolution

(64—1 channel)
-8x Super-resolution

Feature down-
sampling

Conv(3,1,1)-stride =2
-2x down-sampling

Conv(3,1,1)-stride = 2
-2x down-sampling

SR up-down ratio 1x—4x 1x—>8x—4x Ix—>8x—4x

The proposed SSNet-M is a lightweight version, and SSNet
can be considered an enhanced version. Let us describe the
formulations of SSNet-M and SSNet in details in the follow-
ing subsections.

A. SSNet-M

Our proposed SSNet-M is based on ESPCN [13] for signif-
icant modifications to develop the final lightweight model
which provides better image quality than ESPCN but requires
significantly lower computations. Different from ESPCN that
utilizes three standard convolutions and a pixel shuffling
layer, the proposed SSNet-M uses one standard convolution,
two depthwise separable convolutions, and a super-sampling
block (including a pixel shuffling layer and a down-sampling
layer) to perform super-resolution.

Let us describe the SSNet-M in details as follows.
As shown in Table 1 and Figure 1, our proposed SSNet-M
initially uses a 5 x 5 convolution kernel to generate
a 64-channel feature map from the input LR image Iz,

FFE = FConv(ILR) (1)

where F ¢,y represents the standard convolution and Frg rep-
resents the feature map extracted from the LR image. Then,
two depthwise separable convolutions are adopted to perform
non-linear mapping of extracted features,

Fyy = FPWConv(FDwC(Jnv(FPwCunv(FDwC(mv(FFE)))) (2)

where Fpycony represents the depthwise convolution,
Fpycony represents the pointwise convolution, and Fyys rep-
resents the non-linearly mapped features generated from the
first and second depthwise separable convolutions (sepa-
rated into depthwise and pointwise convolutions) with kernel
size 3 x 3. After that, the super-sampling block (SSBlock) is
used to generate the super-sampling feature Fssr,

Fssp = PS(FPwConv(FNM)) (3)

where the pointwise convolution Fpy,cony €xpands the num-
ber of channels of the feature map Fyyfrom (scale®) to
(scale?xSSS), where scale refers to super-resolution fac-
tor and SSS refers to super-sampling-scale which controls
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the over-sampling rate of the target HR image. After that,
the pixel shuffling (PS) [13] is applied to obtain the super-
sampling feature Fssr as shown in Figure 1.

Finally, SSBlock applies a 3 x 3 convolution Fcy,, to
downscale the super-sampled feature Fgsr by setting stride
to SSS to generate the final output image Isg, as follows,

Isg = Fcon(Fssr) @

As illustrated in Figure 1, k5n64s1 means that the size of
the convolution kernel (k) is 5 x 5, the output channel (n) is 64,
and the convolution stride (s) is 1. k3n1s2 means that the size
of the convolution kernel (k) is 3 x 3, the output channel (n)
is 1, and the convolution stride (s) is 2. Moreover, the red
block indicates depthwise convolution, and the blue block
indicates pointwise convolution.

Overall, the complexity of SSNet-M in terms of multi-
plication operations and model parameters is about 30% of
ESPCN [13], but performance degradation caused by deep
separable convolution is compensated by super-sampling
block, such that the performance of SSNet-M is higher
than ESPCN, as shown in the experimental section.

B. SSNet

Built upon the lightweight SSNet-M, we propose a enhanced
version using a larger convolution kernel with multi-recursive
learning, which is named as SSNet, as illustrated in Figure 2.
Specifically, the SSNet inputs the extracted features Frg from
the input image to depthwise separable convolutions for non-
linear mapping,

Fny = FPwConv(FDwConv(FFE)) (5)

where Fyp represents non-linearly mapped features gen-
erated from depthwise separable convolutions using 5 x 5
convolution kernel. After that, two shared depthwise separa-
ble convolutions are recursively implemented to iteratively
enhance the non-linear mapping, as follows,

FNM,r = FPWC()nvZ(FDwCunVZ(FPwConvl(FDWC()nvl
(Fnm.r1 + Fam)))  (6)

where r means the number of recursion. In SSNet, the size
of depthwise convolution kernel (red) and pointwise convo-
lution kernel (blue) are 5 x 5 and 1 x 1 respectively, as shown
in Figure 2. Moreover, the channels of convolution increases
from 32 to 64 from SSNet-M to SSNet. Finally, the super-
sampling block is applied to reconstruct the final HR image
from the recursively estimated feature Fyy ,,

Fssp = PS(Fpywcom(Fm,r)) @)
Isg = Fcony(Fssr) (8)

The PSNR performance of SSNet for 4 x super-resolution
on Set5 is 0.75dB higher than ESPCN [13], while the model
parameters of SSNet is 22k, which is 2k lower than ESPCN.
The reason for such significant improvement is the recursive
depthwise separable convolutions as described in details in
the following subsection. The details of network architecture
of SSNet-M and SSNet are shown in Table 1.
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C. MSE LOSS FUNCTION

As mean squares error is the most widely used metric for
image super-resolution, we define the loss function Lysg(.)
as follows,

Luyse(rr, Inr) = |FUr)— Iurl? = Ilse— Inrll>  (9)

where Iyg represents the original HR image, Isg represents
the estimated HR image from proposed models, F(.) is overall
interference function of proposed SSNet or SSNet-M models
for estimating the HR image from the LR image.

D. COST OF DEPTHWISE SEPARABLE CONVOLUTION

FOR IMAGE SR

To explain the cost of standard convolutions and the depth-
wise separable convolutions, we consider one layer of con-
volutions to justify the substantial complexity reductions
achieved by our proposed SSNet-M and SSNet for real-time
image super-resolution.

Let us define the size of the input feature map to be
H x W x M, and the size of the feature map generated by the
convolution to be H x W x N, where H, W, M, N represents
the height, width, input and output channels of the feature
map. Hence, the cost of multi-add operations of the standard
convolution can be calculated as [15]

Costcom =K>xHxW x M x N (10)

where K represents the height and width of the convolution
kernel. In other words, the standard convolution multiples
each M input features with the N convolution kernels with
size Kx K to generate the output features.

Depthwise separable convolution divides the standard con-
volution into depthwise convolution and pointwise convo-
lution, where depthwise convolution applies element-wise
product of a convolution kernel and each channel of input fea-
tures independently, hence the cost of multi-add operations of
depthwise convolution is,

Costpwcom = K> x Hx W x M (1)

where depthwise convolution can greatly increase the speed
of convolution by reducing multi-add operations by N times.
Different from standard convolution, this step does not com-
bine feature maps to generate new features, so we must add
a1 x 1 pointwise convolution followed by depthwise convo-
lution to fuse the features together. Since K = 1, the cost of
multi-add operations of pointwise convolution is,

Costpycony = H X W x M x N (12)

As a result, the ratio of the cost of depthwise separable
convolution compared with the standard convolution is

Costpycony + CoStpywCony _ l + L
N K2
For example, let us refer to k3n32s1, where K is 3 and N
is 32, depthwise separable convolution requires about seven
times lower computation than standard convolutions for only
a small reduction in accuracy as adopted in our SSNet-M and
SSNet model, as explained in preceding sub-sections.

13
Costcony (13)
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FIGURE 3. Single-recursive block (SRB).

E. RECURSIVE DEPTHWISE SEPARABLE CONVOLUTION
NETWORK

In the proposed SSNet, the recursive depthwise separable
convolution network is proposed for achieving higher image
quality without increasing the model parameters. Let us
explain the methodology of recursive depthwise separable
convolution network in this section.

For single-recursive block as shown in Figure 3, let us refer
the input feature after the feature extraction layer as Frg. Let
us apply two independent non-sharing depthwise separable
convolutions for initial non-linear mapping,

Fny = FPwConv(FDwConv(FPwConv(FDwConv(FFE)))) (14)

where Fyy represents the output of two depthwise sep-
arable convolutions, Fpycony and Fpycom represent two
non-sharing depthwise convolutions and pointwise convolu-
tions. Let us utilize a single depthwise separable convolu-
tion (depthwise convolution and pointwise convolution) as
the structure of single-recursive block (SRB), which can be
represented as,

FNM,r = FPwCanv(FDwCOnv(FNM,rf] + FNM)) (15)

where r represents the number of recursions and the depth-
wise and pointwise convolutions are shared. Since the con-
volution kernel is used recursively, the convolution kernel
parameters W, and bias values b, are equal for each convolu-
tion operation, which can be illustrated as,

Wi,bp=Wa, by=W3, bz=---=W,, b (16)

where W, and b, represent the weight and bias of the shared
depthwise separable convolution. Although the recursive use
of the convolution kernel will not increase the model parame-
ters, the network performance usually improves due to deeper
convolutions to increase the receptive field.

In our paper, we use two shared recursive depthwise sep-
arable convolutions to formulate the multi-recursive block
(MRB), in order to further improve the model perfor-
mance. The structure of the multi-recursive block is shown
in Figure 4, which can be formulated as follows,

Fnu = Fpwcom(Fpwcom(FFE)) (17)
Fnm,r = Fprwcon2(Fpwcon2 (FPwconvt (FDwConvi

(Fnm,r—1 + Fnm)))) (13)

Wi, Wip =W, Wao=---=W, 1, W, (19)

bi1,b12="5b21,b22 =+ =b;1,b2 (20)

where Fpyconvl and Fpycony2 represent the first and the sec-
ond shared depthwise convolutions, the first subscript of W
and b represents the number of recursion, and the second
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Fum Conv H Conv }——b Fionar
Frmr1

FIGURE 4. Multi-recursive block (MRB).

FIGURE 5. Super-sampling block (SSBlock).

subscript represents the first or the second depthwise separa-
ble convolution and bias. Although the multi-recursive block
requires the same model parameters of the single recursive
block, our experimental results show that MRB provides
much better performance than SRB.

F. SUPER-SAMPLING BLOCK

Let us explain the methodology of the proposed super-
sampling block (SSBlock) in details in this section given
in Figure 5. The objective of SSBlock is to estimate more
abundant HR information by over-sampling the features for
final HR image reconstruction. In other words, SSBlock
reconstructs the output image beyond the size of the target
image, where the over-sampled image is adaptively down-
sampled by a convolution layer with stride = 2 to the desired
image size. Such design can significantly improve the final
HR reconstruction with slight computation increment.

As illustrated in Figure 5, the proposed super-sampling
block for SSNet-M and SSNet inputs the features Fys from
the output of the preceding nonlinear mapping layer. Then,
the pointwise convolution k1n64s1 and pixel shuffling (PS)
are used together to generate the feature maps to a size larger
than the size of the target HR image, called as the super-
sampling features Fggr. After that, SSBlock applies a 3 x 3
convolution k3nls2 to downscale the feature map by setting
stride (s) to 2 to generate the final output Igg.

IV. EXPERIMENTAL RESULTS

In this section, we will show extensive experimental results
of the proposed SSNet-M and SSNet, including the training
and testing details, as well as ablation study of different
components of our models. Specifically, we analyze the con-
tribution of each sub-network structure to the performance
and complexity of the model. Finally, we compare SSNet-M
and SSNet to other real-time image super-resolution methods
on standard benchmark datasets.

A. TRAINING AND TESTING DETAILS
We used DIV2K dataset [25] as the training database for
training the models, where DIV2K contains 800 training
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FIGURE 6. PSNR(dB) of each epoch on Set5 during training.

images, 100 validation images and 100 testing images. The
800 training images were down-sampled using bicubic inter-
polation to generate the LR training images. The patch size
of LR samples is 32 x 32 and the batch size is 32. We set
the initial learning rate to 0.001 and decreased the learning
rate by a factor of 10 at each 30 epochs. All the weights
in the model were initialized with Kaiming distribution. For
optimization, we used Adam with g1 = 0.9, 2 = 0.999,
and epsilon = 1073, For the platform, we used Tensorflow
1.12.0 on Ubuntu 16.04.4, which is installed with CUDA 9
and CUDNN 7. The GPU for training and testing the models
is Nvidia 980Ti which runs for few hours to finish the training
process. We trained the models for 100 epochs to ensure
convergence, as shown in Figure 6.

For the testing settings, the Y channels in YCbCr space
of the output of models are evaluated using PSNR and
SSIM measurements. For test datasets, we used Set5 [26],
Set14 [27], Urban100, BSDS100 [28] and Manga109 [29].

B. ABLATION STUDY

1) SSNet-M

In this section, we study the contribution of each component
of the SSNet-M in Table 2. Since the ESPCN is the base-
line of SSNet-M, we study the contribution of each change
from ESPCN that formulates SSNet-M. PSNR evaluations
on Set5 of trained models using 100 epochs are shown in
different configurations of Table 2. Initially, we replace the
standard convolutions in ESPCN by depthwise separable con-
volutions, which results into 0.2 dB drop in PSNR with reduc-
tion of 19k model parameters, as shown in configuration 2
of Table 2.

To compensate for the performance loss due to depth-
wise separable convolution, the super-sampling block is
applied. To evaluate the contributions of the super-sampling
mechanism with minimal increment of model parameters,
we increase the channel output of the last pointwise con-
volution of non-linear mapping layers before the SSBlock
from Pointwise-Conv(1,32,32) to Pointwise-Conv(1,32,64).
Hence, we remove the first pointwise convolution Fp,,cony in
the SSBlock, i.e., Conv(1,32,64) in Table 1. As shown in con-
figuration 3 of Table 2, this incomplete SSBlcok increases the
PSNR by 0.18 dB with the increment of 1k model parameters.
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TABLE 2. Ablation Study of Proposed SSNet-M and SSNet for 4x SR on Set5.

Confi Depthwise separable SSBlock PwConv [ Super-Sampling [Single-Recursive|Multi-Recursive|| Recursion | Kernel size of | PSNR(dB) Model
g convolution 1x1 Scale Block Block times convolutions (Set5) parameters
1 |ESPCN[13] - - - - - - - 3x3 30.79 24k
2 R N - - - - - - 3x3 30.59 Sk
3 - v v - 2x - - - 3x3 30.77 6k
4 | SSNet-M v v v 2x - - - 3x3 3L01 7k
5 - v v v 3x - - - 3x3 3091 10k
6 _ N N N 4x - - - 3x3 30.93 13k
7 R N N N 2x v - 4 3x3 31.16 19k
8 - v N v 2% N - 8 3x3 31.26 19k
9 - N N N 2x N - 12 3x3 31.36 19k
10 - v v v 2% N - 16 3x3 31.24 19k
11 R N N N 2% - N 8 3x3 31.45 19k
D _ J N N 2% - V 12 3x3 31.40 19k
13 B N N N 2 - v 4 5x5 31.36 22k
14 | SSNet v v v 2x - N 8 5x5 31.54 22k
15 B J N N 2% - N 12 5x5 31.48 22k
16 N J N N 2% - N 16 5x5 31.47 22k
314 31.56
W 8times
3136 12times
3152
3132
s 12times
g s _ g 31.48
s W 8times < 16times
g a1 & 3144
16times
31.2
314
31.16 ¢ A4times ¢ 4times
31.36
3112 0 05 1 15 2 2.5 3.5 4
0 2 4 6 8 10 12 14 16 18

After that, the 1 x 1 pointwise convolution Fpycony 1S
added as the complete SSBlock which further increases
the PSNR by 0.24 dB for another 1k increment of model
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Number of operations(10°)

Number of operations(1010)

FIGURE 7. Appropriate number of recursions for single-recursive block (left) and multi-recursive block (right).

4

Input image

Eight recursions

One recursion

Twelve recursions

Sixteen recursions

Two recursions

Four recursions

O.rigi.n.a.l

FIGURE 8. SR results of different recursion times in our SSNet model on img_72 in Urban100 data set.

parameters, as shown in configuration 4 of Table 2.
We believe that adding a 1 x 1 pointwise convolution at the
front of SSBlock can fuse the output of preceding non-linear
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Input LR Bicubic SSNet (w/o_SSBlock)
/
Input LR Bicubic SSNet (w/o_SSBlock)
/
Input LR Bicubic SSNet (w/o_SSBlock)
4
Input LR Bicubic SSNet (w/o_SSBlock)

FIGURE 9. SR results of effectiveness of SSBlock in our SSNet model on different images in data sets.

31.8

DRRN
316 DRCN
SSNet
314 °
= VDSR
28 312
=
3 3 SSNet-M
a
308 ® ESPCN
X FSRCNN
30.6
4 SRCNN
304
1 10 100 1000
Number of parameters(k)
FIGURE 10. PSNR(dB) vs parameters on Set5.

mapping layers before super-sampling, which significantly
improves the results.

For the SSNet-M experiments, we also changed the
super-sampling-scale (SSS) to 2x, 3x and 4x respec-
tively. Throughout experiments, we found that it is best to
extraordinarily over-sample the output image by 2 times
and then down-sample it by 2 times. The higher over-
sampling rate does not help to improve the performance
of the model. The experimental results can be seen
in configurations 4, 5, 6 in Table 2. Based on these
results, we used 2x super-sampling scale in the following
experiments.
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SSNet (w_SSBlock) Original HR Output of SSBlock
SSNet (w_SSBlock) Original HR Output of SSBlock
SSNet (w_SSBlock) Original HR Output of SSBlock
SSNet (w_SSBlock) Original HR Output of SSBlock
31.8
31.65 DRRN
315 SSNet DRCN
31.35 °
= 312 VDSR
=
& 31.05
z SSNet-M
& 309
m ESPCN
3075 X FSRCNN
30.6
3045 4 SRCNN
30.3
1 20 400 8000 160000

Number of operations(109)

FIGURE 11. PSNR(dB) vs operations on Set5.

2) SSNet
In the SSNet experiments, we tested the model with single-
recursive block and set the number of recursive times to 4,
8, 12, and 16 times. We can see from the results in Table 2
(configurations 7 to 10) that when the number of recursions
exceeds 12 times, the increase in recursions will have the
opposite effect, as illustrated in Figure 7 (left). The best
results can be achieved when the number of recursions is 12,
and the corresponding PSNR is 31.36 dB.

Then, we use multi-recursive convolution to further
improve performance. First, we use a 3 x 3 depthwise con-
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Input image Bicubic

ESPCN [13] SSNet-M

FIGURE 12. 4x Image SR results of foreman in Set14 data set.

TABLE 3. Complexity of Image SR Methods for 4x SR.

A+[27]

VDSR [14] SSNet

SRCNN [11] FSRCNN [12]

Original

TABLE 4. PSNR/SSIM Results of 2x, 3x, 4x Image SR.

Layers Parameters Operations Runtime Algorithm | Scale Set5 Set14 Urban100 B100 Mangal09

SSNet-M 4 7k 1.9x10° 7.17ms Bicubic 33.65/0.930 | 30.34/0.870 | 26.88/0.841 | 29.56/0.844 | 30.84/0.935
ESPCN [13] 3 24k 4.79x10° 12.53ms AH[2T7] 36.54/0.954 | 32.40/0.906 | 29.23/0.894 | 31.22/0.887 | 35.33/0.967
FSRCNN [12] 8 12K 1.57x10™ 24.22ms SRCNN[11] 36.66/0.954 | 32.45/0.906 | 29.50/0.894 | 31.53/0.892 | 35.72/0.968
SSNet 19 22k 1.99x10"° 135.33ms FSRCNN[12] 37.00/0.956 | 32.63/0.908 | 29.88/0.902 [31.58/0.890 | 36.62/0.971
VDSR [14] 20 670k 12.9x10" 245.91ms SCN[30] 36.52/0.953 | 32.42/0.904 | 29.50/0.896 | 31.24/0.884 | 35.47/0.966
SRCNN [11] 3 57k 1.78x10"! 616.84ms RFL[31] 36.55/0.954 | 32.36/0.905 | 29.13/0.891 | 31.16/0.885 | 35.08/0.966
DRRN [23] 52 297K 2.87x10% 1426.20ms ESPCN[I3]| 2 [ 36.91/0954 | 32.61/0.907 | 29.73/0.898 | 31.29/0.858 | 36.06/0.968
DRCN [24] 20 1774K 2.81x10" | 41910.80ms SSNet-M 37.08/0.956 | 32.78/0.008 | 29.92/0.900 | 31.46/0.900 | 36.47/0.970

volution kernel for 8 and 12 recursions, as shown in Table 2
(configurations 11 and 12). It can be seen that multi-recursive
block gives a significant improvement in model performance
compared to single-recursive block, but we believe there is
still room for improvement.

In order to increase the receptive field of the model,
we replaced the 3 x 3 depthwise convolution kernel with a
5 x 5 depthwise convolution kernel. As shown in Table 2
(configurations 13-16), the experimental results show that the
larger convolution kernel significantly improves the perfor-
mance of the model. Moreover, the results of images gener-
ated by the different recursive times of the final model are
shown in Figure 7 (right) and Figure 8, where 8 recursions
are better than those of 12 and 16 recursions. Experimental
results show that when the number of recursions is too exces-
sive, the performance of the model will be saturated because
the shared model parameters of the convolution kernel are
limited. The results of the 8 recursive models are superior
to other models using a multi-recursive convolution kernel.
The number of parameters of the SSNet model is 22k, which
is still 2k less than ESPCN. However, the final SSNet model
achieves 0.75 dB gain in PSNR value compared with ESPCN.

Finally, let us evaluate the visual quality of the SSNet
with and without the SSBlock as shown in Figure 9.

99812

SSNet 37.51/0.958 | 33.19/0.912 | 30.88/0.914 |31.79/0.894 | 37.55/0.974

VDSR[14] 37.53/0.958 | 33.03/0.912 | 30.76/0.914 |31.90/0.896 | 37.16/0.974
DRCNJ[23] 37.63/0.957 | 33.04/0.912 | 30.75/0.913 | 31.85/0.894 -
DRRN[24] 37.74/0.959 | 33.23/0.914 | 31.23/0.919 |32.05/0.897 -
Bicubic 30.39/0.868 [27.64/0.776 | 24.46/0.736 |27.21/0.740 | 26.98/0.858
A+27] 32.60/0.908 | 29.24/0.821 | 26.05/0.798 |28.30/0.784 | 29.91/0.911
SRCNN[11] 32.75/0.909 | 29.28/0.821 | 26.24/0.799 |28.41/0.786 | 30.58/0.913
FSRCNN[12] 33.16/0.914 | 29.43/0.824 | 26.43/0.808 |28.53/0.791 | 31.09/0.920
SCN[30] 32.60/0.907 | 29.24/0.819 | 26.21/0.801 |28.32/0.782 | 30.21/0.912
RFL[31] 3 32.45/0.905 | 29.15/0.819 | 26.21/0.801 |28.32/0.782| 30.21/0.912
ESPCN[13] 33.06/0.912 | 29.36/0.821 | 26.27/0.800 |28.31/0.785 | 30.70/0.912
SSNet-M 33.24/0.915 | 29.51/0.824 | 26.44/0.805 |28.42/0.788 | 31.01/0.918

SSNet 33.89/0.922 | 29.83/0.830 | 27.09/0.826 |28.69/0.795 | 32.14/0.932

VDSR[14] 33.66/0.921 | 29.77/0.831 | 27.14/0.827 |28.82/0.798 | 31.99/0.933
DRCNJ[23] 33.82/0.923 | 29.76/0.831 | 27.15/0.828 |28.80/0.796 -
DRRN[24] 34.03/0.924 | 29.96/0.835 | 27.53/0.838 |28.95/0.800 -
Bicubic 28.42/0.810 | 26.00/0.702 | 23.14/0.658 | 25.96/0.668 | 24.89/0.780
A+[27] 30.28/0.860 | 27.32/0.749 | 24.32/0.718 |26.82/0.709 | 27.02/0.850
SRCNN[11] 30.48/0.863 | 27.49/0.750 | 24.52/0.727 [26.90/0.710 | 27.58/0.85
FSRCNN[12] 30.71/0.865 | 27.59/0.756 | 24.61/0.727 |26.98/0.715 | 27.89/0.859
SCN[30] 30.39/0.862 | 27.48/0.751 | 24.52/0.725 |26.87/0.710 | 27.39/0.856
RFL[31] 4 30.15/0.853 | 27.33/0.748 | 24.20/0.740 |26.75/0.707 | 26.80/0.840
ESPCN[13] 30.79/0.866 | 27.66/0.750 | 24.49/0.718 |26.75/0.707 | 27.65/0.800
SSNet-M 31.01/0.873 | 27.61/0.755 | 24.62/0.725 |26.84/0.710 | 27.87/0.858

SSNet 31.54/0.884 | 28.01/0.764 | 25.08/0.746 |27.08/0.738 | 28.90/0.879

VDSR[14] 31.35/0.882 | 28.01/0.770 | 25.18/0.753 |27.24/0.726 | 28.82/0.886
DRCNJ[23] 31.53/0.885 | 28.02/0.767 | 25.14/0.751 |27.23/0.723 -
DRRNJ[24] 31.68/0.889 | 28.21/0.772 | 25.44/0.764 |27.38/0.728 -

The effectiveness of SSBlock is affirmative as illustrated
in Figure 9 which shows that the edges and textures
are much better reconstructed using the SSBlock to over-
sample the output image followed by down-sampling.
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FIGURE 12. 4% Image SR results of foreman in Set14 data set
Input image Bicubic A+ [27] SRCNN [11] FSRCNN [12]
ESPCN [13] SSNet-M VDSR [14] SSNet Original
FIGURE 13. 4x Image SR results of img_047 in Urban100 data set.
Input image Bicubic A+ [27] SRCNN [11] FSRCNN [12]
<«
ESPCN [13] SSNet-M VDSR [14] SSNet Original

FIGURE 14. 4x Image SR results of img_007 in B100 data.

Specifically, the edges are sharper and smoother by using
the SSBlock to generate the image with less halo arti-
facts. Moreover, the output of SSBlock images contain some
checkerboards which will be eliminated by the stride-2 con-
volution after down-sampling, as shown in middle columns
of Figure 9.

C. COMPARISON WITH STATE-OF-THE-ART REAL-TIME
IMAGE SR METHODS

1) COMPLEXITY EVALUATIONS AND EXECUTION TIME

In Table 3, we compare the complexity in terms of
model parameters, multiplication operations and runtime
of our models with state-of-the-art real-time or recursive
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image SR methods, including SRCNN [11], FSRCNN [12],
ESPCN [13], VDSR [14], DRCN [23] and DRRN [24].
For calculating the operations, we consider the multiplica-
tions operations for test images with size 540 x 360. For
the run-time, we measure the 4x SR for baby image in
Set5. Specifically, the proposed SSNet-M requires signifi-
cantly lower model parameters, operations and runtime than
ESPCN, FSRCNN, and SRCNN. Hence, SSNet-M is an
extremely lightweight network model for a very broad range
of applications in the real world, such as real-time video SR
and other scenarios where the computing speed is critical,
as shown in Figure 10 and Figure 11.

SSNet is an enhanced version of SSNet-M with a param-
eter count of only 22k, which is 2k lower than ESPCN.
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Input image Bicubic A+[27] SRCNN [11] FSRCNN [12]
/
ESPCN [13] SSNet-M VDSR [14] SSNet Original
FIGURE 15. 4x Image SR results of img_017 in Urban100 data set.
Input image Bicubic A+[27] SRCNN [11] FSRCNN [12]
\ h
ESPCN [13] SSNet-M VDSR [14] SSNet Original

FIGURE 16. 4x Image SR results of Dual Justice in Manga109 data set.

As illustrated in Table 3, Figure 10 and Figure 11, SSNet
requires much lower complexity in terms of parameters and
multiple operations than the comparable models, such as
VDSR, DRCN, DRRN. Hence, SSNet is suitable for sce-
narios which requires high super-resolution performance and
computational efficiency. It has the same very wide applica-
tion prospects as SSNet-M.

2) SUBIJECTIVE QUALITY AND PSNR/SSIM EVALUATIONS

Table 4 shows the PSNR/SSIM comparisons of the proposed
models with state-of-the-art image SR methods, including
A+ [27], SCN [30], RFL [31], SRCNN [11], FSRCNN [12],
ESPCN [13], VDSR [14], DRCN [23] and DRRN [24]. The
PSNR/SSIM performance of proposed SSNet-M outperforms
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A+, SRCNN, SCN, RFL, ESPCN and FSRCNN but requires
lower network complexity. The performance of SSNet is
very competitive compared to VDSR, DRCN and DRRN,
but the model parameters and operations of SSNet is at least
an order lower than these methods, as shown in Table 3.
Figure 10 and Figure 11 give the PSNR comparisons
with respect to model parameters and operations of vari-
ous methods. In summary, our SSNet-M and SSNet obvi-
ously outperform existing state-of-the-arts SR methods in
terms of efficiency for the same or better PSRN/SSIM
performance.

Figure 12 to Figure 16 give the subjective evaluations
of various SR methods for 4x SR on the test datasets.
Specifically, the edges and texture regions reconstructed by
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SSNet-M are better than those reconstructed by A+, SRCNN,
FSRCNN, and ESPCN. Although the SSNet-M requires
much lower complexity than the aforementioned methods,
the edge sharpness and clearness of SSNet-M is obviously
better, as pointed by blue arrows. Moreover, the halo artifacts
of ESPCN are more obvious than SSNet-M.

For SSNet, the subjective quality of images generated
by SSNet is affirmatively better than VDSR and the afore-
mentioned SR methods, as pointed by red arrows. Specifi-
cally, VDSR and other SR methods produce more blurry and
aliased edges and texture regions, which are better recon-
structed by the proposed SSNet.

Overall, the subjective quality evaluations in
Figure 12 to Figure 16 generally agree with the objec-
tive PSNR/SSIM evaluations in Table 4. The objective
and subjective quality of SSNet-M and SSNet is on a par
with or better than existing state-of-the-art SR methods
but the proposed SSNet-M and SSNet require much lower
complexity.

V. CONCLUSION

Due to the wide applications of real-time image super-
resolution in various research areas, it is highly desirable
to propose new algorithms for improving the existing real-
time image super-resolution networks based on deep learn-
ing. In this paper, we propose two novel real-time image
super-resolution models using recursive depthwise separable
convolutions and super-sampling technique. Specifically, the
complexity of our models are extremely low by replacing the
standard convolutions with depthwise convolution and point-
wise convolutions. Moreover, the recursive learning is incor-
porated to recursively refine the features without increasing
model parameters. Eventually, a novel technique called as
super-sampling is used to over-sample the output image for
estimating more abundant high-resolution information fol-
lowed by adaptive down-sampling to generate the final output
HR image.

The proposed SSNet-M and SSNet models are extremely
lightweight networks which require merely 7k and 22k
model parameters with less multiplication operations. Hence,
proposed models are suitable for implementations on
memory-limited devices such as mobile phones and embed-
ded systems, etc. Our experiments show that the proposed
SSNet-M model can perform real-time video SR for convert-
ing 128 x 128 to 512 x 512 for over 139 fps using 980 Ti
GPU without optimization. Compared with existing real-time
SR methods, our models achieve better subjective and objec-
tive image quality with lower complexity. We demonstrate
the effectiveness of our approaches through a series of exper-
iments and validate our models on Set5, Set14, Urban100,
BSDS100 and Mangal09 datasets.

The future direction of this work is to investigate
real-time image SR using perceptual loss. Our initial
results using VGGI19 network for formulating the loss
function show some promising results with low model
complexity.
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