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ABSTRACT Deep learning has attracted growing interest for application to medical imaging, such
as positron emission tomography (PET), due to its excellent performance. Convolutional neural net-
works (CNNs), a facet of deep learning requires large training-image datasets. This presents a challenge
in a clinical setting because it is difficult to prepare large, high-quality patient-related datasets. Recently,
the deep image prior (DIP) approach has been devised, based on the fact that CNN structures have the intrinsic
ability to solve inverse problems such as denoising without pre-training and do not require the preparation
of training datasets. Herein, we proposed the dynamic PET image denoising using a DIP approach, with the
PET data itself being used to reduce the statistical image noise. Static PET data were acquired for input to
the network, with the dynamic PET images being handled as training labels, while the denoised dynamic
PET images were represented by the network output. We applied the proposed DIP method to computer
simulations and also to real data acquired from a living monkey brain with '8F-fluoro-2-deoxy-D-glucose
('8F-FDG). As a simulation result, our DIP method produced less noisy and more accurate dynamic images
than the other algorithms. Moreover, using real data, the DIP method was found to perform better than other
types of post-denoising method in terms of contrast-to-noise ratio, and also maintain the contrast-to-noise
ratio when resampling the list data to 1/5 and 1/10 of the original size, demonstrating that the DIP method
could be applied to low-dose PET imaging. These results indicated that the proposed DIP method provides
a promising means of post-denoising for dynamic PET images.

INDEX TERMS Convolutional neural networks, deep image prior, deep learning, denoising, dynamic

positron emission tomography.

I. INTRODUCTION

Positron emission tomography (PET) is a noninvasive
imaging modality for dynamically measuring the pharma-
cokinetics of target-specific PET tracers in a living body. It is
applied not only to cancer diagnosis but also to the early
detection of neurodegenerative diseases such as Alzheimer’s
and Parkinson’s disease [1]. To accelerate understanding of
these diseases, brain-dedicated PET scanners which can per-
form dynamic measurements have been developed [2], [3].
In addition, animal PET scanners have also been developed

The associate editor coordinating the review of this manuscript and
approving it for publication was Shubhajit Roy Chowdhury.

96594

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/

for use in the development of novel PET tracers and brain
function research [4].

To measure the kinetics and distribution of PET tracers
dynamically, the use of short time frame data is indispensable,
although this results in a high level of noise. Previously,
a Gaussian filter (GF) has usually been applied for post-
denoising to improve the signal-to-noise ratio, as well as to
facilitate the identification of sufficiently large structures.
However, a GF reduces the spatial resolution of the PET
images. Therefore, various approaches to image reconstruc-
tion or post-denoising have been adopted for the denoising
of PET images without impairing their quantitativeness. For
example, maximum a posteriori image reconstruction incor-
porated with various prior models (i. e., edge preservation
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priors [5]-[7], voxel kinetics priors [8], anatomical priors
[9]-[11], and a kernel method [12] have been reported.
However, their high computational costs have prevented
their use in clinical applications. Therefore, post-denoising
is performed separately from the image reconstruction pro-
cess. Bian et al. developed a kinetics-induced bilateral filter
extended in the time domain, and improved the quanti-
tativeness of the dynamic PET images [13]. Furthermore,
Dutta et al. applied a non-local means (NLM) filter [14] to
dynamic PET images [15]. In addition, some post-denoising
methods, such as HYPR processing [16], image guided fil-
tering (IGF) [17], and wavelet denoising [18] have been
developed. All exhibit a higher level of performance than the
GF.

Deep learning has recently attracted increased interest
in the medical imaging field, and offered better perfor-
mance than conventional model-based algorithms in terms of
denoising and segmentation tasks [19]-[23]. Generally, deep
learning, such as that associated with convolutional neural
networks (CNN), requires the preparation of large training-
image datasets. This presents a challenge in a clinical setting
because it would be very difficult to prepare large, high-
quality patient-based datasets. When deep learning is applied
to PET image denoising, it is necessary to prepare high-dose
or long-time-frame and low-dose or short-time-frame image
pairs, however, it is difficult to obtain a “clean” label for
dynamic PET images. If images acquired from disease cases
are not included in the training datasets, there are cases when
the trained network cannot exactly denoise the PET images
acquired from patients. In addition, training datasets for novel
PET tracers are impossible to prepare.

Some recent reports have shown that CNN can produce a
denoised image without “‘clean” dataset [24] or a training
dataset [25], [26]. Particularly, the deep image prior (DIP)
approach described in [25] suggests that CNN structures
have an intrinsic ability to solve inverse problems such as
denoising without any pre-training. The DIP approach iter-
ates learning using a pair of random noise and corrupted
image and a denoised image is obtained by the network output
with moderate iterations. Therefore, this approach would not
require the preparation of training datasets and only random
noise would need to be prepared as the network input to
denoise the image. Furthermore, inspired by this approach,
some studies have shown that high quality PET images can
be obtained using anatomical information such as magnetic
resonance (MR) and computed tomography (CT) images as
the network input, relative to the use of random noise as
the network input [27], [28]. In other words, to obtain high-
quality PET images without prior training datasets, it is nec-
essary to prepare MR or CT images without misregistration
by using the PET/MR or CT scanner. However, when using
brain-dedicated and animal PET scanners without the MR or
CT system described in [2]-[4], it is impossible to obtain MR
or CT images without misregistration.

In the present study, we propose the dynamic brain PET
image denoising using DIP approach. The main advantage of
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this method is that anatomical information is not necessary;
instead, the original PET data itself is used to reduce the
statistical image noise. Our proposed method is regarded as
being a type of ‘““‘unsupervised” learning because it does not
require an ideal label. Compared with the 3D NLM filter
[29], [30] and IGF [17], our proposed method exhibited supe-
rior performance visually and quantitatively when applied to
both a computer simulation and a real data obtained from
a living monkey brain using '8F-fluoro-2-deoxy-D-glucose
("®F-FDG).

Il. DEEP IMAGE PRIOR [25]

In general, a neural network needs to train on a large dataset
of image pairs. On the other hand, the DIP approach maps
the CNN onto a single degraded image. This is based only
on the prior information included in the CNN structure itself.
The network weights 6 are shown as a parameterization of the
denoised output x, as follows:

0" = argmin|lxo —f @12, x"=f(0"1), (1)

where ||-|| is the L2 norm, f represents the neural network,
the training label xq is the corrupted image, and the network
input z is random noise. Network f is trained from scratch
with only random noise z and corrupted image xo. With
this framework, overfitting is caused by minimization of the
L2 loss. However, it can be avoided by regularization of the
CNN structure with moderate iteration.

lil. METHODOLOGY

A. PROPOSED METHOD

The overview of the proposed method is illustrated
in Figure 1. In our proposed DIP method, dynamic PET
images, xé (i=1,2,...,T) were used as the training labels
and static PET image z was used as the network input. The
static image acquires all the data from the start to the end
of data acquisition. The filtered dynamic PET images x* are
obtained as follows:

X~ f (ef|z)

With the proposed method, we use a patient’s own PET
image as the network input instead of random noise as the
network input. In other words, the proposed DIP method can
train only using a single data pair of the static PET image as
network input and the dynamic PET image as label.

" )
0" = argmin ‘
ol

e G e

B. NETWORK ARCHITECTURE
Various state-of-the-art CNN algorithms have been vali-
dated for image-to-image transformation. In the present
study, we employed an architecture based on 3D U-net [31],
as shown in Figure 2.

The architecture consists of an encoding path (left side) and
a decoding path (right side). The encoding path conforms to
the typical architecture of a CNN, consisting of the repeated
application of two 3 x 3 x 3 3D convolution layers, each
followed by a batch normalization (BN) and a leaky rectified
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FIGURE 1. Schematic illustration of proposed DIP method. The dynamic PET images x, are used as training labels and the static
PET image z is used as the CNN input. CNN training is started from a random weight 6y, and ¢ are updated by minimizing the
L2 loss. After training the CNN, filtered dynamic PET images are obtained as the final network output.

i - I
i -}
i o 998

=) Conv + BN + LRelU
' . . =) Conv_stride2 + BN + LRelLU
=) Deconv + Upsampling

=% Copy and add

256 x 256 x 64

128 x128x 32

64)(64)(16

32x32x8

FIGURE 2. Architecture of neural network used for post-denoising. The number of channels is denoted at the top of
each box. The pixel sizes appear at the left. The arrows denote the different operations.

linear unit (LReLU), as well as a 3 x 3 x 3 3D convolution the number of feature channels is doubled. The decoding path
layer with a stride of two for downsampling, followed by the consists of a 3 x 3 x 3 deconvolution layer, followed by the
BN and the LReLU. In addition, at each downsampling step, BN and the LReLLU, upsampling, skip connection with the
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corresponding linked feature map from the encoding path,
and two 3 x 3 x 3 3D convolution layers, each followed
by the BN and the LReLLU. Moreover, we activated the out-
put layer through a linear function, and the mean squared
error (MSE) was used as the loss function, as shown in (2).
The stochastic gradient descent was used as the optimizer.
To stabilize the network training, the input and label data
were standardized by removing the mean and scaling to the
unit variance. The network weights were initialized using
He-initialization [32].

The U-net was run on a computer with Ubuntu 16.04,
a graphic processing unit (NVIDIA Quadro P6000 with
24 GB of memory), Tensorflow 1.9 [33], and Keras
2.2.4 [34].

IV. EXPERIMENTAL SETUP

A. COMPUTER SIMULATION

We performed a computer simulation using a 3D brain phan-
tom from BrainWeb [35], consisting of white and gray matter.
A two-tissue compartment model was selected as the kinetic
model, based on the glucose metabolism of BE_FDG, and
the regional time activity curves (TACs) generated by Feng’s
method [36]. In our simulation, we used kinetic parameters
K1, k2, k3 and k4, calculated from 13 healthy male volun-
teers in Table 1 [37]. Dynamic PET scanning commenced
at the start of the bolus injection. The dynamic PET data
consisted of 30 time frames over 90 min: 4 x 20s,4 x 40 s,
4 x 60s,4 x 180s, and 14 x 300 s. The regional TACs were
integrated in each time frame and dynamic PET sinograms
were generated by simple forward projection. The acquired
sinogram consisted of 256 bins, 256 angles, and 64 slices,
while the reconstructed image had 256 x 256 x 64 voxels
(1.0 x 1.0 x 2.0 mm per voxel). We assumed an ideal
PET system without any scatter and attenuation to evalu-
ate the simplified denoising performance of our proposed
method. Poisson noise was added, resulting in the expected
total number of coincidence counts, 10%, for 90 min. Finally,
the ordered subset-expectation maximization algorithm [38]
with 6 iterations and 16 subsets was used for the reconstruc-
tion. Part of our dynamic PET simulation was implemented
using scikit-image [39].

To evaluate the quantitative performance, we measured
the peak signal-to-noise ratio (PSNR), structural similar-
ity (SSIM) index [40], and the regional TACs of the gray and
white matter. The PSNR is the power of the ratio between the
maximum possible value of a signal and the MSE

max K2

"2
NLR ZieR (Ki - Ki)

PSNR = 101og, A3)

where K and K’ are the ground truth and the target image,
R is the non-zero ground truth area, and N is the number
of voxels in R. The SSIM is a measure of the similarity
between two images, which are proven to be consistent with
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human-eye perception
SSIM — s _ (uik i +e1) (205 +c2)
N “~ieR (u’iZK—i_M?K’ +Cl> (gl%(—i—ali, —i—Cz)
where uix, pig’ and oik, ok are the average values and
standard deviations in the square window centered on i-th
voxel of images K and K’, respectively. Meanwhile, o;xk- is
the covariance in the square window centered on the i-th voxel
of images K and K’, ¢; and ¢, are constants (¢; = (0.01L)?
and ¢z = (0.03L)?). L is the dynamic range of the image. The
square window size is 5 x 5.

)

B. PET MEASUREMENT FOR LIVING MONKEY BRAIN

All applicable international, national, and/or international
guidelines for the care and use of animals were followed.
Experiments were approved by the Ethical Committee of
the Central Research Laboratory, Hamamatsu Photonics K.K.
(Approval number HPK-2017-02). Dynamic PET measure-
ments were performed on a rhesus monkey brain using an ani-
mal PET scanner (SHR-38000, Hamamatsu Photonics K.K.,
Japan). The monkey’s head was rigidly fixed to the upper
frame of a monkey chair using an acrylic head restraint, while
the animal was conscious. The monkey, sitting in the restrain-
ing chair, was placed in the gantry in a fixed position, with
the stereotactic coordinates aligned parallel with the orbito-
meatal plane. Following a 30-min transmission scan using a
98Ge-%8Ga rotation rod source, dynamic emission scanning
was performed for 90 min after the injection of '8F-FDG at
a dose of 100.22 MBgq. The data were reconstructed using a
3-D dynamic row-action maximum-likelihood algorithm [41]
with 60 subsets and two iterations, while the attenuation was
corrected using the transmission scan data. The dynamic PET
data consisted of 30 time frames over 90 min: 4 x 20 s,
4 x 40 s, 4 x 60 s, 4 x 180 s, and 14 x 300 s. The
individual PET and MR images were coregistered. The
acquired sinogram consisted of 360 bins, 360 angles, and
103 slices with a span of three and a ring difference of 19,
while the reconstructed image had 256 x 256 x 64 voxels
(0.65 x 0.65 x 1.0167 mm/voxel). To evaluate the effect of
the low-dose images, we prepared those low-dose images by
resampling the list data to 1/5 and 1/10 of the size of the
original.

For the evaluation, we measured the regional TACs of the
gray and white matter and then calculated the contrast-to-
noise ratio (CNR) as the difference between the mean uptake
of gray and white matter, divided by the standard deviation of
the difference, as follows:

CNR = Ss = Sw

[ 21 2
oy +oy

where § ¢ and S, are the mean activity of multiple frames in
the corresponding the region of interest (ROI) of the gray and
white matter and o, and o,, are the standard deviations of
multiple frames in the corresponding ROIs of the gray and
white matter.

&)
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TABLE 1. Kinetic parameters used in the '8F-FDG simulation.

Region K1 k2 k3 k4
White matter 0.033 0.083 0.037 0
Gray matter 0.062 0.071 0.067 0

DIP with DIP with

Ground truth

OS-EM random noise own PET images

FIGURE 3. Simulation results of image reconstruction for frame 26. The
columns correspond to the ground truth, reconstructed image using
0S-EM algorithm, DIP method with random noise as the network input,
and DIP method with the patient’s own PET image (static PET image) as
the network input (left to right).

V. RESULTS

A. COMPUTER SIMULATION

Figure 3 shows axial and sagittal images using random noise
and a patient’s own PET image as the network input for the
simulation data for frame 26, correspond to 3900-4200 s,
after the injection of '®F-FDG. The image of this time frame

mainly reflects a glucose metabolism. Using random noise
as the network input, the dynamic PET image is smooth,
however, the edges of the image, including the cortex struc-
tures, are lost. In contrast, when using the patient’s own PET
image as the network input, the PET image is smooth and the
edges of the image remain visible. This result shows that the
image quality is improved when using the patient’s own data,
compared to when random noise is used as the network input.
We compared the DIP method with 3D GF, NLM, and the
image-based dynamic IGF [17]. For GF, the full width at half
maximum was set to 1.0 voxel. For NLM and IGF, the kernel
size was setto 3 x 3 x 3 voxels, respectively. Figure 4 shows
the axial and sagittal images using different algorithms for the
simulation data at frames 6 and 26, respectively. The images
of frame 6 mainly reflect a cerebral blood flow. These time
frames correspond to 120-160 s, and 3900—4200 s, respec-
tively, after the injection of '8F-FDG. We set a learning rate
of 0.001 and 2500 epochs for the network training. The IGF
and DIP methods incur less statistical noise and preserve the
cortex structures compared with the GF and NLM algorithms.
Especially, in the reconstructed images for an early phase,
such as frame 6, the DIP method could better reduce the
noise while preserving the structures, relative to the IGF
algorithm. Figure 5 shows the regional TACs for the ROIs
of the white and gray matter, while Table 2 lists the mean
activities of each ROI for different methods correspond to

Frame 6

Ground truth GF NLM IGF DIP
Frame 26

Ground truth GF NLM IGF DIP

FIGURE 4. Simulation results of image reconstruction using 0S-EM algorithm in frames 6 and 26. The columns
correspond to the ground truth, GF, NLM, IGF, and DIP methods (left to right).
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FIGURE 5. Simulation results for regional TACs determined using different methods for the corresponding voxels
located in the white matter (left), and gray matter (right). Compared with the other algorithms, the regional TACs of

the DIP method are closer to the ground truth.

TABLE 2. Mean activity of each ROI for different methods corresponding to 60-90 min, after injection of '8F-FDG.

Method Ground truth GF NLM IGF DIP
White matter [a.u.] 9.47 9.47 +0.64 11.56 £ 0.91 9.20 + 0.66 9.27+0.14
Gray matter [a.u.] 25.83 2432 +0.99 26.79 £ 5.40 25.03 +1.44 26.03 +£0.28
PSNR SSIM
20 0.8
U SRS 07 F ,,"*"""*_k*_*-*-‘-*-'-‘“
16 ""_-Ar-l"‘ o | f,_e-f
[ g == / SR A
o2 gras s 05 | ‘*_" -
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N ." IF'. - NLM 02 ¢ ‘::,:(F . ,.r"‘ —e- NLM
i y ./ —--a--= |GF 01 » L —--a--- IGF
'/". —e—DIP .}"" —e—DIP
0 0.0
1 6 11 16 21 26 1 6 11 16 21 26
Frame Frame

FIGURE 6. Performance evaluation metrics: PSNR (left), and SSIM (right) for each time frame, processed using
different denoising algorithms. In the DIP method, the PSNR and SSIM were greater in all the time frames, relative to

the other algorithms.

60-90 min, after the injection of BE_FDG. Compared with
the other algorithms, the regional TACs of the DIP method
are closer to the ground truth. Figure 6 shows the PSNR and
SSIM curves for different methods corresponding to each
time frame. With the DIP method, the PSNR and SSIM were
greater in all the time frames, relative to the other algorithms.
Figure 7 shows color maps of the PSNR as well as the SSIM
of the number of epochs in each time frame. These results
quantitatively show that the proposed DIP method can better
reduce statistical noise, while preserving the edges, relative
to the other algorithms.

B. PET MEASUREMENTS FOR LIVING MONKEY BRAIN

For GF, the full width at half maximum was set to 1.0 voxel.
For both NLM and IGF, the kernel size was setto 3 x 3 x 3
voxels. The MR image and the reconstructed PET images
of the real dynamic '8F-FDG PET data of the living mon-
key brain at frames 6, and 26, respectively, are shown
in Figure 8. These time frames correspond to 120-160 s, and
39004200 s, respectively, after the injection of '3F-FDG.
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FIGURE 7. Color maps of the PSNR (left) and SSIM (right) of the number
of epochs at each time frame.

We set a learning rate of 0.01 and 500 epochs for the network
training. The DIP method was found to incur less noise and
better preserve the cortex structures than the other algorithms.
Figure 9 shows the regional TACs of the PET images treated
by each algorithm. The regional TACs of the images treated
using the DIP method were much smoother, relative to those
processed with other algorithms. Table 3 shows the mean
activity of each ROI and CNR for different methods, cor-
responding to 60-90 min after injection. The DIP method
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Frame 6
GF NLM IGF
DIP DIP 1/5 DIP 1/10
— MR image —
Frame 26
GF NLM IGF
DIP DIP 1/5 DIP 1/10

FIGURE 8. Reconstructed images of real dynamic 18F-FDG PET data of living monkey brain

at frames 6, and 26.

produces a better CNR than the other algorithms, while the
low-dose images treated by the DIP method also have better
CNRs than those subjected to the other methods.

VI. DISCUSSION
Various deep-learning methods based on CNNs have been
investigated for PET imaging [42], [43]. However, these
methods are difficult to apply in a clinical setting if unknown
cases, not included in the training datasets, are presented. Our
method is capable of dealing with unknown cases because the
original PET data itself is used to reduce the statistical noise.
In the computer simulation, the DIP method provided a
higher PSNR than the other algorithms [17], [29], regardless
of the time frame. The SSIM can evaluate the structural

96600

similarity, which cannot be evaluated by the PSNR [44].
Our DIP method also provides a higher SSIM than the
other algorithms, regardless of the time frame. According
to ref [22], CNNs have a knowledge about the structure of
images. In fact, when compared to the IGF algorithm [17],
the proposed method clearly depicts the cortex structures
even in the early phases. In addition, the regional TACs of
the DIP method are closer to the ground truth than with
the other algorithms. These results suggest that the structure
of the CNNs has an intrinsic ability to regularize the PET
image denoising task compared with other “‘hand craft” type
regularization [45].

One of the main limitations of dynamic PET is the resulting
low-quality of the images, caused by statistical noise resulting
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FIGURE 9. Regional '8F-FDG TACs determined using different methods for the corresponding voxels located in the
white (left) and gray matter (right) of a living monkey brain. The regional TACs of the images treated using the DIP
method were much smoother, relative to those processed using other algorithms.

TABLE 3. Mean activity and contrast-to-noise ratio for different methods corresponding to 60-90 min, after injection of 8F-FDG.

Method GF NLM IGF DIP
Thinning rate 1 1 1 1 1/5 1/10
White matter [SUV] 1.70 £0.22 1.74 £0.33 1.63 £0.31 1.49 £0.07 1.59£0.22 1.68 £0.16
Gray matter [SUV] 4.18+0.71 4.66 +1.23 4.55+0.72 431+0.23 5.05+0.23 4.91+041
CNR 3.36 2.29 3.70 11.71 10.74 7.44

from the short time frames. In the real !* F-FDG data, obtained
from the living monkey brain, the DIP method subjectively
reduced the noise and preserved the brain structure. Fur-
thermore, the regional TACs of the white and gray matter
in the DIP method are smoother than those produced by
the other algorithms. Particularly, in the first 10 min after
the '8F-FDG injection, the variation resulting from the use
of the DIP method is clearly smaller than that produced
by the other algorithms. In the ideal metabolic trapping of
I8E_FDG kinetics, the image contrast between the gray and
white matter is higher in the later time frames such from
60-90 min. As shown in the CNR (Table 3), in the DIP
method, the contrast between the gray and white matter is
clearly expressed relative to the other algorithms. In addition,
the DIP method can maintain the CNR, even for low dose
images, by sampling list data to 1/5 and 1/10 of original.
These results suggest that the DIP method strongly improves
the accuracy of the kinetics analysis and therefore would be
useful for low-dose PET imaging.

This study was subject to several limitations. First,
we chose and modified the 3D U-net architecture which
has exhibited good performance in the field of biomedical
applications [31]. The network structure had to be optimized
to attain a high expression performance. Second, we evalu-
ated only '8F-FDG, for which the radioactivity distribution
in the images does not change between the early and later
time frames. Therefore, each dynamic PET image has a very
similar distribution pattern. In the future, we will investi-
gate the effect of the reversible-type PET tracers such as
11C-raclopride. Finally, in the DIP method, the num-
ber of epochs was empirically determined. As shown in
Figure 7, there is a plateau in the later epochs. We can detect
this portion and automatically detect the number of epochs.
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VII. CONCLUSION

In the present study, we examined a novel method for the post-
reconstruction denoising of dynamic PET images using CNN
without prior training datasets. Anatomical information such
as MR or CT images was not necessary, as the original PET
data itself was used to reduce the statistical noise. Computer
simulation based on '8F-FDG kinetics indicated that the DIP
method reduced the statistical noise, while preserving the
cortex structures, and achieved an improved quantitative TAC
accuracy, compared to the other algorithms. In addition, real
BE_FDG data, obtained from a living monkey brain, indi-
cated that the DIP method outperformed the other algorithms
in terms of CNR. Furthermore, the DIP method could main-
tain the CNR even for low-dose images by resampling the
list data to 1/5 and 1/10 of the original, demonstrating that
the DIP method could be applied to low-dose PET imaging.
In the near future, we intend to evaluate the performance of
the DIP method when using other PET tracers and human
clinical PET data.
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