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ABSTRACT Reservoir optimal operation (ROO) needs to coordinate various profit-making objectives,
which is a typical multiobjective optimization problem (MOP) with complex constraints. With the devel-
opment of multiobjective evolutionary algorithms (MOEAs) in the past decades, more and more research
has focused on MOEAs to solve MOP. Considering that multiobjective ROO is also a typical multi-stage
Markov decision-making problem, this paper introduces the application of multiobjective dynamic program-
ming (MODP) formultiobjective ROO in detail. On this basis, an improvedMODPwith selectionmechanism
of non-dominated solutions based on reference lines (MODP-BRL) is proposed to improve the convergence
efficiency of MODP. The experimental results show that the proposedMODP-BRL is a reliable and effective
tool in solving multiobjective ROO. In addition, MODP-BRL has better performance in convergence effect
and efficiency in comparison experiments with NSGAII, NSGAIII, and SPEA2. It is noteworthy that MODP
and MODP-BRL are very sensitive to the discrete step. With the decrease of the discrete step (the higher
the discrete precision), the computing time increases nonlinearly. The appropriate discrete step of the state
variable is key presets to balance the superiority and computational efficiency of non-dominated solutions
with the application of MODP and MODP-BRL.

INDEX TERMS Reservoir operation optimization (ROO), multiobjective optimization, multiobjective
dynamic programming (MODP), reference lines.

I. INTRODUCTION
Reservoir operation optimization (ROO) facilitates flood
control, agriculture irrigation, hydropower generating and
shipping [1], [2], which serves human by optimizing ben-
efit through meeting societal demand [3]. These structures
and their catchments need an efficient and stable solving
tool to handle their complexity in terms of non-linearity,
multimodal, conflicting objectives and multiple constraints.
In the past decades, with the development of multiobjective
optimization methods, lots of related research [4]–[8] on
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multiobjective ROO have been done. In these studies, water is
allocated as a limited resource to meet various profit-making
needs, resulting in conflicts among various dispatch objec-
tives [9], [10]. It means that ROO with multiple conflicting
objectives is a multiobjective optimization problems (MOP).
During the past decades, various multiobjective evolu-
tionary algorithms (MOEAs) based on Pareto dominance
have been proposed like Multiobjective Genetic Algo-
rithm (MOGA) [5], [11], the Improved Strength Pareto Evo-
lutionary Algorithm (SPEA2) [12], Nondominated Sorting
Genetic Algorithm II (NSGAII) [13]–[15], Multiobjective
Particle Swarm Optimization (MOPSO) [6], [16], Multi-
objective Evolutionary Algorithm based on Decomposition
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(MOEA/D) [17], [18] and Nondominated Sorting Genetic
Algorithm III (NSGAIII) [19], [20]. With the development
of MOEAs, more and more researchers have begun to
focus on the application of MOEAs in multiobjective ROO,
and achieved good performance [21]–[23]. MOEAs have
achieved good performance in testing with benchmark func-
tion. However, there are still some drawbacks in the appli-
cation of MOEAs to ROO: the randomness of convergence
results and the gap between the obtained non-dominated
solutions and the Pareto optimal solutions.

It is noteworthy that ROO is also a multi-stage Markov
decision-making problem [24]. As a classical solving method
of multi-stage Markov decision problem, dynamic program-
ming (DP) can efficiently address linear or nonlinear, convex
or non-convex objective functions, and deal with a vari-
ety of complicated constraints [25]. In addition, DP can
obtain global optimal solution in most cases, which makes
DP widely used in quite a lot fields. In some litera-
tures [26], [27] about solving multiobjective ROO via DP,
the preferences or weights are often required. These methods
cannot effectively solve practical problems, nor can they get
Pareto-optimal solutions of MOP. Tauxe et al. [28] treated
secondary objectives as state variables in DP and applied it
to multiobjective ROO. Then Daellenbach & Dekluyver [29]
proposed the multiobjective DP (MODP), which retains
all the Pareto-optimal solutions based on non-dominated
policy in recursive computation, resulting in an exponen-
tially increasing computational burden with the length of
study horizon. Zhao and Zhao [30] propose an improved
MODP (IMODP) incorporated the ranking technique with
crowding distance to select a representative set of Pareto-
optimal solutions (instead of retaining all solutions). How-
ever, the ranking technique with the crowding distance makes
some crowded solutions easy to be ignored because of the
smaller crowding distance. NSGA-III [19] is aided by a
new selection mechanism with well-spread reference points
to maintain population diversity. This selection mechanism
can be introduced into MODP to improve its convergence
efficiency and effect.

In this paper, a multiobjective dynamic programming
based on the reference lines (MODP-BRL) is proposed to
solve ROO of Three Gorges Reservoir (TGR) with two objec-
tives. Major contributions are outlined as follows:

1) The multiobjective dynamic programming (MODP)
based on principle of Pareto-optimality is introduced
in detail, which extended single-objective DP with
non-dominated policy to solve MOP.

2) A new MODP based on reference lines of normal-
ized reference plane named MODP-BRL is proposed.
The MODP-BRL combines the advantages of MODP
and NSGAIII and shows its high performance in
multiobjective ROO.

The remainder of this paper is organized as follows:
Section II introduces the formulation of ROOwith two objec-
tives. In Section III, the detail of MODP andMODP-BRP are
presented. In Section IV,MODP andMODP-BRP are applied

to solve ROO for TGR, then the results are analyzed. Finally,
conclusions are summarized in Section V.

II. PROBLEM FORMULATION
This section introduces the details of multiobjective ROO,
mainly including themathematical model withmultiobjective
and several constraints.

A. OBJECTIVE FUNCTION
The primary objective of ROO is tomaximize the comprehen-
sive benefit of water resources utilization. The maximization
of power generation, minimum output of TGR are selected
as objectives. The maximization of power generation and
minimum output are conflicting under the premise of limited
water resources. The tradeoff between power generation and
minimum output for multiobjective ROO are focused in many
related literatures [30], [31]. The power generation reflects
direct economic benefits, which can be expressed as follows.

max f1 = max
∑T

t=1
Nt1t (1)

Nt = A HtQt (2)

where T is the number of periods; A is output coefficient
of TGR; 1t shows interval of scheduling term; Nt , Ht and
Qt denote output, pure water head and generating discharge
in t period, respectively.

The minimum output determines the power quality of
power plants, and it determines the competitiveness of power
plants participating in the electricity market. It can be
expressed as follows.

max f2 = max
{

min
∀t=1,2,...,T

(Nt )
}

(3)

B. CONSTRAINTS
In ROO, the following constraints of hydropower station
should be considered.

1) Water balance constraint.

Vt = Vt−1 + (It − Ot)1t,

Ot = Qt + St (4)

where Vt is reservoir storage at t period; It is inflow
at t period;Ot ,Qt and St stands for outflow, generating
discharge and deserted outflow, respectively.

2) Water head equation.

Ht = (Zt−1 + Zt) /2− Zdown
t (5)

Zdownt = SDR (Ot) (6)

where Ht stands for the water head; Zt is the upstream
water level at t period; Zdown

t is tail water level
described in formula (6); The function SDR() repre-
sents the hydraulic connection between Zdown

t and Ot .
3) Water level constraint.

Zmin
t ≤ Zt ≤ Zmax

t (7)

|Zt − Zt+1| ≤ 1Z (8)
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where Zmin
t and Zmax

t are the minimum and maximum
water level limits; and 1Z is the maximum amplitude
of water level variation.

4) Power generating constraint.

Nmin
t ≤ Nt ≤ Nmax

t (Ht) (9)

where Nmax
t (Ht) represents the maximum output limit,

which is a function of water head;Nmin
t is the minimum

output limit.
5) Outflow constraint.

Omin
t ≤ Ot ≤ Omax

t (10)

where Omin
t and Omax

t represent respectively the mini-
mum and maximum outflow limit.

6) Boundary condition.

Z0 = Zbegin, ZT = Zend (11)

where Zbegin and Zend are initial water level and termi-
nal water level of hydropower station, respectively.

III. MODP-BRL
This section introduces standard DP, then some basic con-
cepts related to the MODP algorithm is described in detail.
Finally, the details of MODP-BRL will be listed.

A. DP
DP is one of the most well-known and effective methods to
handle multi-stage Markov decision-making problem, which
is first introduced by Bellman in 1962. It is extremely
effective for DP to deal with nonlinear objective functions
and reservoir operation constraints in ROO [24], [32], [33].
In ROO, reservoir capacity or water level are often chosen
as state variable, and outflow is chosen as decision variable.
According to the principle of optimality, the recursive func-
tion for single objective ROO in DP can be expressed as
below.

Rt (Vt−1,i)= max
Vt,j∈{Vt }

{
Bt (Vt−1,i,O∗t,j, It )+ Rt+1(Vt,j)

}
(12)

where O∗t,j represents optimal decision or optimal control.
Considering the water balance Ot = (Vt−1 − Vt)/1t + It
refer to (3), the decision can be expressed by the state Vt−1
and Vt , O∗t,j in (11) can be expressed as follows.

Rt (Vt−1,i) = max
Vt,j∈{Vt }

{
Bt (Vt−1,i,Vt,j, It )

+Rt+1(Vt,j)
}

(13)

Backtracking(Vt−1,i, t) = Vt,j (14)

where Rt (Vt−1,i) represents the benefit of remaining period
from t to T for state Vt−1,i, and Vt−1,i is the reservoir capacity
at the beginning of period t; Bt (Vt−1,i,Vt,j, It ) stands for
single-period benefit function. The benefit of Rt (Vt−1,i) and
Bt (Vt−1,i,Vt,j, It ) can be specified as many scheduling objec-
tives in (12), such as power generation, flood control, water
supply, . . . , etc. Backtracking(Vt−1,i, t) = Vt,j represents the

FIGURE 1. The decision making process of DP for reservoir operation.

backtracking relationship between Vt−1,i and Vt,j with the
optimal decision O∗t,j.
FIGURE 1 shows the decision making process of DP

for ROO. The reservoir capacity V is discretized into n val-
ues {Vt,j}. Vbegin and Vend of TGR are set as a fixed value,
which are usually specified by the dispatcher. Accordingly,
there is only one state at the first and last period. At t period,
the optimal state Vt,j corresponding to optimal decision will
be selected from {Vt,j} to obtain the optimal Rt (Vt−1,i) for
eachVt−1,i in {Vt−1,i}, and save the backtracking relationship
between Vt−1,i and Vt,j. After recursive computation from
T -1 to 1 period, the optimal benefit R1(Vbegin) and optimal
state process {V ∗t,j} can be obtained based on the backtracking
relationship previously preserved.

B. MODP
The MODP algorithm extends DP using a multiobjective
benefit evaluation function, and it searches for states
with superior performance considering multiple objec-
tives [34]. Daellenbach & Dekluyver [29] proposed MODP
based on principle of Pareto-optimality. The principle of
Pareto-optimality of MODP states that a non-dominated pol-
icy has the property that regardless of how the process entered
a given state, the remaining decisions must belong to a non-
dominated sub-policy [30]. Equation (13) and (14) for single
objective of reservoir operation in DP can be extended to
multiple objective problem as below.

MORt (Vt−1,i)

= non-dominated-select
[Vt,j,y]∈MORt (Vt,j)

{
MOs1t (Vt−1,i,Vt,j, y, It )

}
(15)

F(Vt−1,i) =MORt (Vt−1,i) =
{
MORt (Vt−1,i, x)

}
MORt (Vt−1,i, x) =


MOR1t (Vt−1,i,Vt,j, y, It )
MOR2t (Vt−1,i,Vt,j, y, It )

...

MORMt (Vt−1,i,Vt,j, y, It )

 (16)
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FIGURE 2. The decision making process of MODP for reservoir operation.

MOst (Vt−1,i,Vt,j, y, It )

=


MOs1t (Vt−1,i,Vt,j, y, It )
MOs2t (Vt−1,i,Vt,j, y, It )

...

MOsMt (Vt−1,i,Vt,j, y, It )

 (17)

MOsmt (Vt−1,i,Vt,j, y, It )

= MOBmt (Vt−1,i,Vt,j, It )+MOR
m
t+1(Vt,j, y) (18)

Backtracking(t,
[
Vt−1,i, x

]
) =

[
Vt,j, y

][
Vt−1,i, x

]
∼ MORt (Vt−1,i, x)[

Vt,j, y
]
∼ MORt+1(Vt,j, y)

(19)

where MOst (Vt−1,i,Vt,j, y, It ) represents general solutions
(multiobjective evaluation vector) as formula (16) and (17).
MORt (Vt−1,i) represents the non-dominated solutions
from t to T period for state Vt−1,i, and the reser-
voir capacity is Vt−1,i at the beginning of t period.
MORt (Vt−1,i, x) represents the multiple objective benefit
vectors of x-th non-dominated solution in MORt (Vt−1,i).
MOst (Vt−1,i,Vt,j, y, It ) and MORt (Vt−1,i,Vt,j, y, It ) rep-
resent the multiobjective benefit vectors of general solu-
tions and non-dominated solutions from t to T period
for state Vt−1,i to Vt,jwith MORt+1(Vt,j, y). Equation (18)
extends (13) from single objective to multiobjective, and M
is the number of objectives. Backtracking(t,

[
Vt−1,i, x

]
) =[

Vt,j, y
]
represents the backtracking relationship between

MORt (Vt−1,i, x) andMORt+1(Vt,j, y).MORt (Vt−1,i, x) and
MORt+1(Vt,j, y) represents the multiobjective benefit vec-
tors of x-th non-dominated solution inMORt (Vt−1,i) for state
Vt−1,i and y-th non-dominated solution in MORt+1(Vt,j) for
state Vt,j. FIGURE 2 shows the decision making process

of MODP for multiobjective ROO. Each state retain own
non-dominated solutions, so Backtracking(t,

[
Vt−1,i, x

]
) =[

Vt,j, y
]
needs to specifies two index x, y for non-dominated

solutions of state Vt−1,i and
{
Vt,j

}
.

Algorithm 1 shows the process of MODP algorithm. The
non-dominated policy and different record form of back-
tracking relationship were introduced to DP [29]. It enables
MODP to obtain non-dominated solutions of MOP. And
non-dominated-select{} represents the method of obtaining
and identifying MORt (Vt−1,i) from MOst (Vt−1,i,Vt,j, y, It )
in (15). The new record form of backtracking relationship
Backtracking(t,

[
Vt−1,i, x

]
) select

[
Vt,j, y

]
as backtracking

index, because each state Vt,j corresponds to MORt+1(Vt,j).
Any dominated solutions will not exist inMORt (Vt−1,i). The
backtracking relationships between

[
Vt−1,i, x

]
and

[
Vt,j, y

]
are saved whenMORt (Vt−1,i) is generated. And correspond-
ing optimal state process {V ∗t,j} can be obtained based on
Backtracking(t,

[
Vt−1,i, x

]
) =

[
Vt,j, y

]
.

Algorithm 1 The Pseudocode of MODP Algorithm
Input:
1: Vbegin and Vend and inflow series {It }
Initialization:
1: the states (reservoir capacity) are discretized
2: generate discrete set of states {Vt,j}
Calculation:
1: for t = T to 1
2: for i =1 to n select Vt−1,i
3: for j = 1 to m select Vt,j
4: for np = 1 to NP selectMORt+1(Vt,j, y)
5: calculateMOst (Vt−1,i,Vt,j, y, It ) as (17) and (18)
6: end for
7: end for
8: obtain

{
MOst (Vt−1,i,Vt,j, y, It )

}
for state Vt−1,i

9: non-dominated select
{
MOst (Vt−1,i,Vt,j, y, It )

}
10: obtainMORt (Vt−1,i) and save it for state Vt−1,i
11: save Backtracking(t,

[
Vt−1,i, x

]
) =

[
Vt,j, y

]
12: end for
13: end for
Outflow:
non-dominated solutions MOR1(Vbegin) and corresponding
state (decision) process {Vt}

C. IMODP
MODP suffers a lot of computational burden because of
state-based optimization and preservation of all the Pareto-
optimal solutions in recursive computation. To improve the
computational efficiency, Zhao [30] incorporates the rank-
ing technique [13] into MODP and proposes an efficient
IMODP algorithm. IMODP uses selection mechanism based
on crowding distance to alleviate computational burden and
involves a parameter K , that is, to select a representative set
of K solutions from the whole set. The idea of IMODP is
clarified by MOEA, which employs selection mechanism to
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control the size of non-dominated solutions and thus reduce
the computational burden [35], [36].

The ranking technique uses the crowding distance to select
representative solutions from the whole set, preserving the
diversity of solutions [13]. It consists of two steps: assigning
the crowding distance and sorting of the objective vectors.
We denote the number of Pareto optimal objective vectors
as N. In the steps of the calculation of crowding distance, first,
the initial crowding distances are set to zero. Then, the dis-
tance for each of the objectives is calculated; the crowding
distance is the sum of the difference of each objective func-
tion value of two adjacent individuals. After the crowding
distance assignment, sorting of the non-dominated solutions
is conducted. The non-dominated solutions are ranked based
on the corresponding distance values in descending order, and
the first K solutions are selected.

D. MODP-BRL
The number of non-dominated solutions needs to be reduced
to prevent curse of computational burden, and the selected
non-dominated solutions should be uniformly distributed.
NSGA-III algorithm used reference points generated by a
normalized reference plane to choose uniformly distributed
non-dominated solutions. In MODP-BRL, a new selection
mechanism based on reference lines referring to reference
points in the NSGA-III is proposed to alleviate computa-
tional burden and ensure uniform distribution of selected non-
dominant solutions.

1) REFERENCE POINTS
The reference points are evenly placed on a normalized ref-
erence plane proposed by Das and Dennis [37], which is
generated by hypothetical extreme reference points. The total
number of reference points (H ) in anM -objective problem is
calculated by (20).

H =
(
M + p− 1

p

)
(20)

For example, there are three hypothetical extreme refer-
ence points at (1, 0, 0), (0, 1, 0), (0, 0, 1) on normalized ref-
erence plane when the number of objective is three (M = 3)
as FIGURE 3. If three divisions (p = 3) are selected for each
axis that any two extreme reference points are connected,
the reference point set will have 10 reference points includ-
ing 3 extreme reference points. The reference points can be
generated by Das and Dennis’s [37] systematic approach that
places points on a normalized hyper-plane.

2) NORMALIZATION
The reference points on normalized reference plane have been
normalized, somultiobjective evaluation vector fnp also needs
to be normalized as nfnp. The standard 0-1 transformation is
chosen for normalization, which can be described as follows.{

F(Vt−1,i) =MORt (Vt−1,i)
fnp =MORt (Vt−1,i, np)

(21)

FIGURE 3. Reference points are shown on a normalized reference plane
for a three-objective problem with p = 3.


nF = normalize(F)
F =

{
fnp
}
before normalization

nF =
{
nfnp

}
after normalization

(22)

fnp =
[
f 1np, f

2
np, . . . , f

m
np, . . . , f

M
np

]T
nfnp =

[
nf 1np, nf

2
np, . . . , nf

m
np, . . . , nf

M
np

]T (23)

nf mnp =
(
f mnp − f

m
min

)
/f mmax − f

m
max (24)

nf mnp =
(
f mmax − f

m
np

)
/
(
f mmax − f

m
max
)

(25)

where nF and F represent non-dominated solutions before
and after normalization operation as (21). fnp and nfnp rep-
resent np-th non-dominated solution in nF and F, respec-
tively. And they are multiobjective evaluation vector with
M objectives. f mnp and nf mnp represent m-th objective in fnp
and nfnp, respectively. Equation (24) and (25) represent the
benefit attribute and cost attribute respectively of standard
0-1 transformation. The maximization of power generation
and minimum output can be regarded as beneficial attributes
in this paper.

3) SELECTION BASED ON REFERENCE LINES
After the reference points on normalized reference plane
generated, the rays from origin point (0, 0, 0) to reference
points is taken as reference lines ER = {Erh} as FIGURE 4.
There are 10 reference lines generated from 10 reference
points, and each Erh cover a range of objective space.
For massive nfnp in nF, nfnp can be sorted according to

the minimum value of distance from nfnp to Erh in ER. The
Euclidean distance is used in the distance ED(nfnp, Erh) from
nfnp to Erh. nfnp with the first K smaller ED(nfnp, Erh) should
be retained into selected non-dominated solutions snF, and
each Erh holds only one nfnp with minimum ED(nfnp, Erh). The
number of nfnp retained in snF eventually depends on H and
K . The pseudocode of selection based on reference lines for
normalized non-dominated solutions in Algorithm 2.
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FIGURE 4. The reference lines and euclidean distance for a
three-objective problem with p = 3.

Algorithm 2 Selection Based on Reference Lines
Input:
1: non-dominated solutions F and size(F) = NP
2: number of reference lines H and parameter K
3: reference lines ER = {Erh}
Initialization:
1: nF = normalize(F) as formula (21)-(24) in section 3.3.1
2: snF = ∅ and sF = ∅
Main loop:
1: for h = 1 to Hselect Erh in ER
2: EDs = ∅//record Euclidean distance from nfnpto Erh
3: for np = 1 to NP select nfnp in current nF
4: calculate ED(nfnp, Erh)
5: EDs← ED(nfnp, Erh)
6: end for
7: ascending sort EDs according to ED(nfnp, Erh)
8: select index np with minimum ED(nfnp, Erh)
9: snF← nfnp and sF← fnp
10: remove nfnp from nF
11: remove fnp from F
12: end for
13: while size(sF) < K
14: select nfnp with max

snf∈snF
ED(nfnp, snf)

15: snF← nfnp and sF← fnp
16: end
Output:
The non-dominated solutions after selection sF

Algorithm 2 shows the process of selection based on refer-
ence lines. Firstly, F are normalized into nF, which make it
suitable for normalized reference plane and reference lines ER.
The index np with minimum ED(nfnp, Erh) will be find out for
each Erh in ER. Then nfnp and fnp will be added to snF and sF,
and the backtracking relationships should be updated. The
selection operation can reduce the number of elements from
F to sF. It can effectively select sF to ensure the uniform dis-
tribution of solutions in the objective space. Combined with

these steps, the pseudocode of MODP-BRL algorithm can be
described as follows.

Algorithm 3 The Pseudocode of MODP-BRL Algorithm
Input:
1: Vbegin and Vend and inflow series {It }
2: number of reference points H
Initialization:
1: generate discrete set of states {Vt,j}
2: H structured reference points, and ER = {Erh} are generated
Calculation:
1: for t = T to 1
2: for i = 1 to n select Vt−1,i
3: for j = 1 to m select Vt,j
4: for np = 1 to NP selectMORt+1(Vt,j, y)
5: calculateMOst (Vt−1,i,Vt,j, y, It ) as (17) and (18)
6: end for
7: end for
8: obtain

{
MOst (Vt−1,i,Vt,j, y, It )

}
for state Vt−1,i

9: non-dominated select {MOst }
10: obtainMORt (Vt−1,i) and save it for state Vt−1,i
11: save Backtracking(t,

[
Vt−1,i, x

]
) =

[
Vt,j, y

]
12: if size(F) > K
12: obtain sF after selection of F as Algorithm 3
13: elseif
14: sF = F
15: obtain sMORt (Vt−1,i) according to sF.
16: update Backtracking(t,

[
Vt−1,i, x

]
) =

[
Vt,j, y

]
accord-

ing to sMORt (Vt−1,i)
17: end for
18: end for
Output:
selected non-dominated solutions sMOR1(Vbegin) and corre-
sponding state (decision) process {Vt}

IV. CASE STUDY
A. DESCRIPTION OF CASE STUDY
The Yangtze River is the third longest river in the world,
the largest river in China. TGR is the key backbone of the
Yangtze River Basin (See as FIGURE 5), and the operation
and management of TGR will inevitably affect the river
basin ecosystem of upper and lower reaches. The mainly
parameters of TGR are listed in TABLE 1. The typical years
are selected to be the inflow conditions according to his-
torical runoff from 1959 to 2014: dry year (1969). In order
to defend the coming flood in flood season, the TGR emp-
ties storage capacity, and its water level dropped to 145 at
June 10. And the TGR begins to store water in Septem-
ber 1. Therefore, the scheduling period begins at June 10 and
end at June 10 of next year. The time step was ten days
(actually it is not a constant, and the end 10 days could
be 8 or 9 days (February), 10 days and 11 days). The ini-
tial water level Zbegin

i and terminal water level Z end
i are set

to 145 m.
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FIGURE 5. The location of the research area in china.

TABLE 1. The main parameters of TGR.

B. PERFORMANCE METRICS
MODP retains all non-dominated solutions of each states in
the process of recursion calculation. It means that MODP
can obtain Pareto-optimal solutions with a specified discrete
step of state. MODP-BRL and IMODP use different strate-
gies to reduce the number of non-dominated solutions of
each states so as to alleviate computational burden, but this
makes the non-dominated solutions obtained byMODP-BRL
and IMODP unable to guarantee Pareto-optimality. There-
fore, several performance metrics are given to evaluate these
algorithms.

The two most commonly used performance metrics are
inverted generational distance (IGD) [38] and hypervol-
ume (HV) [39]. IGD is selected in experiments rather than
HV because of the complexity of HV calculation steps.
As for IGD, we should compute a set V = [v1, v2, . . . , vN ];
first, each of them is the intersection point of the true
Pareto frontier with each weight vector. Then, the final non-
dominated solutions F =

{
fnp
}
is obtained by any algorithm.

The IGD value of F is computed as:

IGD(F,V) = 1/|V|
∑|V|

i=1
min
nf∈nF

d(vi, f) (26)

where d(vi, f) is the Euclidean distance between vi and f in F,
and |V|, |F| is the cardinality of V and F.

In this case, the Pareto frontier of the problem is unknown.
MODP can obtain the Pareto-optimal solutions of Markov
multi-stage decision making problem with specified discrete
precision, so the non-dominated solutions obtained byMODP
can be regarded as the true Pareto frontier V of the problem
with specified discrete precision. For non-dominated solu-
tions F1 and F2, the average number of dominated solu-
tions (ANDS) of F1 to F2 is defined as follows.

ANDS(F1,F2) = 1/|F1|
∑|F1|

i=1
∑|F2|

j=1 δ(f1i, f2j)

δ(f1i, f2j) =

{
1 f1i is dominated by f2j
2 otherwise

(27)

where δ(f1i, f2j) is a function of 0, 1. When f1i is domi-
nated by f2j, δ(f1i, f2j) = 1; otherwise, δ(f1i, f2j) = 0,
and |F1|, |F2| is the cardinality of F1 and F2. The smaller
ANDS(F1,F2), the smaller the degree that F1 is dominated
by F2.

C. CASE 1
In this case, the model of multiobjective ROO of TGR is
established with two objectives (M = 2). Then MODP-BRL
and IMODP, MODP are used to solve this problem and test
their performance. The water level is selected as state, and the
discrete step of state is 0.1 m. The parameter K in IMODP
and K , H in MODP-BRL are used to limit the number of
non-dominated solutions of each states. In this case, K is set
to 100, 80, 60, 40. In addition, the number of reference points
also affects the performance of MODP-BRP. These experi-
ments are made on a personal computer,Windows10, Intel(R)
Core(TM) i7-8750H CPU@ 2.20GHZ, RAM 16.00 GB. The
code language for experiments and models is java.

The ANDS for MODP-BRL, IMODP and MODP are pre-
sented in TABLE 2. ANDS of MODP-BRL to MODP are
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TABLE 2. The ANDS for MODP-BRL, IMODP and MODP.

TABLE 3. The IGD and computing time for MODP-BRL, IMODP and MODP.

less than ANDSof IMODP to MODP with K = 40, 60,
80, 100. It means that the number of the non-dominated
solutions of MODP-BRL dominated by MODP is less than
that of IMODP dominated by MODP. The non-dominated
obtained of MODP-BRL is closer to that of MODP than
that of IMODP. These indicate that MODP-BRL outperforms
IMODP in ANDS.

Table 3 shows the IGD and computing time for
MODP-BRL, IMODP and MODP. The non-dominated solu-
tions of MODP is treated as true Pareto frontier in the
calculation of IGD. Obviously, the IGD of MODP-BRL is
less than that of IMODP when K = 40, 60, 80, 100. This
is mainly due to the fact that the crowded solutions are not
selected to representative solutions from the whole solutions
according to the crowding distance in IMODP. The crowd-
ing distance cannot really reflect the aggregation degree of
the solutions. In addition, some solutions with very small
congestion distance may be in a position with better spatial
distribution uniformity. MODP-BRL chooses representative
solutions based on uniformly distributed reference lines on
the normalized hyperplane, and MODP-BRL uses Euclidean
distance instead of crowding distance. But the computational
cost of Euclidean distance makes the computational time of
MODP-BRL slightly longer than that of IMODP. To sum
up, MODP-BRL performs better on ANDS and IGD than
IMODP, which fully demonstrates that MODP-BRL is also
reliable and effective tool in solving problems.

D. CASE 2
Then, the NSGAII, NSGAIII and SPEA2 are applied to verify
the convergence efficiency of MODP-BRL in multiobjective
ROO of TGR. The code of NSGAII, NSGAIII and SPEA2 are

TABLE 4. The main parameters of NSGAII, NSGAIII and SPEA2.

TABLE 5. The computing time for different methods.

obtained by jMetal [40], which is an object-oriented
Java-based framework for multiobjective optimization with
metaheuristics. The parameters of NSGAII, NSGAIII and
SPEA2 are set as Table 4. The parameter D in Table 6 repre-
sents the dimension of the problem (D = 36 in this problem).
The parameter settings of MODP and MODP-BRP are the
same as those of case 1 except K = 100 in MODP-BRP.
FIGURE 6 shows the non-dominated solutions obtained by
different methods when the iterations = 1000 and 2000.
Table 5 gives the calculation time of different methods under
different conditions.

As can be seen from FIGURE 6, most of the non-
dominated solutions of NSGAII, NSGAIII, SPEA2 are
dominated by the non-dominated solutions of MODP and
MODP-BRP when iterations = 1000. The non-dominated
solutions of NSGAII, NSGAIII, SPEA2 are close to those
of MODP and MODP-BRP when iterations = 2000. How-
ever, the non-dominated solutions of NSGAII, NSGAIII, and
SPEA2 are crowded, and the non-dominated solutions of
MODP andMODP-BRP aremorewidely distributed. In addi-
tion, NSGAII, NSGAIII, and SPEA2 take longer time to com-
pute than MODP-BRP and MODP. It should be noted that,
MODP-BRP and MODP only need to check constraints and
abandon the states and decisions that violate the constraints,
instead of conceiving constraints handling technology for
MOEAs in practical engineering problemswith complex con-
straints. In conclusion, MODP-BRP is superior to NSGAII,
NSGAIII, and SPEA2 in both convergence effect and conver-
gence efficiency in multiobjective ROO problems.

E. CASE 3
Finally, the influence of discrete step of MODP-BRP on
problem solving is analyzed. The discrete step of state is
set to 1, 0.5, 0.2, 0.1, 0.05, 0.02, 0.01 m for MODP-BRP
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FIGURE 6. The non-dominated solution obtained by different methods.

FIGURE 7. The non-dominated solutions obtained by MODP with
different discrete step.

and MODP, and K = 100 in MODP-BRP. FIGURE. 7 and
FIGURE 8 shows the non-dominated solutions obtained by
MODP and MODP-BRP with different discrete step, respec-
tively. Table 6 shows the computing time of MODP and
MODP-BRP in different discrete step.

FIGURE. 7 shows that the smaller the discrete step, the bet-
ter the non-dominated solutions of MODP can be obtained.
It also reflects that even though MODP can obtain Pareto
optimal solution, only when the discrete step size approaches
infinitesimal, can MODP obtain true Pareto frontier. How-
ever, with the decrease of discrete step, the corresponding
computing time increases nonlinearly as shown in Table 6.
The corresponding computing time increases sharply from
11.3 s to 174.8 s when the discrete step size changes from

FIGURE 8. The non-dominated solutions obtained by MODP-BRL with
different discrete step.

TABLE 6. The calculation time of MODP and MODP-BRP with different
discrete step.

0.1 to 0.05 m. Then the discrete step is further reduced to
0.02 m, the corresponding computing time will increase to
6615.5 s. FIGURE 7 shows the non-dominated solutions
obtained by MODP is closer when the discrete precision is
0.1 m and 0.02 m. In addition, the non-dominated solutions
of MODP-BRL with discrete step = 0.1 m is close to that
of MODP with the discrete step = 0.02 m as shown in
FIGURE 8. Therefore, it is appropriate to set the discrete step
to 0.1 m when solving this problem.

When the size of non-dominated solutions is smaller
than K, MODP and MODP-BRL are equivalent. There-
fore, the calculation results of MODP and MODP-BRL
in Table 6 are the same when the discrete step size is 1, 0.5,
and 0.2. When the discrete step of state is 0.1, 0.05, and
0.02 m, the computing time and obtained solutions size of
MODP-BRL are less than those of MODP. Compared with
MODP in the computing time, MODP-BRL decreases by
26.1%, 74.4% and 93.3% respectively when the discrete step
is 0.1 m, 0.05 m and 0.02 m. FIGURE 9 shows that the num-
ber of non-dominated solutions of MODP-BRL and MODP
of all state in any periods. The maximum of the number
of non-dominated solutions is 1219095 at 21 periods in the
result of MODP with discrete step = 0.02 m. The size of
solutions obtained by MODP-BRL is much smaller than that
of MODP with the same discrete step size. It is mainly due
to the reference lines in MODP-BRL to select representative
solutions from a large number of non-dominated solutions.
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FIGURE 9. The number of non-dominated solutions obtained by
MODP-BRL and MODP of all state in any periods.

In summary, the following conclusions can be obtained
from Case 3: (a) MODP and its improved version are very
sensitive to the discrete step. With the decrease of the dis-
crete step (the higher the discrete precision), the computing
time increases nonlinearly; (b) the smaller the discrete step,
the better the non-dominated solutions can be obtained. And
the effect of continuing to reduce the discrete step on the
non-dominated solutions is negligible when the discrete step
is small enough. (c) MODP-BRL alleviates computational
burden by reducing the size of reserved solutions based on
the reference lines.

V. CONCLUSION
In this paper, an improved MODP named MODP-BRL is
proposed with new selection mechanism of non-dominated
solutions based on reference lines. To test its performance
on multiobjective ROO, the model of multiobjective ROO of
TGR with two objectives is established. These experimental
results show the following conclusions: (a) MODP-BRL per-
forms better on ANDS and IGD than IMODP, which fully
demonstrates that MODP-BRL is also reliable and effective
tool in solving multiobjective ROO. (b) MODP-BRL is supe-
rior to NSGAII, NSGAIII, and SPEA2 in both convergence
effect and convergence efficiency in multiobjective ROO
problems. And MODP-BRP and MODP only need to check
constraints and abandon the states and decisions that violate
the constraints, instead of conceiving constraints handling
technology for MOEAs. (c) MODP and its improved version
are very sensitive to the discrete step. With the decrease
of the discrete step (the higher the discrete precision), the
computing time increases nonlinearly. (d) MODP-BRL alle-
viates computational burden by reducing the size of reserved
solutions based on the reference lines. (e) Choosing appro-
priate discrete step can balance the need for superiority and
computational efficiency of non-dominated solutions when
using MODP and its improved versions are used to solve
multiobjective ROO.

In summary, the proposed MODP-BRL can be used
as an effective and reliable tool to solve multiobjec-
tive ROO, MODP-BRL can also be extended to multiob-
jective multi-stage Markov decision-making problem with

complicated constraints. It should be noted that it is necessary
to set the appropriate discrete step of state to balance the
superiority and computational efficiency of non-dominated
solutions in the application of MODP-BRL.

REFERENCES
[1] H. Wang, Z. Yang, Y. Saito, J. P. Liu, and X. Sun, ‘‘Interannual

and seasonal variation of the Huanghe (Yellow River) water discharge
over the past 50 years: Connections to impacts from ENSO events
and dams,’’ Global Planet. Change, vol. 50, nos. 3–4, pp. 212–225,
Apr. 2006.

[2] Z. Feng, W. Niu, and C. Cheng, ‘‘China’s large-scale hydropower
system: Operation characteristics, modeling challenge and dimension-
ality reduction possibilities,’’ Renew. Energy, vol. 136, pp. 805–818,
Jun. 2019.

[3] M. S. Babel, C. N. Dinh, M. R. A. Mullick, and U. V. Nanduri, ‘‘Operation
of a hydropower system considering environmental flow requirements: A
case study in La Nga river basin, Vietnam,’’ J. Hydro-Environ. Res., vol. 6,
no. 1, pp. 63–73, Mar. 2012.

[4] D. Chen, Q. Chen, A. S. Leon, and R. Li, ‘‘A genetic algorithm par-
allel strategy for Optimizing the operation of reservoir with multiple
Eco-environmental objectives,’’ Water Resour. Manage., vol. 30, no. 7,
pp. 2127–2142, May 2016.

[5] D. G. Regulwar and P. A. Raj, ‘‘Multi objectivemultireservoir optimization
in fuzzy environment for river sub basin development and management,’’
J. Water Resource Protection, vol. 1, p. 10, Oct. 2009.

[6] M. J. Reddy and D. N. Kumar, ‘‘Performance evaluation of elitist-
mutated multi-objective particle swarm optimization for integrated water
resources management,’’ J. Hydroinform., vol. 11, no. 1, pp. 79–88,
Jan. 2009.

[7] M. Giuliani, J. D. Herman, A. Castelletti, and P. Reed, ‘‘Many-objective
reservoir policy identification and refinement to reduce policy inertia
and myopia in water management,’’ Water Resour. Res., vol. 50, no. 4,
pp. 3355–3377, Apr. 2014.

[8] M. Giuliani, A. Castelletti, F. Pianosi, E. Mason, and P. M. Reed, ‘‘Curses,
tradeoffs, and scalable management: Advancing evolutionary multiobjec-
tive direct policy search to improve water reservoir operations,’’ J. Water
Resour. Planning Manage., vol. 142, no. 2, 2015, Art. no. 4015050.

[9] Y. Liu, H. Qin, L. Mo, Y. Wang, D. Chen, S. Pang, and X. Yin, ‘‘Hier-
archical flood operation rules optimization using multi-objective cultured
evolutionary algorithm based on decomposition,’’Water Resour. Manage.,
vol. 33, no. 1, pp. 337–354, Jan. 2019.

[10] Z. Feng, W. Niu, and C. Cheng, ‘‘Optimization of hydropower reservoirs
operation balancing generation benefit and ecological requirement with
parallel multi-objective genetic algorithm,’’Energy, vol. 153, pp. 706–718,
Jun. 2018.

[11] C. M. Fonseca and P. J. Fleming, ‘‘Genetic algorithms for multiobjective
optimization: Formulation discussion and generalization,’’ ICGA, vol. 93,
pp. 416–423, Jul. 1993.

[12] E. Zitzler, M. Laumanns, and L. Thiele, ‘‘SPEA2: Improving the strength
Pareto evolutionary algorithm,’’ Comput. Eng. Netw. Lab., Swiss Federal
Inst. Technol., Zurich, Switzerland, Tech. Rep. 103, 2001.

[13] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, ‘‘A fast and elitist
multiobjective genetic algorithm: NSGA-II,’’ IEEE Trans. Evol. Comput.,
vol. 6, no. 2, pp. 182–197, Apr. 2002.

[14] T. Kim, J.-H. Heo, D.-H. Bae, and J.-H. Kim, ‘‘Single-reservoir operating
rules for a year using multiobjective genetic algorithm,’’ J. Hydroinform.,
vol. 10, no. 2, pp. 163–179, Mar. 2008.

[15] T.-S. Uen, F.-J. Chang, Y. Zhou, and W.-P. Tsai, ‘‘Exploring synergis-
tic benefits of water-food-energy nexus through multi-objective reser-
voir optimization schemes,’’ Sci. Total Environ., vol. 633, pp. 341–351,
Aug. 2018.

[16] C. A. C. Coello and R. L. Becerra, ‘‘Efficient evolutionary optimization
through the use of a cultural algorithm,’’ Eng. Optim., vol. 36, no. 2,
pp. 219–236, 2004.

[17] Q. Zhang and H. Li, ‘‘MOEA/D: A multiobjective evolutionary algorithm
based on decomposition,’’ IEEE Trans. Evol. Comput., vol. 11, no. 6,
pp. 712–731, Dec. 2007.

[18] Y. Qi, L. Bao, X. Ma, Q. Miao, and X. Li, ‘‘Self-adaptive multi-objective
evolutionary algorithm based on decomposition for large-scale problems:
A case study on reservoir flood control operation,’’ Inf. Sci., vol. 367,
pp. 529–549, Nov. 2016.

103482 VOLUME 7, 2019



Z. He et al.: Multiobjective ROO Using Improved MODP-BRL

[19] K. Deb and H. Jain, ‘‘An evolutionary many-objective optimization algo-
rithm using reference-point-based nondominated sorting approach, part
I: Solving problems with box constraints,’’ IEEE Trans. Evol. Comput.,
vol. 18, no. 4, pp. 577–601, Apr. 2013.

[20] H. Jain and K. Deb, ‘‘An evolutionary many-objective optimization algo-
rithm using reference-point based nondominated sorting approach, Part II:
Handling constraints and extending to an adaptive approach,’’ IEEE Trans.
Evol. Comput., vol. 18, no. 4, pp. 602–622, Aug. 2014.

[21] H. Qin, J. Zhou, Y. Lu, Y. Li, and Y. Zhang, ‘‘Multi-objective cultured
differential evolution for generating optimal trade-offs in reservoir flood
control operation,’’Water Resour.Manage., vol. 24, no. 11, pp. 2611–2632,
Sep. 2010.

[22] M. J. Reddy and D. N. Kumar, ‘‘Optimal reservoir operation using multi-
objective evolutionary algorithm,’’ Water Resour. Manage., vol. 20, no. 6,
pp. 861–878, Dec. 2006.

[23] J. Y. Al-Jawad, H. M. Alsaffar, D. Bertram, and R. M. Kalin, ‘‘Optimum
socio-environmental flows approach for reservoir operation strategy using
many-objectives evolutionary optimization algorithm,’’ Sci. Total Environ.,
vol. 651, pp. 1877–1891, Feb. 2019.

[24] J. W. Labadie, ‘‘Optimal operation of multireservoir systems: State-
of-the-art review,’’ J. Water Resour. Plann. Manage., vol. 130, no. 2,
pp. 93–111, 2004.

[25] Z. Feng, W. Niu, C. Cheng, and S. Liao, ‘‘Hydropower system oper-
ation optimization by discrete differential dynamic programming based
on orthogonal experiment design,’’ Energy, vol. 126, pp. 720–732,
May 2017.

[26] M. Akbari, A. Afshar, and S. J. Mousavi, ‘‘Stochastic multiobjective
reservoir operation under imprecise objectives: Multicriteria decision-
making approach,’’ J. Hydroinform., vol. 13, no. 1, pp. 110–120,
Jan. 2011.

[27] F. Pianosi, A. Castelletti, and M. Restelli, ‘‘Tree-based fitted Q-iteration
for multi-objective Markov decision processes in water resource manage-
ment,’’ J. Hydroinform., vol. 15, no. 2, pp. 258–270, 2013.

[28] G. W. Tauxe, R. R. Inman, and D. M. Mades, ‘‘Multiobjective dynamic
programing with application to a reservoir,’’ Water Resour. Res., vol. 15,
no. 6, pp. 1403–1408, Dec. 1979.

[29] H. G. Daellenbach and C. A. De Kluyver, ‘‘Note on multiple objective
dynamic programming,’’ J. Oper. Res. Soc., vol. 31, no. 7, pp. 591–594,
Jul. 1980.

[30] T. Zhao and J. Zhao, ‘‘Improved multiple-objective dynamic programming
model for reservoir operation optimization,’’ J. HydroInform., vol. 16,
no. 5, pp. 1142–1157, Sep. 2014.

[31] M. Xie, J. Zhou, W. Ouyang, L. Yuan, and H. Zhang, ‘‘Research on
joint generation scheduling of cascade hydro plants in the dry sea-
son,’’ Water Sci. Technol. Water Supply, vol. 18, no. 1, pp. 193–202,
2018.

[32] S. Yakowitz, ‘‘Dynamic programming applications in water resources,’’
Water Resour. Res., vol. 18, no. 4, pp. 673–696, Aug. 1982.

[33] D. P. Loucks, E. Van Beek, J. R. Stedinger, J. P. M. Dijkman, and
M. T. Villars, Water Resources Systems Planning and Management: An
Introduction toMethods, Models and Applications. London, U.K.: Unesco,
2005.

[34] V. Chankong and Y. Y. Haimes, Multiobjective Decision Making: Theory
and Methodology. New York, NY, USA: Dover Publications, 2008.

[35] M. A. Rosenman and J. S. Gero, ‘‘Reducing the Pareto optimal set in
multicriteria optimization (with applications to Pareto optimal dynamic
programming),’’ Eng. Optim., vol. 8, no. 3, pp. 189–206, Aug. 1985.

[36] M. J. Reddy and D. N. Kumar, ‘‘Multiobjective differential evolution
with application to reservoir system optimization,’’ J. Comput. Civil Eng.,
vol. 21, no. 2, pp. 136–146, Mar. 2007.

[37] I. Das and J. E. Dennis, ‘‘Normal-boundary intersection: A new method
for generating the Pareto surface in nonlinear multicriteria optimization
problems,’’ SIAM J. Optim., vol. 8, no. 3, pp. 631–657, Jul. 1998.

[38] E. Zitzler, L. Thiele, M. Laumanns, C. M. Fonseca, and V. Da Fonseca
Grunert, ‘‘Performance assessment of multiobjective optimizers: An anal-
ysis and review,’’ Comput. Eng. Netw. Lab., Swiss Federal Inst. Technol.,
Zurich, Switzerland, Tech. Rep. 139, 2002.

[39] E. Zitzler and L. Thiele, ‘‘Multiobjective evolutionary algorithms: A com-
parative case study and the strength Pareto approach,’’ IEEE Trans. Evol.
Comput., vol. 3, no. 4, pp. 257–271, Nov. 1999.

[40] J. J. Durillo and A. J. Nebro, ‘‘jMetal: A java framework for multi-
objective optimization,’’ Adv. Eng. Softw., vol. 42, no. 10, pp. 760–771,
2011.

[41] K. Deb, ‘‘An efficient constraint handling method for genetic algorithms,’’
Comput. Methods Appl. Mech. Eng., vol. 186, nos. 2–4, pp. 311–338,
2000.

ZHONGZHENG HE was born in Huangshi,
China, in 1992. He received the B.S. degree from
Huazhong University of Science and Technology
(HUST), Wuhan, China, in 2015, where he is cur-
rently pursuing the Ph.D. degree in hydraulic and
hydropower engineering.

His research interest includes modeling and
operation theory in water resources management.

JIANZHONG ZHOU was born in Wuhan, China,
in 1959. He received the B.S. degree in auto-
matic control from the Nanjing University of
Aeronautics and Astronautics, Nanjing, China,
in 1982. He is currently a Professor with the
School of Hydropower and Information Engi-
neering, Huazhong University of Science and
Technology (HUST).

His research interest includes optimal operation
and control of hydropower energy system.

LI MO was born in Wuhan, China, in 1980.
She received the B.S. and Ph.D. degrees from the
Huazhong University of Science and Technology
(HUST), Wuhan, in 2002 and 2009, respectively,
where she is currently an Associate Professor
with the School of Hydropower and Information
Engineering.

Her research interests include optimal dispatch
of hydropower energy, optimal allocation and
management of water resources, multi-attribute

decision support for optimal operation of hydropower stations, and power
market.

HUI QIN was born in Yicheng, China, in 1983.
He received the B.S. and Ph.D. degrees from the
Huazhong University of Science and Technology
(HUST),Wuhan, China, in 2006 and 2011, respec-
tively, where he is currently an Associate Professor
with the School of Hydropower and Information
Engineering.

His research interests include reservoir (group)
optimal dispatch, flood resource utilization, water
resources optimal allocation, and power system
optimal dispatch.

VOLUME 7, 2019 103483



Z. He et al.: Multiobjective ROO Using Improved MODP-BRL

XIAOGANG XIAO was born in Yingcheng, China,
in 1967. He received the master’s degree from the
Wuhan University of Hydraulic and Electric Engi-
neering, Wuhan, China, in 1993. He is currently a
Professor level Senior Engineer with the Central
China Branch of State Grid Corporation of China,
Wuhan.

His research interests include construction,
operation, and maintenance of power dispatching
automation system.

BENJUN JIA was born in Zunyi, China, in 1994.
He received the B.S. degree from the Huazhong
University of Science and Technology (HUST),
Wuhan, China, in 2017, where he is currently
pursuing the Ph.D. degree in hydraulic and
hydropower engineering.

His research interest includes the modeling and
operation theory in hydraulic power plants.

CHAO WANG was born in Enshi, China, in 1989.
He received the B.S. and Ph.D. degrees from
the Huazhong University of Science and Technol-
ogy (HUST), Wuhan, China, in 2011 and 2016,
respectively. He is currently a Senior Engineer
with the China Institute of Water Resources and
Hydropower Research, Beijing, China.

His research interests include modeling and
operation theory in water resources management
and information management of water resources
projects.

103484 VOLUME 7, 2019


	INTRODUCTION
	PROBLEM FORMULATION
	OBJECTIVE FUNCTION
	CONSTRAINTS

	MODP-BRL
	DP
	MODP
	IMODP
	MODP-BRL
	REFERENCE POINTS
	NORMALIZATION
	SELECTION BASED ON REFERENCE LINES


	CASE STUDY
	DESCRIPTION OF CASE STUDY
	PERFORMANCE METRICS
	CASE 1
	CASE 2
	CASE 3

	CONCLUSION
	REFERENCES
	Biographies
	ZHONGZHENG HE
	JIANZHONG ZHOU
	LI MO
	HUI QIN
	XIAOGANG XIAO
	BENJUN JIA
	CHAO WANG


