
Received June 27, 2019, accepted July 10, 2019, date of publication July 15, 2019, date of current version August 1, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2928846

Bidirectional Potential Guided RRT*
for Motion Planning
WANG XINYU 1,2, LI XIAOJUAN1,2, GUAN YONG1,3, SONG JIADONG1,4, AND WANG RUI1,5
1 Information Engineering College, Capital Normal University, Beijing 100048, China
2Beijing Engineering Research Center of High Reliable Embedded System
3Beijing Advanced Innovation Center for Imaging Theory and Technology
4Machinery Industry Information Center, Beijing 100823, China
5Beijing Key Laboratory of Light Industrial Robots and Safety Verification

Corresponding authors: Wang Xinyu (18810371250@163.com) and Li Xiaojuan (lixj@cnu.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 61472468, Grant 61572331, Grant
61602325, and Grant 61702348, in part by the National Key Research and Development Plan under Grant 2017YFC0806700, in part by
the Project of the Beijing Municipal Science and Technology Commission under Grant LJ201607, in part by the Capacity Building for
Sci-Tech Innovation–Fundamental Scientific Research Funds under Grant 025195305000, and in part by the Capital Normal University
Major (key) Nurturing Project.

ABSTRACT Requirement for high accuracy and speed of grasping operation for motion planning is very
important. Motion planning algorithms for avoiding obstacles in narrow channels play a vital role for
robotic arm effectively operating grasp tasks. The potential function-based RRT*-connect (P-RRT*-connect)
algorithm for motion planning is presented by combining the bidirectional artificial potential field into the
rapidly exploring random tree star (RRT*) in order to enhance the performance of the RRT*. The motion
path is found out by exploring two path trees from the start node and destination node, respectively, with
the rapidly exploring random tree star. Two trees advance each other at the same time according to the
attractive potential field and the repulsion potential field generated by the artificial potential field method of
sampled nodes until they meet. The P-RRT*-connect algorithm is especially suitable for solving the problem
of narrow channels. The simulation results prove that the P-RRT*-connect algorithm is more efficient than
potential Function-based RRT* (P-RRT*) regardless of the number of iterations or the running time. The
experimental data show that the time for the P-RRT*-connect to find the optimal path from the starting node
to the target node is half than that of the P-RRT*, and the number of iterations of the P-RRT*-connect is also
about one-third less than that of the P-RRT* which is useful for real time.

INDEX TERMS Potential function based RRT*-connect, RRT*, artificial potential field, two path trees,
narrow channels.

I. INTRODUCTION
Robot grasping operation is an indispensable part in the
process of robot performing tasks. A common grasping task is
that the robot obtains the precise pose of the target object with
machine vision, then moves the robotic arm (Figure 1) to the
target position. The end-effector of robot arm grasps the target
object stably and reliably in case of avoiding obstacles, and
moves the object to another target position. When the robotic
arm performs the grasping task, motion planning plays a
crucial role, so it is necessary to study an efficient motion
planning algorithm.

The associate editor coordinating the review of this manuscript and
approving it for publication was Ludovico Minati.

Robot motion planning is to find a collision-free path
between a given initial state and a target state, under the
condition that the motion is constrained. After many years
of development, motion planning has matured, and a series
of planning methods have been derived, which are mainly
divided into the following categories: graph-based search
methods, artificial potential field-based methods, random
sampling-based methods, intelligent optimization methods
and many other different planning methods. The graph-based
search methods are not suitable for motion planning of multi-
degree-of-freedom robotic arms. When the environment is
more complicated, the graph-based search methods are more
complicated for the obstacle area. Therefore, this method can
no longer be tested in a narrow channel environment. The
method based on intelligent optimization has the problem
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FIGURE 1. Robotic arm in lab.

of low computational efficiency. This paper only discusses
the artificial potential field-based method and the random
sampling-based method.

The Artificial Potential Field [1] method was first pro-
posed by O. Katib in 1986. The basic idea is to construct the
artificial potential field under the influence of the attractive
potential field at the target position and the repulsive potential
field around the obstacle, and then search the descending
direction of the potential function to find the collision free
path, so that the robotic arm will bypass the obstacle under
the action of these two forces and move from the start-
ing point to the target point. This method has been widely
used because of its simple structure, high computational effi-
ciency and real-time control. However, its disadvantage is
that it is easy to fall into a local minimum point [2], where
the resultant force of the robot is 0 and the target pose
cannot be reached. To solve this problem, many scholars
have proposed improvements, such as introducing virtual
target points [3] or making robots try to move randomly [4],
using the simulated annealing algorithm [5], using the adding
extra control force method [6], applying the genetic algo-
rithm into artificial potential field method [7], introducing
the gain factor [8], applying a virtual obstacle concept [9] or
virtual obstacle method [10], [11] to get rid of the current
minimum. Jinseok Lee proposed an internal state model to
solve the local minimum problem with computational cost
which is low relatively [12]. Zhang Tao et al. proposed an
improved wall-following approach and path memory [13].
Anugrah K et al. proposed the vector potential function [14].
Ya-Chun Chang et al. combined the Artificial Potential Field
method with Voronoi diagrammethod to improve the moving
quality of mobile robots [15]. Rahman proposed to plan a
constant path for each agent, thus avoiding changing the
trajectory [16]. Qinzhao Wang proposed a method of gravity
field rotation and virtual obstacle filling [17]. Chen JinXin
introduced a repulsion deflection model [18].

The motion planner based on random sampling method
firstly conducts random sampling in the free configuration

space of robot, then the connection graph is formed
by sampling points, and then the collision-free path is
obtained by graph searching. This method mainly includes
Probabilistic Roadmap Method (PRM ) [19] and Rapidly
Exploring Random Tree (RRT ) [20]. In 2000, [21] proposed
the RRT − connect algorithm to greatly increase the node
expansion efficiency. In 2001, [22] proposed the concept of
Bidirectional-RRT , and constructed a spanning tree search
path from both ends to achieve the convergence of the algo-
rithm. In 2002, E.Frazzoli proved that the RRT algorithm
decreases exponentially with the exponential rate as the num-
ber of nodes increases [23]. In 2003, C. Urmson and R. Sim-
mons proposed a heuristic algorithm to guide the expansion
tree to the target region [24]. In 2006, D. Ferguson and A.
Stentz proposed to run the RRT algorithm multiple times to
gradually improve the quality of the solution [25]. In 2006,
PENG studied a distance algorithm to reduce the sensitivity
of the distance function to the environment during the RRT
extension tree [26]. By this time, the RRT algorithm had
been applied to robots and other fields [27]–[30]. In 2010,
Karaman and Frazzoli first proposed the RRT∗ algorithm to
solve the problem that the probability of RRT algorithm is
not optimal [20]. In 2015, Ahmed Hussain Qureshi proposed
the IB − RRT∗ algorithm, which quickly converges to the
optimal solution through the heuristic function of intelligent
sample insertion [31]. In 2018, Meng Li proposed a new
node acceptance criterion for path planning of RRT algorithm
in 3D environment [32]. In 2018, Byungchul proposed an
adaptive step size RRT planning algorithm [33]. In 2019, Cao
applied genetic algorithm and smooth processing to RRT
algorithm [34]. In 2019, Cai Wentao proposed I − RRT to
improve the RRT algorithm by introducing target probability
bias and step size control [35]. In 2019, Zhang Yakun pro-
posed MSB − RRT , using multi-sampling methods to make
RRT extensions target-oriented [36].
In order to solve the problems that the Artificial

Potential Field method is easy to fall into the local
minimum value and the RRT∗ algorithm has many
iterations and the long running time, Ahmed Hussain
Qureshi et al. combined the two methods. Potential
Guided Directional RRT∗(PGD− RRT∗) [37], Adaptive
Potential Guided Directional RRT∗(APGD− RRT∗) [38]
and Potential Function Based RRT∗(P− RRT∗) [39] have
been proposed successively. Among them, P − RRT∗ is
an extension of PGD− RRT∗ and APGD− RRT∗, which
not only solves the situation that Artificial Potential Field
method is prone to fall into local minimum. Moreover,
it inherits the advantages of RRT∗ to achieve asymptotic opti-
mization, and reduces the time and the number of iterations to
find the optimal path, thus reducing the memory utilization.

Both experiments and analysis prove that the P − RRT∗
algorithm has the following characteristics: 1) has the same
asymptotic computational complexity as RRT∗; 2) inherits
the asymptotic optimality from RRT∗; 3) solves the local
minimum problem; 4) can converge to the optimal path solu-
tion faster than RRT∗; 5) reduce the number of iterations
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and time required to calculate a more optimized solution
compared to RRT∗, thereby using less memory.
The work of this paper is to further improve the P− RRT∗

algorithm by introducing the idea of greed algorithm and
puting forward the method of two-sides extension tree.
P− RRT ∗ −connect not only solves the non-optimalism
problem for RRT∗ of complete probability, but also over-
comes the situation that APF is liable to fall into local mini-
mum. Because the algorithm constructs an extended tree from
both the starting point and the target point, the algorithm can
provide more explicit orientation than the other algorithms.
So it is especially suitable for narrow channel environments.
Based on the smooth arrival of the target point, the algorithm
can also reduce the time and number of iterations for search-
ing for the optimal path, thereby reducing memory utilization
and improving the efficiency of the algorithm.

The remaining work of this paper is as follows: the sec-
ond part introduces the related work which respectively
introduces the idea of the Rapidly Exploring Random Tree
Star and its advantages and disadvantages, and the idea of
Artificial Potential Field method and its advantages and dis-
advantages; The third part introduces P− RRT ∗ −connect ,
which is developed from P− RRT∗ algorithm, and describes
its basic idea and implementation process in detail. In the
fourth part, the experiments prove that P− RRT ∗ −connect
is indeed more efficient by comparing P− RRT∗ with
P− RRT ∗ −connect under the same experimental environ-
ment. The fifth part is the summary and prospect of the future
work.

II. RELATED WORK
A. RRT*
The Rapidly Exploring Random Tree Star(RRT∗) is an
improved algorithm of the Rapidly Exploring Random
Tree(RRT ). The basic idea of RRT is that taking an initial
point as the root node and generating a random extension
tree by randomly sampling and increasing leaf nodes. When
leaf nodes in the random tree contain the target point or enter
the target region, a path from the initial point to the target
point can be found in the random tree. The idea of RRT∗
is comparing the path cost by building a set of surrounding
nodes near the new node on the basis of RRT , that is, walking
through these surrounding nodes to check whether there is a
better path, and if there is, to replace the existing path with
this better path, so as to improve the existing search tree.

AhmedHussain Qureshi improved the originalRRT∗ algo-
rithm to improve the efficiency of the algorithm by reducing
the number of collision detection process. The following is
the pseudo-code of the improved RRT∗ algorithm:
The RRT∗ algorithm finds an optimal path between start

point and target point through collision detection. In this pro-
cess, since the dynamic system, the algorithm will generate
an input u:[0,T ] ∈ U , the total consumption time is t ∈ [0,T ].
X ∈ Rd is the configuration space, Xobs is the obstacle area,
U mentioned above is the input space, Xfree =X/Xobs is the

Algorithm 1 RRT∗
1: V ← start_node;E ← ∅;T ← (V ,E);
2: for ind = 0→ N do
3: new_node← sample(ind);
4: near_node← near_node(new_node,T );
5: if near_node = ∅ then
6: near_node← nearest_node(new_node,T );
7: end if
8: L ← insert_node(new_node, near_node);
9: min_node← chooseparent(L);
10: if min_node = ∅ then
11: T ← insert_vertex(new_node,min_node,T );
12: T ← rewire(new_node,L,E);
13: end if
14: end for
15: return T = (V ,E);

collision-free area. We define T = (V , E) which aims to find
path in the process of structure of the generated tree, V ⊂
X is the vertex of the tree and E is the edge of the tree.
The implementation process of RRT∗ mainly consists of the
following seven parts:
Sampling: randomly select the sampling points in the free

area with the sampling function, and assign the sampling
points to the random variable new_node ∈ Xfree.
Near node: the function near_node of the adjacent node

provides the node near_node ∈ V in the spherical region
formed with r as the radius, where the radius r is expressed
as follows:

r = γ (
log n
n

)
1
d (1)

where γ is an independent constant, d is the dimension of the
configuration space, and n is the number of vertices.
Distance: the improved algorithm adds the path cost, so the

value returned by the distance function is the path cost
between two nodes, namely the Euclidean distance.
Nearest nodes: this function returns the nearest nodes in

the constructed extended tree T , which are computed from
random states based on Euclidean distances.
Collision checking: the collision checking function checks

whether each connected path will collide with an obstacle in
the process of constructing the extended tree. If the collision
occurs, the node will be abandoned. If no collision occurs,
this node is added to the tree.
Listing and sorting: the element near_node in the set of

adjacent nodes is ordered in ascending order by the cost
function c() under the function insert_node to produce a list
L, where each element in the list L is composed of three
variable elements(near_node′,c,ε).
Extending: this function enables the extension tree to find

a smoother optimal path.
In view of the disadvantage which is complete but not

optimal of RRT algorithm, RRT∗ algorithm has been able to
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achieve progressive optimization, but at the same time, some
new problems have emerged in RRT∗:
1) RRT∗ can achieve progressive optimization, but the

implementation process is slow and takes a long time.
2) in order to achieve progressive optimization, RRT∗

needs to use a large number of iterative processes and
wastes resources;

3) in the process of searching for the optimal solution,
RRT∗ has certain limitations in cost comparison. It can-
not guarantee that all the selected nodes are the most
efficient, that is, some useful nodes may be neglected.

B. APF
In 1986, Oussama Khatib first proposed the Artificial
Potential Field method (APF) for the motion planning of
robots. As the name suggests, the Artificial Potential Field
method is to artificially introduce the potential field. In the
playground, the potential field does not really exist, but is
assumed by people to describe the force of the target point and
the obstacle on the robot. Where, the force of the target point
on the robot is attractive, and the robot moves towards the
target point under the attractive force. However, the obstacle
exerts a repulsive force on the robot, which acts on the robot
to avoid the obstacle. The robot moves under the combined
force of these two forces. The forces that the robot receives at
the obstacle and the target point is shown in Figure 2. G rep-
resents the target point and O represents the obstacle.The
farther the robot is from the target, the more attractive force
it is to the target, and vice versa. The closer the robot is to
the obstacle, the greater the repulsive force will be, and vice
versa. When both the attractive and repulsive forces on the
robot are zero, we assume that the robot has reached the target
point. However, when the resultant force of attractive and
repulsive forces on the robot is zero, the robot also thinks it
has reached the target point, which is a typical shortcoming
of the Artificial Potential Field method that it is easy to fall
into the local minimum.

FIGURE 2. Schematic diagram of the Artificial Potential Field method.

The potential is generated by the Artificial Potential Field .
According to the definition of the potential, the gradient
descent method is generally adopted to define the attractive
force generated by the attractive potential field on the mobile

robot as the negative gradient of the attractive potential field,
and the repulsive force generated by the repulsion force
potential field on the mobile robot as the negative gradient
of the repulsion force potential field. The force exerted on
the electric charge in the electric field becomes the electric
field force, whose magnitude and direction can be calculated
by coulomb’s law. When there are multiple charges acting
simultaneously in the electric field, the magnitude and direc-
tion of the electric field force follow the vector operation
rules. The potential field force is defined by the potential field
model. The magnitude and direction of the potential field
force received by themobile robot also follow the vector oper-
ation rules. According to this principle, the target produces an
attractive force on themobile robot, and the obstacle produces
a repulsive force to the mobile robot. The repulsive force
generated by the obstacle and the attractive force generated by
the target position are superimposed, and the resultant force
is the total force of the mobile robot in the Artificial Potential
Field . The robot moves under the action of the total potential
force to generate a planned path.
Artificial Potential Field method is often used to solve

local programming problems, but it can also solve global
programming problems. The idea of the algorithm is based on
the virtual potential field. The algorithm definition is intuitive
and the model structure is simple. The planning process can
avoid obstacles and complete the planning tasks in real time
without a large amount of calculation. Since the trajectory of
the robot is the final planning path, the planning path must be
safe and smooth. Therefore, this algorithm is widely used in
real time obstacle avoidance and smooth trajectory control.

However, the classical Artificial Potential Field method
has two limitations in the long-term practical application,
which limits the application scenarios of the planning algo-
rithm and affects the planning efficiency of the Artificial
Potential Field method. 1) The problem of target point cannot
be reached, that is, when the robot travels to a position which
is close to the target point, there is one or more obstacles
around the target point, causing the robot to repeatedly squat
near the target point and cannot continue the path planning.
2) The local minimum value problem, that is, a plurality
of obstacles in the environment are distributed at a specific
position, so that there are some local extreme value regions,
and the mobile robot cannot leave the local region to continue
the path planning.

C. P-RRT*
The basic idea of P − RRT∗ is to obtain the random sam-
ple xrand in free space. When the robot approaches the tar-
get node, the attractive force generated by the target node
becomes larger and the negative gradient of the attraction
force decreases. Under the action of the attractive potential
field, a new node, xprand , is generated and then connects this
node as a new sample to the extension tree. In the process
of extension, the P− RRT∗ algorithm compares whether the
path of the current node from the starting point is the optimal
path, and if it is the optimal path, retains the current node;
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if the path formed by the current node is not the optimal path,
the P − RRT∗ algorithm will find the new node again until
it finds the optimal path from the starting point to the target
point.

Although the P − RRT∗ algorithm has improved many
deficiencies, the algorithm is an one-way search. In order to
improve the search speed in free space, next section proposes
a greedy strategy applied to the P− RRT∗ algorithm, and
proposes two trees. Improving the search efficiency of the
algorithm by letting both trees expand at the same time. Two
trees, T1 and T2, are established. These two trees serve as
heuristic guidance search for each other until the two trees
meet. The specific implementation process is as follows.

III. P-RRT*-CONNECT
A. BASIC IDEA
Combining the characteristics of APF and RRT∗, the path
planning is mainly carried out by using RRT∗ algorithm,
which is assisted by APF algorithm. When entering the nar-
row channel environment, it is assisted by RRT∗ algorithm
to escape from the local minimum region in the environment.
In the working space of the mobile robot, the mobile robot
gradually approaches the target point due to the attractive
force traction of the target point, and when it approaches
the obstacle, it is repulsive and avoids the obstacle in real
time. When there are specific obstacles and these obstacles
cause the balance between the attractive force and repulsive
forces on the mobile robot, the algorithm will detect that
the mobile robot falls into a local minimum value. At this
time, the mobile robot will switch to RRT∗ algorithm for
path planning. The obstacles to be avoided are around the
mobile robot, which conforms to the applicable conditions
of RRT∗ algorithm. After random sampling for a certain
distance, the mobile robot escapes from the local minimum
and switches back to the APF path planning algorithm until
it reaches the target point.

In order to avoid the local minimum problem caused by
target orientation, the guidance factor is added to the node
growth function of RRT∗ algorithm. The idea of target attrac-
tive force of APF was introduced into the search tree expan-
sion stage of RRT∗ algorithm, and the attractive force factor
based on the target state point was constructed. The trend
expansion tree was biased towards target growth to reduce
invalid search volume and improve expansion efficiency, and
the probability of target deviation was small to avoid local
minimum. In view of the problem that RRT∗ algorithm lacks
stability and has slow convergence speed, this paper uses the
attractive potential field thought of traditional APF algorithm
for reference to improve RRT∗ algorithm, so that mobile
robot can not only make normal planning, but also avoid
falling into the local minimum region, and its expansion
process is biased towards the target point to accelerate the
convergence speed.

Next, we will introduce how to use the Artificial Potential
Field method to guide the RRT∗ algorithm to bias the sam-
pling point to the target point.

Uatt and Urep are used to respectively represent the con-
structed attractive field and repulsive field. Fatt and Frep are
used to respectively represent the attractive force and repul-
sive force by the robot. Using the gradient descent method,
the magnitude and direction of the attractive force and the
repulsive force are calculated under the condition of the
known attractive force field and repulsive force field. W =
[X Y ]T is to represent the coordinates of the position of the
robot in the two-dimensional motion space. The expression
of the total potential field when the robot moves to a certain
place is shown in formula (2):

U (W ) = Uatt (W )+ Urep(W ) (2)

On the basis of formula (2), the magnitude and direction
of resultant force received by the robot here can be obtained.
Negative gradients of two potential field quantities in for-
mula (2), Uatt and Urep, can be calculated respectively, and
the magnitude and direction of attractive force and repulsion
force received by the robot in two-dimensional space can be
obtained. That is:

EF = EFatt + EFrep (3)
EFatt = −grad[Uatt (W )] (4)
EFrep = −grad[Urep(W )] (5)

When moving to a certain place, the attractive potential
field of the robot is expressed as:

Uatt (W ) =
1
2
k‖W −Wg‖ (6)

where, k is the attractive gain coefficient of the target point
on the robot, W is the coordinate position of the current
movement of the robot, Wg is the coordinate of the target
point, and ‖W −Wg‖ is the distance between the current
position of the robot and the target point. The attractive force
expression is:

EFatt = −k‖W −Wg‖ (7)

The repulsive potential field of the robot at this point is:

Urep(W ) =
1
2
m(

1
‖W −W0‖

− ρ0), ‖W −W0‖≤ ρ0 (8)

Urep(W ) = 0, ‖W −W0‖> ρ0 (9)

where, m is the gain coefficient of the obstacle’s repulsive
force on the robot, and ρ0 is the influence range of the
obstacle’s repulsive force. The repulsion force is expressed
as:

EFrep=m(
1

‖W −W0‖
)

1

‖W −W0‖
2 , ‖W−W0‖≤ρ0 (10)

EFrep = 0, ‖W −W0‖> ρ0 (11)

Under the action of the attractive potential field and the
repulsive potential field, the sampling function can only be
sampled in the scope, and these sampling points gradually
converge near the target point. The optimal path formed by
the RRT∗ algorithm approaches the target point.
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Algorithm 2 P− RRT ∗ −Connect
1: V1← Xinit ;E1← ∅;T1← (V1,E1);
2: V2← Xgoal ;E2← ∅;T2← (V2,E2);
3: while i < N do
4: xrand ← RandomSample(i);
5: xprand1← RGD(xrand );
6: Xnear1← NearbyNodes(T1, xprand1, n);
7: if Xnear1 6= ∅ then
8: Xnear1← NearestNode(xprand1,T1 = (V1,E1));
9: end if
10: L1← GetTuple(xprand1,Xnear1);
11: Xparent1← SelectBestParent(L1);
12: if Xparent1 6= ∅ then
13: T1 = (V1,E1) ←

InsertNode(xprand1, xparent1,T1 = (V1,E1));
14: E1← RewireNodes(xprand1,L1,E1);
15: end if
16: xprand2← RGD(xrand );
17: Xnear2← NearbyNodes(T2, xprand2, n);
18: if Xnear2 6= ∅ then
19: Xnear2← NearestNode(xprand2,T2 = (V2,E2));
20: end if
21: L2← GetTuple(xprand2,Xnear2);
22: Xparent2← SelectBestParent(L2);
23: if Xparent2 6= ∅ then
24: T2 = (V2,E2) ←

InsertNode(xprand2, xparent2,T2 = (V2,E2));
25: E2← RewireNodes(xprand2,L2,E2);
26: end if
27: while Xnear1 6= Xnear2 do
28: Xnear3← NearbyNodes(T2, xnear2);
29: if Xnear3 6= ∅ then
30: Xnear3 ← NearestNode(xprand2,T2 =

(V2,E2));
31: end if
32: L1← GetTuple(xprand2,Xnear2);
33: Xparent2← SelectBestParent(L2);
34: if Xparent2 6= ∅ then
35: T2 = (V2,E2) ←

InsertNode(xprand2, xparent2,T2 = (V2,E2));
36: E2← RewireNodes(xprand2,L2,E2);
37: end if
38: if Xnear1 6= Xnear2 then
39: return T1 = (V1,E1);
40: end if
41: end while
42: end while

B. P-RRT*-CONNECT
Before we introduce the implementation, we define some
of the variables used in this article. The new algorithm is
improved on the basis of Potential Function Based − RRT∗
(P − RRT∗), so we named it as Potential Function Based
RRT ∗ −connect (P − RRT ∗ −connect). The starting node

and target node are respectively defined as xinit ∈ Xfree and
xgoal ∈ Xfree. T1 = (V1,E1) and T2 = (V2,E2) are the two
trees generated from the starting node and target node in the
process of finding the optimal path, V1 and V2 are the vertices
of the extension tree, and E1 and E2 are the edges. A random
sample xrand ∈Xfree is obtained by random sampling function.
In the direction of gradient descent of the attractive potential
field, it is separated from xrand by a small distance from the
walking length λ ∈ R+, generating a new random sample
xprand ∈ Xfree. According to the characteristics of Artificial
Potential Field method, the closer the random sample is to
the target region, the smaller the descending gradient of the
attractive potential field will be.

Set the starting node xinit and the target node xgoal , and
use the starting node as the root node of T1 and the tar-
get node as the root node of T2. Firstly, T1 is extended,
and the sampling point function RandomSample is called to
obtain xrand . In order to obtain a higher quality sampling
point, xrand is processed and xprand is obtained under the
action of RGD function and attractive potential field. RGD,
or the Randomized Gradient Descent Planning, is used as a
function of the previous state to perform iteration until the
potential field difference approaches zero and calculate the
next state. xprand , the enlarged sampling point, is taken as a
new random sample to conduct node expansion on this basis.
The nearest xprand node is obtained by using the NearestNode
function, and the nearest parent node is found by using the
nearest ordered sequence L. If there is no collision with
obstacles and this node is not empty, the node is added to
the tree and the second tree is expanded at the same time. T2
takes the target node as the root node, and just like the node
expansion process of T1, new nodes are obtained. Until the
nodes of the two trees meet, stop expanding, connect the two
trees, and switch the order of the nodes of T2, that’s the path
we’re looking for.

Figure 3 shows that the simultaneous expansion of two
different extension trees. The white circles represent the start-
ing node and the target node respectively. The black circles
represent the leaf node collected by the algorithm. The red
circle represents the leaf node that the two trees meet in the
process of expansion. The black line represents the edge of
T1, and the blue line represents the edge of T2 which also
represent the steps of the two trees. The pseudocode for the
specific implementation process is shown as following.

FIGURE 3. Extension process of two trees.
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FIGURE 4. Implementation of P − RRT ∗ −connect(4.a 4.b) and P − RRT ∗(4.c 4.d) algorithms under the same conditions.

FIGURE 5. Realization process of P − RRT ∗ −connect(5.a) and P − RRT ∗(5.b) under narrow
channel.

FIGURE 6. Realization process of P − RRT ∗ −connect(6.a) and P − RRT ∗(6.b) in 2D
environment.

IV. EXPERIMENT AND COMPARATIVE ANALYSIS
This experiment was run in the environment of VMware
Workstations Pro+Ubuntu 16.04. By comparing P − RRT∗

algorithm with P − RRT ∗ −connect algorithm in the same
experimental environment, it is verified that P − RRT ∗
−connect algorithm can find the optimal path more quickly.
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FIGURE 7. Realization process of P − RRT ∗ −connect(7.a 7.b) and P − RRT ∗(7.c 7.d) in 3D environment with
multiple barriers.

FIGURE 8. Realization process of P − RRT ∗ −connect(8.a 8.b) and P − RRT ∗(8.c 8.d) in 3D
environment with multiple narrow channel.

We will compare the efficiency of the two algorithms in
terms of time and iteration times. Time t is the time required
to complete the path search, that is, the number of seconds
to complete all iterations. The number of iterations is set
to n. In order to make the experimental results reliable and
convincing, the experimental parameters and environment

configuration space of the two algorithms are the same.
Figure 4 shows the process of P−RRT ∗−connect algorithm
(figure 4.a) and P − RRT∗ algorithm (figure 4.c) searching
for the optimal path under the same experimental parameters
and the configuration space size of the environment, that is,
the process of extension tree extension. In Figure 4.a,the gray
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FIGURE 9. Realization process of P − RRT ∗ −connect(9.a 9.b) and P − RRT ∗(9.c 9.d) in 3D maze
environment.

part indicates the tree T1 extended from the starting node
to the target node, the white part represents the tree T2 that
extends from the target node to the starting node; Figure 4.c
and figure 4.d respectively represent the optimal path which is
found. All the pictures, we only intercepted the key parts. The
box in the figure represents the obstacle, the circle represents
the potential field of distribution, the triangles represent the
starting node and the target node, and the diamond represents
the node where the two trees meet. As we can see from
figure 4, the number of iterations for P − RRT∗ algorithm
to complete this path planning is n = 723, and the elapsed
time is t = 4.01s. The P − RRT ∗ −connect algorithm is
implemented with fewer iterations n = 402, shorter time
t = 1.48s, and smoother path.
Figure 5 is a simulation experiment conducted in the nar-

row channel environment. According to the iteration times
n = 1053 and consumption time t = 1.25s of P − RRT ∗
−connect algorithm, the iteration times n =5739 and con-
sumption time t = 6.37s of P − RRT∗ algorithm, it can be
seen that the efficiency of P − RRT ∗ −connect algorithm
is also higher than that of P − RRT∗ algorithm in the local
minimum environment.

Figure 6 shows the performance tests of P − RRT ∗
−connect and P − RRT∗ in 2D maze environment. In fig-
ure 6.a, the pink area and the blue area respectively represent
the extension tree generated byP−RRT∗−connect algorithm
sampling from both the starting point and the target point.
In figure 6.b, the pink area represents the extension tree
generated by P − RRT∗ algorithm. The explanation also
applies to Figure 7, Figure 8, and Figure 9. It can be seen
intuitively from the two graphs that P−RRT ∗−connect can
find the optimal path from the starting point to the target point
with reduced number of iterations, thus achieving higher
efficiency than P − RRT∗. Figures 7, 8 and 9 represent the

FIGURE 10. 6-dof robotic arm.

performance tests of the two algorithms in the 3D environ-
ment with multiple barriers, the 3D environment with narrow
passages and the 3D maze environment, respectively. The
specific results are presented in Table 1. Figure 7.b shows
the optimal path found by the P − RRT ∗ −connect algo-
rithm. The two lines with different colors represent the paths
formed from the starting point and the target point. Figure 7.d
shows the optimal path found by the P − RRT∗ algorithm.
Figure 8 and figure 9 are similar to figure 7.

Due to the large randomness of sample selection, we con-
ducted 50 experiments, recorded the maximum number of
iterations nmax , minimum number of iterations nmin, maxi-
mum consumption time tmax andminimum consumption time
tmin, and calculated the mean value of navg and tavg. See
table 1. We limit the number of nodes to 5 million to reduce
time overconsumption and define the distance to the long
range λ = 0.1.
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TABLE 1. Comparison of the two algorithms.

FIGURE 11. The process of robot arm grasping the object.

It can be seen from table 1 that the efficiency of P−RRT ∗
−connect algorithm in finding the starting node to the final
node is higher than that ofP−RRT∗, both in terms of iteration
times and time consumption. Therefore, it is proved that the
new improved algorithm is very feasible and necessary.

In order to verify whether the P − RRT ∗ −connect algo-
rithm is suitable for robotic arm grasping, we simulated a
six-dof robotic arm in a virtual environment with two grippers
as shown in figure 10. We built the simulation environment
of the robotic arm based on ROS and displayed it in Rviz.
There are four objects: The red part is the table, the yellow

object is the grasped target, and the other two are obstacles.
The grasping operation we want to experiment with is to let
the robotic arm grasp the target in the workspace and place the
target in the specified position without touching the obstacles.
When the target is placed in the specified position, it will
automatically turn green. Several snapshots of the process of
moving the target from the middle of the table to the edge of
the table are shown in figure 11.

V. CONCLUSION AND FUTURE WORK
With the continuous development of robotics and technology,
motion planning is not only applicable to robots, but also
widely used in other fields, such as modern industry, surgical
robot andmany other fields. Therefore, it is necessary to study
an efficient motion planning algorithm. In this paper, a simple
and effective randomization algorithm, P−RRT ∗−connect ,
is proposed to solve the single-path query problem of P −
RRT∗. Based on the combination of RRT∗ and APF , a two-
sides extension tree is proposed. Experimental results show
that this algorithm can achieve good performance in different
environments, and its efficiency is higher than P − RRT∗
both in iterations and running time. The main advantages
of P − RRT ∗ −connect are as follows: 1)it can find a
non-collision optimal path from the starting node to the tar-
get node with fewer iterations, which reduces the memory
utilization; 2) running time to find optimal path is greatly
reduced due to the simultaneous expansion from both ends;
3) this algorithm is especially suitable for the narrow channel
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environment, without falling into the local minimum. This
algorithm can also be used to grasp objects accurately and
quickly in a 6-dof robotic arm in a virtual environment. In our
future work, we will apply P−RRT ∗−connect algorithm to
different practical environments to verify.
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