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ABSTRACT Extraction of roads from high-resolution aerial images with a high degree of accuracy is a
prerequisite in various applications. In aerial images, road pixels and background pixels are generally in the
ratio of ones-to-tens, which implies a class imbalance problem. Existing semantic segmentation architectures
generally do well in road-dominated cases but fail in background-dominated scenarios. This paper proposes
a dense refinement residual network (DRR Net) for semantic segmentation of aerial imagery data. The
proposed semantic segmentation architecture is composed of multiple DRR modules for the extraction of
diversified roads alleviating the class imbalance problem. Each module of the proposed architecture utilizes
dense convolutions at various scales only in the encoder for feature learning. Residual connections in each
module of the proposed architecture provide the guided learning path by propagating the combined features
to subsequent DRR modules. Segmentation maps undergo various levels of refinement based on the number
of DRR modules utilized in the architecture. To emphasize more on small object instances, the proposed
architecture has been trained with a composite loss function. The qualitative and quantitative results are
reported by utilizing the Massachusetts roads dataset. The experimental results report that the proposed
architecture provides better results as compared to other recent architectures.

INDEX TERMS Dense convolutions, dense blocks, DRR Net, IOU, loss function, residual connections.

I. INTRODUCTION
The topographical map of any geographical location can
be built by capturing high-resolution aerial images using
Aircraft, Helicopters, Unmanned aerial vehicle (UAVs) , etc.
Information about presence and location of topographical
features such as roads, dams, buildings, bare land, etc.,
is essential for applications like urban planning, disaster
assessment, traffic management, and map updating. This
information is usually collected by extracting the objects of
interest (topographical features) from aerial images. Among
all objects, road information is primary in many applications.
Thus, segmentation of roads serves as a basis to update
maps for global positioning system (GPS) -based navigation
devices and also for the majority of the above-mentioned
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applications. In high-resolution aerial images, roads do not
possess a continuous regular shape and they frequently appear
very narrow as they take small number of pixels across.
In order to get higher levels of accuracy, all kinds of diversi-
fied roads have to be extracted while preserving connectivity
in dense and scattered environments. Hence, reliable road
extraction from aerial imagery data is a challenging problem
in the field of computer vision.

Amo et al. extracted road pixels by initially using a
region growing technique and then refining the results are
by applying region competition techniques. The major lim-
itation of the introduced method was, the requirement of user
seed selection for region growing technique [1]. Hu et al.
presented an automated method based on Bayes decision
rule to distinguish road pixels and to track road networks.
The main drawback of this work is over-segmentation of
roads in the process of classification of road pixels [2].
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Sahar et al. proposed a technique to achieve correct seg-
mentation of road regions using extended Kalman filter and
Particle filter. It is mentioned that the proposed technique has
to be fine-tuned before it can segment roads in complex situ-
ations [3]. Jiangye et al. attempted to circumvent the need for
post-processing by extracting the roads in three stages using
the so-called locally excitatory globally inhibitory oscillator
networks ( LEGION ) . The major pitfall of this approach
is the determination of optimal parameters in road segmen-
tation and grouping stage for various types of images [4].
Das et al. calculated the spectral contrast and linear trajectory
features by training support vector machines. From these
calculated features, road regions were segmented without the
need for parameter tuning. This process could extract roads
of greater width. However, narrow roads covered by shadows
were extracted improperly [5]. Cem Unsalan et al. attempted
to extract roads in all kinds of environments using graph-
based approaches in a probabilistic way. The disadvantage
of this method is that it extracted roads only from images of
predefined spatial resolution [6].

In [1]–[6] roads were extracted in more than two stages by
calculating road features in an unsupervised way. Due to the
computation of features from the smaller context of training
data and also due to dependency on previous stage outputs,
the final predictions would not lead to satisfactory results.
However, techniques based on deep Convolutional Neural
Networks (CNNs) extract the objects in a supervised way
by considering the larger context of input data. The major
benefit of deep CNNs is their ability to calculate features
by learning from the high volume of input data. The Deep-
CNN-based approaches extract the objects through semantic
segmentation with the aim of perceiving what is in the image
and where it is located.

Badrinarayan et al. introduced an encoder-decoder based
architecture for semantic segmentation. The max-pooled
encoder feature maps are transferred to the decoder through
pooling indices. However, by considering only maximum
values of encoder feature maps, there might be a possi-
bility of losing fine details associated with small objects.
This may result in inefficient segmentation of small objects
especially in the case of high-resolution images [7]. Ron-
neberger et al. introduced skip connections as an alternative
to pooling indices for transferring the learned features to the
corresponding resolution level of the decoder. This results
into a higher number of feature maps; hence, the complexity
of the decoder increases [8]. The architectures in [7], [8] share
a common point of using convolutional filters for feature
learning and pooling layers to exploit semantics. The use of
pooling layers reduces the spatial resolution of feature maps.
Preserving spatial resolution is important for retaining fine
details of objects. Fisher Yu et al. introduced another type
of convolution called as dilated/atrous convolutions in order
to preserve the spatial resolution while avoiding pooling [9].
Chen et al. introduced a semantic segmentation architec-
ture by utilizing a distinct dilation filters in spatial pyramid
pooling (SPP) [10] for aggregation of multi-scale context.

The resulting architecture produced a segmentation map
with one-eighth input resolution [11]. Chen et al. placed
an additional decoder to maintain the spatial resolution of
above mentioned architecture [12]. Yang et al. introduced
a semantic segmentation architecture by providing parallel
and cascade connections among various dilation filters [13].
However, it is observed that the obtained receptive field due
to the usage of dilation filters in [9]–[13] is not sufficient to
preserve the spatial connectivity of roads during extraction.

Huang et al. introduced the idea of dense convolutions that
iteratively reuse the learned features at later resolutions [14].
Jegou et al. extended the concept of dense convolutions
to semantic segmentation by utilizing them in the paths of
encoder and decoder. However, due to the usage of dense con-
volutions together with skip connections in the up-sampling
path, the model demands more memory during training [15].
Pohlen et al. and Samy et al. exploited the benefits of operat-
ing at full resolution by processing up-sampling and down-
sampling streams concurrently. This increases both local-
ization and classification accuracy. However, the introduced
techniques are computationally intensive as they operate at
full resolution [16], [17]. Zhang et al. proposed a model
named as ResUNet utilizing residual connections in U-Net.
The resulting model failed however to segment small roads
in parking lots [18]. Filin et al. attempted to refine the pre-
dictions of ResUNet model by further processing the road
pixels in order to fill the gaps in between them [19]. Tao
Sun et al. introduced a model for generation of road maps
by stacking two U-Nets. The introduced model needs further
post-processing operations to extract road center lines and
to connect disjoint roads [20]. Kim et al. placed SPP at
the end of the encoder of U-Net to aggregate multi-scale
contextual information. The major limitation is the increased
depth of feature maps due to the usage of greater number
of filters. This lead to increased computational complex-
ity [21]. Aich et al. introduced a technique called Depth
to Space (D2S) to reduce the computational complexity by
excluding the decoder. This is however not well suited for
segmentation of small objects as there is no learning path for
up-sampling [22].

In this work we propose an efficient architecture that is
inspired by the effectiveness of dense convolutions for fea-
ture learning [14], [15] and residuals to achieve progress in
learning ability of network [23], [24] at full resolution. The
main contributions of the paper are as follows:

(i) A novel semantic segmentation architecture is proposed
based on dense convolutions and residual connections. The
proposed architecture operates at full resolution and is com-
posed of multiple DRR modules.

(ii) Each module of the proposed architecture learns fea-
tures at different resolutions to extract affluent semantics and
also endeavors to obtain predictions.

(iii) The modules are constrained to refine the predictions
by stacking them.

The organization of this research paper is as follows: The
detailed explanation of proposed architecture along with its
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internal modules is given in Section II. The description of
the dataset used for training of all models, including the
particulars of hyperparameters utilized is presented under
Section III. An elaborate discussion about simulation results
of all architectures are described in Section IV. Finally
Section V concludes this work.

FIGURE 1. The proposed architecture for semantic segmentation of aerial
imagery data.

FIGURE 2. Dense Refinement Residual (DRR) module.

II. PROPOSED ARCHITECTURE
The proposed dense refinement residual network for semantic
segmentation of aerial images is presented in Fig. 1. The
DRR Net is primarily composed of dense refinement residual
(DRR) module(s), and the structure of DRR module(s) is
presented in Fig. 2. In the proposed DRR architecture, each

DRR module inherently contains down-sampling (encoder)
and up-sampling (decoder) paths. In the encoder of the DRR
module, features are extracted at different resolutions by
utilizing dense convolutions. Similarly, in the decoder trans-
posed convolutions are used at multiple scales to learn the
up-sampling of feature maps together with learned features
of the encoder. Residual connections are employed in each
DRR module to provide a supervisory signal to successive
DRR modules. This supervisory signal is formed by adding
initial features on which each DRR module operates and its
corresponding learned features. The successive DRR mod-
ules of the proposed architecture attempt to improve the
predictions of antecedent(s) by operating on their features.
The architecture effectively reuses the features through dense,
residual connections and also by stacking of individual DRR
modules. This leads to an increase in longevity of feature
propagation. The resolution at which each DRR module of
proposed architecture operates is given by H ∗W ∗ F1. The
final stage utilizes 1*1 convolutions as softmax in order to
produce individual class probabilities. The detailed function-
ality of DRR module utilized in the proposed architecture is
described in the following section.

FIGURE 3. Dense Block (DB) .

A. DENSE REFINEMENT RESIDUAL (DRR) MODULE
The dense refinement residual module of the proposed archi-
tecture extracts and up-samples the fine-grained features from
the input data. The initial convolution unit (ICU) of first
DRR module attempts to learn the initial features from input
by applying a sequence of normal convolutions. In the later
DRR modules, ICU learns the intermediate feature maps
from its preceding DRR module. The structural diagram of
dense blocks (DBs) employed in DRR module(s) is repre-
sented in Fig. 3. This structural module of DBs function on
the features of ICU. In each layer of DB, batch normaliza-
tion (BN) [25], rectified linear unit (ReLU) and convolution
(CONV) operations are performed by taking all the possible
direct connections from its preceding layers. The number of
such layers (L) used is 4 with each layer having a growth
rate (The number of convolutional filters used k) of 16.
Moderate values are chosen for k and L to ensure a sufficient
amount of information is added to the next layer in each DB
and also to the successive DBs. Further, these values also

1H, W are height and width of the input image respectively and F repre-
sents the number of filters used in initial convolution unit of DRR module
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help to maintain a constant depth dimension across all DRR
module(s). The learned features of DBs are then passed to
successive DBs after pooling. After each level of learning at
dense blocks, the feature maps are concatenated with pre-
ceding learned features and are also spatially reduced by a
factor of two. DB1 predominantly focuses on initial features,
and its output is linked with them. The resulting feature maps
are max pooled before feeding them to the successive dense
blocks. DB2 attempts to learn a different set of feature maps
based on DB1 output and initial features. Features extracted
out of DB3 are based on the cumulative knowledge of the out-
puts of DB2, DB1 and initial features. Finally, DB4 extracts
high-level features bymaking use of the collective knowledge
accumulated by DRR module up to that point. Feature maps
at this level are down-sampled by a factor of eight. From
Fig. 2 it can be seen that the up-sampling process begins at
the higher level features of DB4. The up-sampling of feature
maps for remaining resolutions is achieved by considering
feature maps of preceding dense blocks and learned features
of corresponding dense blocks. Residual connections in DRR
modules provide a deep supervision to subsequent modules
by transferring the combined initial and learned features.
Thus, the strength of feature propagation increases due to
the effective utilization of feature maps in the encoder and
decoder of DRR module.

To summarize, the highlights of the proposed architecture
are given as follows:

(1) Each DRRmodule of the proposed architecture learns
diverse features at various scales with the help of dense
blocks.

(2) In DRR module, dense blocks at consecutive pool path
learn new features based on collective knowledge accumu-
lated by the network.

(3) In an up-sampling path of DRR module, transposed
convolutions are used instead of dense blocks which results
in a great reduction in the number of parameters without
comprising the prediction accuracy.

(4) Predictions are refined by stacking multi-scale context
successively at full resolution.

(5) The proposed DRRNet provides a guided learning path
to successive DRR modules with establishment of residual
connections in each module.

(6) The depth of featuremaps remain constant, thoughmul-
tiple DRRmodules are appended sequentially. Thus avoiding
feature map explosion.

(7) The proposed architecture provides competitive results
with a tenfold reduction in the number of parameters as com-
pared to other existing semantic segmentation architectures.

(8) The proposed architecture provides increased flexibil-
ity to append or efface number of DRR modules based on
computational budget and accuracy.

B. REFINEMENT STAGE
Let N denote the number of DRR modules and Xi denote the
initial features extracted from initial convolution unit (ICU).
Let Xij represent the features of dense blocks at different

resolutions at ith DRRmodule and jth pool respectively. Simi-
larly, Yi represent the predictions or segmentation maps of ith

DRR module, where i ∈ [1,N ] and j ∈ [0, 3]
Let X ′ij denote the up sampled features learned at different

resolutions, where i ∈ [1,N ] and j ∈ [1, 3]
Thus,X11,X12,X13 are the features learned at Pool 1, Pool 2

and Pool 3 respectively in first DRR module.
X ′11, X

′

12, X
′

13 are the features up sampled at Pool 1, Pool 2
and Pool 3 respectively in first DRR module.

Learned features from DB 1, DB 2, DB 3 and DB 4 can be
given as

X10 = H{Xi}

X11 = H{X10,Xi}

X12 = H{X11,X10,Xi}

X13 = H{X12,X11,X10,Xi}

 (1)

Here, H represent batch normalization, ReLU and convolu-
tion operations performed in the layers of dense blocks at
different scales.

Further, up-sampled feature maps at Pool 3, Pool 2, and
Pool 1 respectively are given as

X ′13 = F{X13}

X ′12 = F{X ′13,X12}

X ′11 = F{X ′12,X11}

 (2)

Here, F represents transposed convolution operation for
up-sampling of feature maps.

The output from first DRR module is given as

Y1 = F ′{X ′11,X10} + Xi (3)

Here F ′ define the non-linearity applied due to 1*1 convo-
lutional filters. In the same way if multiple DRR modules
(consider number of modules (N) as 4) are connected con-
secutively its corresponding outputs are given as

Y2 = F ′{X ′21,X20} + Y1
Y3 = F ′{X ′31,X30} + Y2
Y4 = F ′{X ′41,X40} + Y3

 (4)

Finally, substituting Y3, Y2, Y1 values recursively, Y4 can be
written as

Y4 = F ′{X ′41,X40} + F
′
{X ′31,X30}+

F ′{X ′21,X20} + F
′
{X ′11,X10} + Xi

}
(5)

From equation (5), the successive DRR module operates on
output of previous DRRmodule(s) and also on initial features
at which it operated. It can be concluded that the learned
features are effectively reused in the path of encoder, decoder,
and also at various modules.

1) Without Residual
If multiple DRR modules (N= 4) are connected consec-
utively without residual connections, the corresponding
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outputs are given as.

Y1 = F ′{X ′11,X10}

Y2 = F ′{X ′21,X20}

Y3 = F ′{X ′31,X30}

Y4 = F ′{X ′41,X40}

 (6)

From equation (6), it can be observed that the successive DRR
module has no information on the initial features on which
the previous DRR module has been operated (i.e Yi+1 does
not depend on Yi, 1 ≤ i ≤ N − 1 )

III. TRAINING AND IMPLEMENTATION
The proposed DRR architecture has been trained and evalu-
ated by utilizing the Massachusetts roads dataset published
in [26]. Each image is composed of 1500*1500 pixels cover-
ing an area of 500 square km at a resolution of 1.2 m/pixel.

A. IMAGE DATASET
In this work, we consider aerial images that contain less
than 50 per cent of white noise. Each resulting image is
divided into thirty-six patches of size 256*256 pixels by
padding with zeros instead of taking random crops. Thus,
we generated 49,680 training, 1008 validation and 3528 test
images including masks. The dataset was enlarged by apply-
ing horizontal, vertical flips and also brightness variations of
different degrees at the time of training. The proposed DRR
Net and state-of-the-art architectures were trained using Ten-
sorFlow [27] as a deep learning framework with an NVIDIA
Tesla k80 GPU with 11GB on-board memory. The initial
learning rate was set to 0.0002 and decayed exponentially by
a factor of 0.994. The weights of convolution filters were ini-
tialized with Xavier initialization [28]. The optimal weights
of filters are calculated during backpropagation by using
the Adam optimizer [29]. The optimizer has an exponen-
tial decay rate value of 0.99 for first-order momentum (β1)
and 0.999 for second-order momentum (β2) respectively.
All models are trained for 24,8400 number of iterations with
a batch size of 2. The inference of all trained models is
performed using an Intel central processing unit (CPU).2

B. COMPOSITE LOSS FUNCTION
A binary cross entropy loss function (BCE) calculates the
loss based on prediction probabilities of each pixel. The
BCE loss value is high for false predictions and low for true
predictions. Since the data set is highly skewed (it contains
∼96% background pixels and∼4 % road pixels) the model
bias towards background pixels frequently results into higher
loss values. Hence, during the training phase, the semantic
segmentation architectures take a long time to learn and also
to converge. The Jaccard index or Intersection over Union
(IOU) for semantic segmentation is evaluated by considering
the overlap of pixels between the predicted image and its
mask. This reduces the bias towards the most frequent classes

2Intel Xeon Processor E5-2650 v4@2.20 GHz

and it is also a useful metric for evaluating the performance
of semantic segmentation. The Lovasz softmax loss (LZS) is
proposed in [30] as a mean to optimize the mean Intersection
over Union by considering a collection of pixel predictions.
The combination of binary cross entropy and Lovasz softmax
loss is utilized in experiments to improve the pixel-wise
classification accuracy of intended objects.

Lcomposite = LBCE + LLZS (7)

where LBCE is binary cross entropy loss and LLZS is Lovasz
softmax loss. Following the definition of cross entropy math-
ematical expression for LBCE is written as

LBCE =
−1
N

N∑
i=1

[Yi · log(p(Ỹi))+ (1− Yi) · log(1− p(Ỹi))]

(8)

Here, Yi represents the actual class label values, p(Ỹi) denotes
the predicted class probabilities after applying the softmax
layer, and N denotes the total number of training samples in
the dataset. Following [30], the LLZS is given by

LLZS =
1
|C|

∑
c∈C

4JcE(c) (9)

Here 4Jc is the loss surrogate to the Jaccard index of class
c, E(c) is the vector of errors [0, 1]p and |C|represents the
number of classes.

FIGURE 4. Box plot of Intersection Over Union of proposed model for
different loss functions.

The proposed model has been trained separately with
binary cross entropy loss function, Lovasz softmax loss func-
tion and also with composite loss function to observe its com-
bination effect. When trained with BCE only, the proposed
model took a long time before showing an improvement.
When trained with Lovasz softmax loss function, the pro-
posed model showed better performance at earlier iterations
but did not maintain the same at later iterations. However,
the model trained with combination of loss functions main-
tained its progress over the iterations. The IOU values of DRR
Net when trained with individual loss functions and com-
posite loss function is reported in Fig. 4. It can be observed
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that the proposed architecture trained with composite loss
function (BCE + LZS) yields better IOU values as compared
to other two loss functions. This is due to an uplift in the
margin for correct predictions while minimizing the errors
that penalize IOU most of the times.

IV. SIMULATION RESULTS AND DISCUSSION
The proposed model and some of the semantic segmentation
architectures are trained with the same hyper parameters
and the loss function is considered as the composite loss
function. The number of training iterations is the same for
all models. The proposed DRR Net does not depend on any
pre-trained weight set and it is instead trained end-to-end.
To perform comparative analysis, quality metrics such as
IOU, Road accuracy, Precision and Recall values are eval-
uated at the end of every group of 12,420 iterations and also
at the end of the training phase. All training images of the
dataset can be fed to themodel in 12,420 number of iterations.
The quality metrics are obtained by considering test images
as input. Few of the considered test images are shown in
Fig. 8a, 9a, 10a and 11a. Road accuracy andmean IOU values
are considered to measure the variability of these perfor-
mance metrics. Figs. 5 and 6 represent the boxplots of road
accuracy and mean IOU values of semantic segmentation
architectures.

FIGURE 5. Box plot of Road accuracy of models.

FIGURE 6. Box plot of Intersection Over Union of different models.

From Fig. 5 one can observe that the proposed DRR Net
produces a wide range of road accuracy values. Addition-
ally, it can be observed that the proposed model provides

FIGURE 7. Bar graph for comparison of parameters of different models.

a 11.19% improvement over its initial value to reach a
maximum value. This is comparable with other models
and implies that the proposed model has good learning
ability when compared with other architectures. Another
measure to quantify a semantic segmentation technique is
IOU or Jaccard index. IOU estimates the percentage of
pixel overlap between semantic map and its corresponding
ground truth. Fig. 6 reports that the proposed DRR model
and the model given in [32] exhibit the same higher level
of IOU variability. The proposed model reaches a maxi-
mum IOU value from an initial overlap of 76.57 per.comcent
between predicted and ground truth image. In addition to this
one can observe that the models Deep LabV3+ [12], FC-
DenseNet [15] and BiseNet [31] possess a narrow range of
IOU values. Further, box lengths of the remaining models
is observed to be smaller. Table 1 lists the parameters of
models and their corresponding performance metrics. The
performance metric are evaluated by inferring the models at
the end of the training. From Table 1, considering the number
of trainable parameters the descending order of models is
given by UNet+PPL3 [21], PSPNet [10], DeepLabV3+ [12],
BiseNet [31], DenseASPP [13], GCN [32], SegNet [7],
FC-DenseNet [15], Deep ResUNet [18] and DRR Net. The
order implies that UNet+PPL [21] model requires maximum
number of trainable parameters while the proposedmodel has
least number of trainable parameters. Thus, the road accuracy
of DRR Net is significantly superior to other models which
also showed discrimination in the corresponding Precision
and Recall values. The parameters of models together with
proposed DRR Net are represented in Bar graph which is
shown in Fig. 7 and it reveals that the proposed DRR Net
have far fewer parameters (2.63 million) compared to other
models.

A. COMPUTATIONAL COMPLEXITY ANALYSIS
In this section, an elaborate discussion of computational
complexity of all architectures including the proposed archi-
tecture is presented. In Table 2, the total training time

3Modified version of original architecture
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TABLE 1. Comparison of quality metrics of semantic segmentation of aerial images.

TABLE 2. Comparison of FLOPS, Training and average Test run time of all models.

(per-image and also for all images of the dataset), the aver-
age test run time and the number Floating point opera-
tions (FLOPS) of all models are presented. The total train-
ing time is defined as the time taken to train individual
architectures. The average test run time is defined as the
average time required to infer the trained model over the
total number of test images. It can be observed that, pre-
trained network architecture based models such as Dense
ASSP [13], Deeplabv3+ [12], PSPNet [10], BiseNet [31]
and GCN [32], require comparatively less training time than

other models. The proposed DRR model and the model pre-
sented in [15] are built with dense convolutions. Because
of the concatenation of features from the specified number
of convolutional layers, these models need longer training
time as contrary to other models. In the DeepResUNet model
proposed in [18], the training time is considerably reduced
due to presence of residual connections. Due to the concate-
nation of feature maps after pooling with different scales,
the UNet+PPL [21] model demands increased training time
as contrary to other models. The total time allocated to train
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FIGURE 8. Predicted images of semantic segmentation models of Fig. 8(a).
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FIGURE 9. Predicted images of semantic segmentation models of Fig. 9(a).
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FIGURE 10. Predicted images of semantic segmentation models of Fig. 10(a).
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FIGURE 11. Predicted images of semantic segmentation models of Fig. 11(a).
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FIGURE 12. Predicted images of DRR Net with and without residual connection.

all models is 678 hours. Referring to Table 2, from the average
test run time of all models, FC-DenseNet [15], DRR Net
requires a longer time to load the learned weights during a
forward pass from dense convolutions of the trained model.
Due to dense connectivity, the features and gradients have
to flow through multiple paths during forward and backward
propagations. This leads to an increase in training and test-
ing times of DRR Net though the number of parameters is
less. The increasing order of computational complexity of
models (in terms of FLOPs) is BiseNet [31], GCN [32],
DenseASSP [13], DeepLabV3+ [12], FC-DenseNet [15],

PSPNet [10], DeepResUNet [18], DRR Net (proposed), Seg-
Net [7] and U-NetPPL [21]. The proposed DRR Net ranks
third in increasing computational complexity order.

For the test images in Fig. 8a, 9a, 10a and 11a, the seg-
mentation maps produced by proposed and the state-of-the-
art architectures alongwith ground truth images are presented
in Fig. [8b - 8l], [9b - 9l], [10b - 10l] and [11b - 11l]
respectively. To highlight the performance of the DRRNet, its
predicted images are compared with state-of-the-art-models
by highlighting some parts of the image with red color boxes.
Fig. [8b - 8l] represents the segmentation output of all models
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FIGURE 13. Predicted images of DRR Net with and without residual connection.

for the test input aerial image of Fig. 8a. From these predicted
images, it can be seen that theDRRNet extracts round-shaped
roads and also the intersections of roads without any gap.
The predicted images of the test input images Fig 9a, 10a
and 11a are shown in Fig. [9b - 9l], [10b - 10l] and [11b - 11l].
These images reveal that the proposed DRRNet differentiates
the parallel, smaller and diverse-shaped road regions clearly
from other regions. The segmentation maps for another set
of input test aerial images are presented in Section VI.
To show the importance of residual connections in the pro-
posed DRR Net the model has been trained by removing the

residual connection. Due to the removal of residual connec-
tions, there is no sharing of initial features of each module to
successive DRR modules of the proposed architecture. This
leads to a reduction in the learning ability of network. The
prediction results of the proposed architecture with and with-
out residual connections are presented in Fig. 12 and 13 along
with input and ground truth images. From these predicted
images it can be seen that the DRR Net clearly distinguished
the road pixels better than the DRR Net without residual
connections. The qualitymetrics of the proposedNet with and
without residual are quantified in Table 1. These values reveal
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FIGURE 14. Predicted images of semantic segmentation models of Fig. 14(a).
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FIGURE 15. Predicted images of semantic segmentation models of Fig. 15(a).
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FIGURE 16. Predicted images of semantic segmentation models of Fig. 16(a).
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FIGURE 17. Predicted images of semantic segmentation models of Fig. 17(a).
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that the residual connections play a vital role in producing
better IOU, road accuracy, precision and recall values. The
computational complexity of the two models remains the
same in terms of training time, test time and FLOPS, which
are presented in Table 2. After observing all predicted images
of DRR Net, it is clear that the model precisely differentiated
pixels of smaller, curved and parallel roads from background
pixels. In addition to this the proposed architecture provided
good separation of roads when background pixels are the
majority in number.

V. CONCLUSION
In this paper, a semantic segmentation architecture named
DRR Net is proposed to segment roads in high-resolution
aerial imagery data. The proposed DRR model was able to
precisely segment roads and achieve prominent results on
Massachusetts roads dataset as compared with state-of-the-
art semantic segmentation architectures. The qualitative and
quantitative results showed that the DRR Net could segment
all kinds of roads including variable-extent roads and also
non-labeled roads. A comparison of the proposed architecture
has been done with the diversified semantic segmentation
architectures based on normal convolutions, atrous convolu-
tions, global convolutions and dense convolutions. Among
all other models, the proposed model showed remarkable
performance in all aspects including background-dominant
scenarios.

The distinctive performance of the proposed architecture
can be attributed to the iterative reuse of collective knowledge
acquired at various scales through dense, residual connec-
tions and the connectivity of DRR modules. It can be noted
that the iterative reuse leads to an increase in receptive field
for pixels of less frequent classes (road pixels). The pro-
posed architecture achieved a∼2.74% increase in road accu-
racy with a contemporary tenfold reduction in the number
of parameters. Moreover, the proposed architecture offered
good discrimination of roads in all scenarios. Additionally,
the proposed DRR Net architecture can also be used to seg-
ment other kinds of objects like buildings, dams, trees, etc.

APPENDIX
See Figs. 14–17.

ACKNOWLEDGMENT
(Karuna Kumari Eerapu and Balraj Ashwath contributed
equally to this paper.)

REFERENCES
[1] M. Amo, F. Martínez, and M. Torre, ‘‘Road extraction from aerial images

using a region competition algorithm,’’ IEEE Trans. Image Process.,
vol. 15, no. 5, pp. 1192–1201, May 2006.

[2] J. Hu, A. Razdan, J. C. Femiani, M. Cui, and P. Wonka, ‘‘Road net-
work extraction and intersection detection from aerial images by tracking
road footprints,’’ IEEE Trans. Geosci. Remote Sens., vol. 45, no. 12,
pp. 4144–4157, Dec. 2007.

[3] S. Movaghati, A. Moghaddamjoo, and A. Tavakoli, ‘‘Road extraction from
satellite images using particle filtering and extended Kalman filtering,’’
IEEETrans. Geosci. Remote Sens., vol. 48, no. 7, pp. 2807–2817, Jul. 2010.

[4] J. Yuan, D. Wang, B. Wu, L. Yan, and R. Li, ‘‘LEGION-based automatic
road extraction from satellite imagery,’’ IEEE Trans. Geosci. Remote Sens.,
vol. 49, no. 11, pp. 4528–4538, Nov. 2011.

[5] S. Das, T. T. Mirnalinee, and K. Varghese, ‘‘Use of salient features for
the design of a multistage framework to extract roads from high-resolution
multispectral satellite images,’’ IEEE Trans. Geosci. Remote Sens., vol. 49,
no. 10, pp. 3906–3931, Oct. 2011.

[6] C. Unsalan and B. Sirmacek, ‘‘Road network detection using probabilis-
tic and graph theoretical methods,’’ IEEE Trans. Geosci. Remote Sens.,
vol. 50, no. 11, pp. 4441–4453, Nov. 2012.

[7] V. Badrinarayanan, A. Kendall, and R. Cipolla, ‘‘SegNet: A deep con-
volutional encoder-decoder architecture for image segmentation,’’ 2015,
arXiv:1511.00561. [Online]. Available: https://arxiv.org/abs/1511.00561

[8] O. Ronneberger, P. Fischer, and T. Brox, ‘‘U-Net: Convolutional networks
for biomedical image segmentation,’’ in Proc. Int. Conf. Med. Image
Comput. Comput.-Assist. Intervent. Cham, Switzerland: Springer, 2015,
pp. 234–241.

[9] F. Yu and V. Koltun, ‘‘Multi-scale context aggregation by dilated convo-
lutions,’’ 2015, arXiv:1511.07122. [Online]. Available: https://arxiv.org/
abs/1511.07122

[10] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Spatial pyramid pooling in deep con-
volutional networks for visual recognition,’’ in Proc. Eur. Conf. Comput.
Vis. Cham, Switzerland: Springer, 2014, pp. 346–361.

[11] L.-C. Chen, G. Papandreou, F. Schroff, and H. Adam, ‘‘Rethinking atrous
convolution for semantic image segmentation,’’ 2017, arXiv:1706.05587.
[Online]. Available: https://arxiv.org/abs/1706.05587

[12] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam, ‘‘Encoder-
decoder with atrous separable convolution for semantic image segmen-
tation,’’ 2018, arXiv:1802.02611. [Online]. Available: https://arxiv.org/
abs/1802.02611

[13] M. Yang, K. Yu, C. Zhang, Z. Li, and K. Yang, ‘‘DenseASPP for semantic
segmentation in street scenes,’’ in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., Jun. 2018, pp. 3684–3692.

[14] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, ‘‘Densely
connected convolutional networks,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., Jul. 2017, pp. 4700–4708.

[15] S. Jégou, M. Drozdzal, D. Vazquez, A. Romero, and Y. Bengio,
‘‘The one hundred layers tiramisu: Fully convolutional densenets for
semantic segmentation,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recog-
nit. Workshops (CVPRW), Jul. 2017, pp. 1175–1183.

[16] T. Pohlen, A. Hermans, M. Mathias, and B. Leibe, ‘‘Full-resolution
residual networks for semantic segmentation in street scenes,’’ 2017,
arXiv:1611.08323. [Online]. Available: https://arxiv.org/abs/1611.08323

[17] M. Samy, K. Amer, K. Eissa, M. Shaker, and M. ElHelw, ‘‘Nu-Net: Deep
residual wide field of view convolutional neural network for semantic
segmentation,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
Workshops (CVPRW), Jun. 2018, pp. 267–2674.

[18] Z. Zhang, Q. Liu, and Y.Wang, ‘‘Road extraction by deep residual U-Net,’’
IEEE Geosci. Remote Sens. Lett., vol. 15, no. 5, pp. 749–753, May 2018.

[19] O. Filin, A. Zapara, and S. Panchenko, ‘‘Road detection with EOSResUNet
and post vectorizing algorithm,’’ in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. Workshops, Jun. 2018, pp. 211–215.

[20] T. Sun, Z. Chen, W. Yang, and Y. Wang, ‘‘Stacked u-nets with multi-
output for road extraction,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit. Workshops (CVPRW), Jun. 2018, pp. 187–1874.

[21] J. H. Kim, H. Lee, S. J. Hong, S. Kim, J. Park, J. Y. Hwang, and J. P. Choi,
‘‘Objects segmentation from high-resolution aerial images using U-Net
with pyramid pooling layers,’’ IEEE Geosci. Remote Sens. Lett., vol. 16,
no. 1, pp. 115–119, Jan. 2019.

[22] S. Aich, W. van der Kamp, and I. Stavness, ‘‘Semantic binary segmenta-
tion using convolutional networks without decoders,’’ in Proc. IEEE/CVF
Conf. Comput. Vis. Pattern Recognit. Workshops (CVPRW), Jun. 2018,
pp. 182–1824.

[23] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Identity mappings in deep residual
networks,’’ in Proc. Eur. Conf. Comput. Vis. Cham, Switzerland: Springer,
2016, pp. 630–645.

[24] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for
image recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
Jun. 2016, pp. 770–778.

[25] S. Ioffe and C. Szegedy, ‘‘Batch normalization: Accelerating deep network
training by reducing internal covariate shift,’’ 2015, arXiv:1502.03167.
[Online]. Available: https://arxiv.org/abs/1502.03167

VOLUME 7, 2019 151781



K. K. Eerapu et al.: DRR Net for Road Extraction From Aerial Imagery Data

[26] V. Mnih and G. E. Hinton, ‘‘Learning to detect roads in high-resolution
aerial images,’’ in Proc. Eur. Conf. Comput. Vis. Berlin, Germany:
Springer, 2010, pp. 210–223.

[27] M. Abadi et al., ‘‘TensorFlow: A system for large-scale machine learning,’’
in Proc. 12th USENIX Symp. Oper. Syst. Design Implement. (OSDI), 2016,
pp. 265–283.

[28] X. Glorot and Y. Bengio, ‘‘Understanding the difficulty of training deep
feedforward neural networks,’’ in Proc. 13th Int. Conf. Artif. Intell. Statist.,
2010, pp. 249–256.

[29] D. P. Kingma and J. Ba, ‘‘Adam: A method for stochastic opti-
mization,’’ 2014, arXiv:1412.6980. [Online]. Available: https://arxiv.org/
abs/1412.6980

[30] M. Berman, A. R. Triki, and M. B. Blaschko, ‘‘The Lovász-Softmax loss:
A tractable surrogate for the optimization of the intersection-over-union
measure in neural networks,’’ in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., Jun. 2018, pp. 4413–4421.

[31] C. Yu, J. Wang, C. Peng, C. Gao, G. Yu, and N. Sang, ‘‘BiSeNet: Bilateral
segmentation network for real-time semantic segmentation,’’ in Proc. Eur.
Conf. Comput. Vis. (ECCV), 2018, pp. 325–341.

[32] C. Peng, X. Zhang, G. Yu, G. Luo, and J. Sun, ‘‘Large kernel matters—
Improve semantic segmentation by global convolutional network,’’ inProc.
IEEE Conf. Comput. Vis. Pattern Recognit., Jul. 2017, pp. 4353–4361.

KARUNA KUMARI EERAPU received the B.E.
and M.Tech. degrees in electronics and com-
munication engineering from Jawaharlal Nehru
Technological University, in 2009 and 2011,
respectively. She is currently pursuing the Ph.D.
degree with the National Institute of Technology
Karnataka, Surathkal, India. Her current research
interests include image processing, machine learn-
ing, deep learning, semantic segmentation, and
classification.

BALRAJ ASHWATH was born in Bengaluru,
India, in 1998. He is currently pursuing the bach-
elor’s degree in electronics and communication
engineering (ECE) with the National Institute of
Technology Karnataka (NITK), Surathkal. His
research interests include artificial intelligence,
computer vision, deep learning, pattern recogni-
tion, and machine learning. His current research
interest includes applying deep learning tech-
niques on different computer vision problems.

SHYAM LAL received the Ph.D. degree in digital
image processing from the Department of Elec-
tronics and Communication Engineering, Birla
Institute of Technology, Mesra, Ranchi, India,
in 2013. He has been an Assistant Professor with
the Department of Electronics and Communica-
tion Engineering, National Institute of Technology
Karnataka, Surathkal, India, since 2013. He has
more than 16 years of teaching and research expe-
rience. He has supervised three Ph.D. students, and

five Ph.D. students are currently working under his supervision in the area of
medical and remote sensing image processing. He has published more than
65 research papers in the area of digital image processing, medical image

processing, and remote sensing at international/national journals and
conferences. He has supervised three doctoral students in the area of
image processing. His research interests include digital image processing,
histopathology image processing, medical image processing, remote sensing
image processing, application of deep learning, and optimization algorithms
in digital image processing in general. He is a Senior Member of the IEEE,
a Life Member of ISTE, New Delhi, India, a Life Member of IAENG,
Hong Kong, and a LifeMember of IACSIT, Singapore. He received the Early
Career Research Award (Young Scientist) from the Science Engineering
and Research Board, Department of Science and Technology, Government
of India, in 2017, and the Young Faculty Research Fellowship Research
Grant under the Visvesvaraya Ph.D. Scheme for Electronics & IT, MEITY,
Government of India, in 2019. He has been a Guest Editor of IJSISE (Inder-
science Publishers) and an Editorial Member of the Open Access Journal of
Biomedical Engineering and its Applications (Lupine Publishers, USA).

FABIO DELL’ACQUA received the five-year
degree (cum laude) (Hons.) in electronics engi-
neering and the Ph.D. degree in remote sensing
from the University of Pavia, Italy, in 1996 and
1999, respectively. In 2000, he was an Associate
Researcher with the Division of Informatics, Uni-
versity of Edinburgh, U.K. In 2001, he obtained
a permanent position as an Assistant Professor
with the Department of Electronics, University of
Pavia, Italy, where he has been an Associate Pro-

fessor of remote sensing with the Department of Electrical, Computer and
Biomedical Engineering, since 2015. He teaches courses in remote sensing at
the University of Pavia. He has established strong links with companies with
business in remote sensing applications. His research interests include radar
data processing and radar/optical data fusion for risk-related applications.
In this area, he is/has been participating to, or leading, several research
projects both at national and international levels. From 2011 to 2015, he
organized yearly editions of an International Summer School on Data Fusion
in Aerospace Applications, which attracted up to 40 students from around
the world. In 2014, he co-founded a university spin-off company, named
TicinumAerospace, to exploit commercially his research results in the use of
EO data for risk management. In 2016, he started leading an H2020 MSCA-
RISE exchange project, ‘‘EOXPOSURE,’’ on the use of remote sensing for
analyzing environmental disease spread factors. He is a Life Member of
the Technical and Scientific Board of the Lombardy Aerospace Industry
Cluster. Currently, his publication records include 55 journal papers, over
160 conference papers, and 15 contributions to books. According to Scopus,
he has currently (2019) authored 156 papers, with a total of 1737 citations
and a Hirsch index of 21 (excluding self-citations). According to Google
Scholar, he has authored 249 paperswith a total of 2882 citations and aHirsch
index of 24.

A. V. NARASIMHA DHAN received the
B.E. degree in electronics and communication
engineering from Andhra University, in 2005,
the M.Tech. degree in signal processing from IIT
Guwahati, India, in 2007, and the Ph.D. degree
from the Indian Institute of Science, India, in 2012.
He is currently an Assistant Professor with the
Department of Electronics and Communication
Engineering, National Institute of Technology,
Karnataka, India.

151782 VOLUME 7, 2019


