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ABSTRACT The significant development and increasing deployment of renewable generation in the modern
power system introduces the challenge for dealing with uncertainty. In this paper, data-adaptive robust opti-
mization is applied to the transmission network planning. By taking historical data correlation into account,
the proposed model can achieve a lower expansion investment without sacrificing the robustness. Demand
response is embedded in this model to relieve the overflow incurred by renewable generation fluctuation
and N − 1 contingency. The model is decomposed into a master problem and several slave problems by
column and constraint generation algorithm and then solved iteratively. The numerical simulation tested on
Garver 6-bus system and the IEEE 118-bus system demonstrates the effect of demand response in reducing
or postponing network construction. The proposed data-adaptive robust optimization is proved to be cost-
effective and computationally efficient.

INDEX TERMS Transmission network planning,N−1 contingency, demand response, data-adaptive robust
optimization, column and constraint generation.

NOMENCLATURE
Parameters
� Set of transmission corridors
N(i) Set of buses connected to bus i
c(k)ij Cost of the kth circuit in transmission

corridor (i, j)
P(k) max
ij Maximum power flow along the kth

circuit in transmission corridor (i, j)
x(k)ij Reactance of the kth circuit in transmis-

sion corridor (i, j)
nmax
ij Maximum circuits in transmission

corridor (i, j)
nmin
ij Number of the existing circuits in trans-

mission corridor (i, j)
α
(k)∗

ij The value of binary variable α(k)ij
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.Pmax
Gi /P

min
Gi . Maximum/Minimum conventional power

generation at bus i
PDi Power demand at bus i
PRi Renewable energy generation at bus i
θmax
i Maximum voltage angle at bus i
v Ramping rate for conventional units
1T Ramping time for conventional units

Variables
α
(k)
ij Binary variable regarding the transmis-

sion line status of the kth circuit in trans-
mission corridor (i, j)

PGi/PmnGi Conventional power generation at bus i
for the normal and post-contingency state

P(k)ij /P
mn(k)
ij Power flow along the kth circuit in trans-

mission corridor (i, j) for the normal and
post-contingency state

Pij/Pmnij Power flow along transmission corridor
(i, j) for the normal and post-contingency
state
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θi/θ
mn
i Voltage angel at bus i for the normal and

post-contingency state
kDi Demand response ratio at bus i
PCmn

Di Curtailed power demand of bus i

I. INTRODUCTION
Transmission network expansion planning (TNEP) aims to
serve the forecasted demand sufficiently and reliably with
minimal investment on the electrical installation during a
given planning horizon.

Demand response (DR) has been rapidly developing in
recent years as a kind of flexible resource coping with various
problems in the power system. A number of DR programs
have been implemented worldwide [1]–[3], including some
pilot projects and DR potential investigation in China [4], [5].
DR has been employed in both operation [6]–[9] and plan-
ning [10]–[13] problems in the power system. For the
application in the planning stage, reference [10] utilizes
incentive-based demand response as a non-network solu-
tion to replace traditional planning method, DR providers
will acquire compensation for their contribution to peak
load reduction. A multi-objective TNEP model considering
customers benefit function and demand price elasticity is
proposed in [11]. Reference [12] demonstrates the capacity
saving brought by DR in both generation and transmission
expansion planning. The effect of DR in economics and loca-
tions of transmission investment is investigated in a hybrid
AC/DC model in [13]. Both renewable energy generation
and DR are taken into account in papers [10]–[13]. However,
the capability of DR to handle the power flow violation
caused by renewable generation fluctuation is not fully exam-
ined. Moreover, the DR benefit in enhancing power system
reliability is neglected in these TNEP researches.

On the other hand, with the rapidly increasing deploy-
ment of the renewables, various uncertainties are inher-
ently incorporated with TNEP, such as daily fluctuation
in load and renewable generation, and occasional policy
update [14]–[18]. Plenty of reported attempts have coped
with the uncertainties in TNEP, most of which can be gen-
erally categorized into stochastic programming or robust
optimization.

Stochastic programming characterizes the uncertainties
with sampled scenarios from a predefined probability distri-
bution or uncertainty set. However, it is not easy to acquire
an accurate distribution of uncertain parameters in practice.
Moreover, the solutions obtained by stochastic programming
cannot fully satisfy constraints, hence the security cannot be
guaranteed.

By contrast, robust optimization calculates with boundary
values of uncertainty set to guarantee the system security
under all the scenarios in the uncertainty set, so the optimized
planning schemes are adaptive to all the situations. The appli-
cation of robust optimization in TNEP draws broad interests,
e.g. [19]–[23]. Reference [19] adopts Benders decomposi-
tion (BD) to tackle the uncertainties. The min-max cost
and the min-max regret are two kinds of models for robust

TNEP problem, their performance is compared for different
characteristics of uncertainties in [21]. Reference [20] intro-
duces a tractable adaptive min–max–min cost model to find
a robust expansion plan for new lines and storage. In [22],
a stochastic adaptive robust optimization is formulated under
the centralized planning framework, the investment is opti-
mized in the most suitable generating units among profit-
oriented investors. Reference [23] addresses the problem size
limitation and computational intractability in dynamic robust
TNEP for realistic simulation.

There is still some deficiency remaining in robust opti-
mization for TNEP, one problem lies in the insufficient use
of the historical data to characterize the uncertainties. The
solution based on the imprecise description of uncertainty like
a cubic set is usually over-conservative, because the presence
of a worst case in the real world is pretty rare. Some literatures
deal with this issue by introducing the ‘‘budget of uncer-
tainty’’ to quantify the degree of conservativeness [24]–[26].
Other researches focus on the combination of stochastic
programming and robust optimization [27]–[29]. However,
information extraction from historical scenarios is commonly
neglected in these approaches.

The conception of data-adaptive robust optimiza-
tion (DARO) (or distributionally robust [30]) is proposed to
fundamentally overcome the over-conservatism. The correla-
tion between historical data is taken into account in this kind
of method. Unlike the traditional robust optimization which
describes the realization of the uncertain parameters with
an interval or polyhedral uncertainty set, DARO shrinks the
realization region by utilizing the historical data correlation,
and thus reduces the conservativeness [31]. Theories like
minimumvolume enclosing ellipsoid (MVEE) algorithm [32]
and correlation analysis method [33] further demonstrate
the effectiveness of DARO. DARO has been applied to
tackle with some operation optimization problem in power
system [34]–[36]. Reference [30] co-optimizes renewable
generation and load reserve with a chance constrained opti-
mal power flow model and solves it with a distribution-
ally robust approach. In [34], a two-stage distributionally
robust optimization model is proposed, and the statistical
characteristic is considered in a data-driven manner. In [35],
a risk-averse stochastic unit commitment problem is solved
with a confidence set for the uncertain parameters distri-
butions using statistical inference. Reference [36] applies
the data-adaptive robust optimization to the economic dis-
patch of active distribution networks. Although the effect of
DARO is investigated in reducing the operation cost for a
power system with uncertain resources, the number of liter-
ature incorporating DARO with the TNEP problem is quite
limited.

This paper proposes a DAR-TNEP model considering
wind power uncertainty and N − 1 contingency, the contri-
bution can be listed as follows:

1. The uncertainty is tackled with DARO to obtain a less
conservative solution and lower planning cost com-
pared to traditional robust optimization. Only a few
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scenarios are required to make the decision while the
robustness is maintained.

2. The role of DR in this model is to alleviate the overflow
incurred by wind power fluctuation and N − 1 con-
tingency. It can be validated that both DARO and DR
help to reduce or postpone the transmission network
investment.

3. The model is decomposed with column and constraint
generation (C&CG) technique into a master problem
and several slave problems. The master problem min-
imizes the planning investment and slave problems
check the post-contingency power flow.

To illustrate the effectiveness of the proposed model,
the numerical experiment is conducted on Garver 6-bus sys-
tem and IEEE 118-bus system.

The remainder of this paper is organized as follows:
Section II gives the detailed formulation for the determin-
istic TNEP problem and uncertainty model with DARO.
In Section III, the algorithm structure and solution process
of C&CG are described. Simulation results are shown and
analyzed in Section IV. Finally, Section V concludes the
paper.

II. PROBLEM FORMULATION
In this section, a deterministic TNEP model is proposed. The
related transmission network parameters are listed as follows:
for branch data, nminij /n

max
ij represents the numbers of existing/

maximum circuit between buses i and j, P(k)maxij denotes the
capacity of the kth circuit in transmission corridor ij, the cost
for one circuit installation in transmission corridor ij is set
to c(k)ij ; for bus data, Pmax

Gi /P
min
Gi represents the maximum/

minimum output of the thermal unit at bus i, the ramping
rate and duration of the thermal units are set to v and 1T,
respectively the load/wind power output at bus i, θmax

i /θmin
i

limits the upper/lower boundary of phase angle at bus i. The
variables in the TNEP model are illustrated as follows: the
binary variable α(k)ij determines whether the kth circuit in cor-

ridor ijwill be installed. If the circuit is installed, α(k)ij takes 1,
or 0 otherwise. To distinguish the variables in the normal state
and post-contingency state, the superscript mn marks the lat-
ter. P(k)ij /P

(k)mn
ij is defined as the power flow of the kth circuit

in transmission corridor ij for the normal/post-contingency
state, the total power flow on the corridor for normal/post-
contingency state is denoted as Pij/Pmnij , PGi/PmnGi and θi/θ

mn
i

refer to the thermal unit output and phase angle at bus i for
the normal/post-contingency state.

Price-based demand response (PBDR) and incentive-based
demand response (IBDR) are two main types of DR mecha-
nism. Compared to PBDR, IBDR is more schedulable and
with faster response. In this paper, IBDR, to be more precise,
direct load control is investigated. The model does not opti-
mize demand response cost directly but evaluates the effect of
demand response in line investment reduction by the sensitiv-
ity analysis of DR ratio, and reasonable demand response cost
will be suggested based on the evaluation. Therefore, demand

response cost is not included in the objective function which
minimizes the line investment, as shown in equation (1):

min
∑
ij∈�

nmaxij∑
k=nminij +1

c(k)ij α
(k)
ij (1)

A. DETERMINISTIC TNEP PROBLEM
1) BASE CASE CONSTRAINTS
The constraints under the normal state can be formulated as
follows:

α
(k)
ij ∈ {0, 1} k = nminij + 1, . . . , nmaxij (2)

α
(k)
ij = 1k = 1, . . . , nminij (3)

α
(k)
ij ≤ α

(k−1)
ij k = 2, . . . , nmaxij (4)

nminij ≤

nmaxj∑
k=1

α
(k)
ij ≤ n

max
ij (5)

PGi + PRi − PDi =
∑
j∈N (i)

Pij (6)

Pij =

nmaxij∑
k=1

P(k)ij (7)

−2θmax
(
1− α(k)ij

)
≤ θi − θj − x

(k)
ij P

(k)
ij

≤ 2θmax
(
1− α(k)ij

)
(8)

−P(k)maxij α
(k)
ij ≤ P(k)ij ≤ P

(k)max
ij α

(k)
ij (9)

PminGi ≤ PGi ≤ PmaxGi (10)

−θmax ≤ θi ≤ θ
max (11)

Constraints (2)-(3) enforce the values of binary variable α(k)ij
for the candidate/existing circuits. Constraint (4) limits the
sequential installation of circuits in each transmission corri-
dor. Constraint (5) restricts the maximum and minimum cir-
cuits in corridor ij. Constraint (6) reflects the power balance
at each bus. Constraint (7) shows the addition of power flow
on all the circuits in each corridor. Constraint (8) enforces the
relationship between circuit power flow and phase angles at
the ends of circuits. Constraints (9)-(11) restrict the upper and
lower limits for the circuit power flow/generator output/phase
angle.

2) POST-CONTINGENCY CONSTRAINTS
BASED ON DR MECHANISM

α
(K )
ij = 0 K=nminij (12)

α
(k)
ij = 1 k=1, . . . , nminij −1 (13)

PmnGi + PRi − (PDi − PCmn
Di ) =

∑
j∈N (i)

Pmnij (14)
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Pmnij =

nmaxij∑
k=1

Pmn(k)ij (15)

−2θmax
(
1− α(k)ij

)
≤ θmni − θ

mn
j − x

(k)
ij P

mn(k)
ij

≤ 2θmax
(
1− α(k)ij

)
(16)

−P(k)maxij α
(k)
ij ≤ Pmn(k)ij ≤ P(k)maxij α

(k)
ij (17)

PminGi ≤ PmnGi ≤ P
max
Gi (18)

−θmax ≤ θmni ≤ θ
max (19)

0 ≤ PCmn
Di ≤ kDi · PDi (20)

−v1T ≤ PmnGi − PGi ≤ v1T (21)

Constraint (12) enforces the value of α(k)ij for the K th
(K = nminij ) circuit in corridor ij to be 0 after it’s removed

for contingency. The values of α(k)ij for other existing cir-
cuits remain 1, as shown in constraint (13). Constraint (14)
is the post-contingency power balance constraint consider-
ing demand response. Constraints (15)-(16) show the post-
contingency total corridor power flow formulation and power
flow-phase angle relation, respectively. Constraints (17)-(19)
enforce the upper and lower limits for post-contingency cir-
cuit power flow/generator output/phase angle. Constraint (20)
indicates the load shedding in the post-contingency case. The
DR ratio kDi determines the maximum load that can respond
toN−1 contingency and wind power output fluctuation. Dif-
ferent kDi can be set for different load buses. Constraint (21)
indicates the generator output re-dispatch after N − 1 contin-
gency. It’s noteworthy that constraints (6)-(8) and constraints
(14)-(16) formulate the power flow constraints without the
sensitivitymatrix between power injection at buses and power
flow on circuits, the disjunctive manner enables the TNEP
model to be linear [16].

B. PROBLEM REFORMATION
The proposed TNEP model can be formulated in the general
compact form as follow:

minF = c (x)

s.t.



f1 (x) = 0

f2 (x) ≥ 0

g1
(
pw, x, yb

)
= 0

g2
(
pw, x, yb

)
≥ 0

h1 (pw, x, yc) = 0

h2 (pw, x, yc) ≥ 0

(22)

where pw is the stochastic wind power output; x is corre-
sponding to the binary variable α(k)ij to determine whether the
candidate transmission line to be installed or not; yb and yc

refer to the operation-related, continuous variables (e.g. gen-
erator output and power flow) in the normal state and
N − 1 contingency, respectively. c (x) is the objective of
line investment which is only decided by x. The constraints
f1 (x) = 0/f2 (x) ≥ 0 include problem (2)-(5) and (12)-(13).

The constraints g1
(
pw, x, y

b
)
= 0/g2

(
pw, x, y

b
)
≥ 0

represent the base case constraints (6)-(11), while the con-
straints h1

(
pw, x, y

b
)
= 0/h2

(
pw, x, y

b
)
≥ 0 represent the

post-contingency constraints (14)-(21). Therefore, the pro-
posed model is a stochastic mixed integer linear program-
ming (MILP) model.

To tackle the uncertainty of renewable energy generation,
DARO is adopted here, using the improved two-stage robust
optimization (TRO). The first stage determines the values of
integer variables, while the second stage solves the remaining
linear problem with the certain values of integer variables.
In the second stage, extreme scenarios are used to verify
the effectiveness of the solution in multiple situations. These
extreme scenarios are selected using MVEE and correlation
analysis method. With this means, the number of extreme
scenarios is considerably reduced. Hence, the computational
burden can be relieved, meanwhile the system security can be
guaranteed [19].

For the extreme scenarios of n wind farms, if n set of
yb and yc that individually adapt to each wind power output
scenario are available for the planning scheme x, then x
accommodates all the wind power output scenarios. Opti-
mization (22) can be transformed into (23) and p̃we,i denotes
the ith extreme scenario of wind power output:

minF = c (x)

s.t.



f1(x) = 0

f2(x) ≥ 0

g1 (̃pwe,i, x, ybi ) = 0 i = 1, . . . ,Ne
g2 (̃pwe,i, x, ybi ) ≥ 0 i = 1, . . . ,Ne
h1 (̃pwe,i, x, yci ) = 0 i = 1, . . . ,Ne
h2 (̃pwe,i, x, yci ) ≥ 0 i = 1, . . . ,Ne

(23)

Therefore, a planning scheme satisfying the extreme sce-
narios of wind power output can adapt to all the wind power
output scenarios. The robustness of power system is guar-
anteed. The proposed model is reformed into a DAR-TNEP
model.

III. SOLUTION TECHNIQUE
The data-adaptive extreme scenario method can markedly
relieve the computational burden by limiting the wind power
output scenarios. However, N − 1 contingency is another
challenge for reducing the solving time, especially when the
model is applied to a large-scale system. A column-constraint
generation (C&CG) method is applied to solve the MILP
problem and enhance computational performance.

A. COLUMN-AND-CONSTRATINT GENERATION (C&CG)
The C&CG method decomposes the primal problem into a
master problem and several sub-problems.

1) MASTER PROBLEM: INVESTMENT OPTIMIZATION
The master problem is a TNEP problem that decides the
planning scheme by solving problem (24) with the worst
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scenario p̃we,s identified in sub-problems.

minFmas = η + c (x)

s.t.



f1(x) = 0
f2(x) ≥ 0
g1 (̃pwe,s, x, ybs )=0 s=1, . . . , n
g
′

2 (̃pwe,s, x, y
b
s )≥0 s=1, . . . , n

g
′′

2 (̃pwe,s, x, y
b
s )≥R

b
s s=1, . . . , n

h1 (̃pwe,s, x, ycs)=0 s=1, . . . , n
h
′

2 (̃pwe,s, x, y
c
s) ≥ 0 s=1, . . . , n

h
′′

2 (̃pwe,s, x, y
c
s) ≥ R

c
s s=1, . . . , n

η ≥
∑
ij∈�

nmax
ij∑
k=1

(s(k)1,ij + r
(k)
1,ij + s

(k)
2,ij + r

(k)
2,ij

+s(k)3,ij + r
(k)
3,ij + s

(k)
4,ij + r

(k)
4,ij)

(24)

2) SUB-PROBLEMS: OVERFLOW CHECK FOR
EVERY EXTREME SCENARIO
The planning scheme derived in the master problem is
denoted by α(k)∗ij (namely every circuit in transmission cor-
ridor ij is determined). The sub-problems will be solved with
α
(k)∗
ij to checkwhether any overflowwill occur due to extreme

wind power output or N − 1 contingency. If any overflow
occurs in sub-problems, the worst scenario corresponding to
the maximal overflow will be found. A set of constraints for
theworst scenario are generated and added to themaster prob-
lem. Then the master problem is solved in the next iteration
and update the planning scheme α(k)∗ij .

With the variable α(k)ij fixed to α(k)∗ij , the sub-problems
become line programming (LP) problems. Every sub-
problem is solved for a specific extreme scenario, so the
number of sub-problem Ne equals to the number of extreme
scenarios. Both the base case constraints (6)-(11) and the
post-contingency case constraints (12)-(21) are included in
a sub-problem where PRi and α

(k)
ij are substituted by p̃we,i

and α(k)∗ij .
To ensure the feasibility for sub-problems, non-negative

slack variables s(k)1,ij, r
(k)
1,ij, s

(k)
2,ij, r

(k)
2,ij (represented by Rbs ) and

s(k)3,ij, r
(k)
3,ij, s

(k)
4,ij, r

(k)
4,ij (represented by Rcs) are added to the

power flow formulations for base case (g
′′

2 ≥ Rbs ) and post-
contingency case (h

′′

2 ≥ Rcs), respectively. The specific con-
straints are shown by (25)-(28).

P(k)ij − s
(k)
1,ij ≤ P(k)maxij α

(k)∗
ij

−P(k)ij − r
(k)
1,ij ≤ P(k)maxij α

(k)∗
ij (25)

θi − θj − x
(k)
ij P

(k)
ij − s

(k)
2,ij ≤ 2θmax

(
1− α(k)∗ij

)
−(θi − θj − x

(k)
ij P

(k)
ij )− r (k)2,ij ≤ 2θmax

(
1− α(k)∗ij

)
(26)

Pmn(k)ij − s(k)3,ij ≤ P(k)maxij α
(k)∗
ij

−Pmn(k)ij − r (k)3,ij ≤ P(k)maxij α
(k)∗
ij (27)

θmni − θ
mn
j − x

(k)
ij P

mn(k)
ij − s(k)4,ij ≤ 2θmax

(
1− α(k)∗ij

)
−(θmni − θ

mn
j − x

(k)
ij P

mn(k)
ij )− r (k)4,ij ≤ 2θmax

(
1− α(k)∗ij

)
(28)

The sub-problems can be formulated by (29):

minFsub=η + c(x∗)

s.t.



g1 (̃pwe,s, x∗, ybs ) = 0

s = 1, . . . ,Ne

g
′

2 (̃pwe,s, x
∗, ybs ) ≥ 0

s = 1, . . . ,Ne

g
′′

2 (̃pwe,s, x
∗, ybs ) ≥ R

b
s

s = 1, . . . ,Ne

h1 (̃pwe,s, x∗, yks ) = 0

s = 1, . . . ,Ne

h
′

2 (̃pwe,s, x
∗, yks ) ≥ 0

s = 1, . . . ,Ne

h
′′

2 (̃pwe,s, x
∗, yks ) ≥ R

c
s

s = 1, . . . ,Ne

η ≥
∑
ij∈�

nmax
ij∑
k=1

(s(k)1,ij + r
(k)
1,ij + s

(k)
2,ij + r

(k)
2,ij

+s(k)3,ij + r
(k)
3,ij + s

(k)
4,ij + r

(k)
4,ij)

(29)

The values of Fmas and Fsub are the low bound (LB) and
upper bound (UB) of the objective function in the primal
problem, respectively. LB gets higher andUB gets lower with
the iterations. WhenUB = LB, the iteration is terminated and
the optimal planning scheme is generated.

B. SUMMARY OF THE SOLUTION PROCEDURE
The procedure of the solution method is as follows:
Step 1): Input system parameters and wind power profiles;
Step 2): Generate data-adaptive extreme scenarios.
Step 3): Set LB = −∞,UB = +∞;
Step 4): Solve the sub-problems with the original transmis-

sion network for the first iteration or α(k)∗ij for the next iter-
ations, identify the worst scenario and generate appropriate
constraints, update UB;
Step 5): Solve the master problem with constraints for the

worst scenario generated in Step 4, update α(k)∗ij and LB;
Step 6): If |UB− LB| ≤ ε, terminate the iteration and list

the optimal planning scheme, otherwise repeat Step 4 to 5.

IV. NUMERICAL RESULTS
The Garver 6-bus system and IEEE 118-bus system are
simulated in this section to validate the effectiveness of the
proposed method. The experiment is performed on a personal
computer with Intel CoreTMi5-6200U CPU (2.3GHz) and
8GB of memory, using Matlab 2014b and Gurobi 7.0.2 as the
solver.
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FIGURE 1. Electric diagram of Garver six-bus system.

TABLE 1. Cost of the stochastic case with different DR ratios for Garver
6-bus system (TR-TNEP).

A. GARVER 6-BUS SYSTEM
Fig.1 shows the topology of the Garver 6-bus system that
consists of 3 thermal units with 2340 MW installed, five load
buses of 1440 MW and 9 transmission lines. The generator
ramp rate is assumed as 1% of the maximum output. The
emergency re-dispatch time after N − 1 contingency is set
to 10min. Two wind farms are installed at Bus 2 and Bus 3,
respectively. The extreme scenarios generated by TR-TNEP
or DAR-TNEP are shown in TABLE 9 and in TABLE 10 in
the Appendix.

The transmission line installation cost (LIC) takes the
practical experiences from Chinese TSO as reference. The
investment in DR aspect is considered as two parts of facility
investment (DFC, 30.65 k$/MW) and incentive pay for circuit
fault (DIC, 3.065 k$/MW once). The former is proportional
to the available maximum demand response, while the latter
relates to the actual maximum load curtailment in all theN−1
contingencies considered. DR ratios at all the load buses are
set identically.

1) THE INFLUENCE OF DR RATIO ON THE TOTAL COST
In this section, the effects of DR to reduce the total investment
of TNEP will be investigated. The uncertainty of wind power
is only characterized by TR-TNEP. The cost for different DR
ratios is shown in TABLE 1, where maximal DR response
refers to the sum of overflow occurs in all the contingency.

It is indicated by the results of 0, 2%, 8% and 10% DR
ratios that DR acts as an alternative for transmission line
expansion to achieve a lower total cost. However, the DR
ratios of 4% and 6% make no difference in line investment,
which results in a higher total cost for a larger DR ratio due
to more DR investment. The inherent reason lies in that the
decision variables for circuits are not continuous, but discrete.
An identical planning scheme can be obtained for similar DR
ratios. Therefore, to reduce line investment and total cost in
an effective way, a proper DR ratio should be chosen carefully
based on the feature of the considered power system.

To further investigate the issue, all the extreme scenarios
are examined individually for different DR ratios, the detailed
line investment is listed in TABLE 2, where ES is the short
for extreme scenario

TABLE 2. Comparison between the transmission line investments cost in
the stochastic case and all certain cases for Garver 6-bus system.

For the results considering the DR ratios less than 6%,
the line investment in the uncertain case is almost determined
by ES1 (when both of the two wind farms give the minimum
output). Additionally, the uncertain case provides costlier
planning schemes than any single extreme scenario when the
DR ratio is 6%. The line investment in the uncertain case is
a comprehension decision rather than just a copy of that in a
single scenario. Therefore, planning schemes achieved by any
one extreme scenario may not satisfy the demand for wind
power uncertainty, i.e., it’s necessary to consider wind power
uncertainty.

2) THE INFLUENCE OF DR DISTRIBUTION
In practical situations, electricity consumers are usually cat-
egorized into several priority levels when they are engaged
in the DR programs, according to they are industrial loads
or commercial users. Therefore, different DR ratios may be
set for loads with different importance. A lower total cost of
TNEP can be achieved by assigning theDR resource properly.
Here we divide the whole load in the six-bus system into two
parts evenly (PD1,PD2,PD3 and PD4,PD5,PD6) and only one
part takes part in DR program. The results shown in TABLE 3
indicates an evident reduction in line investment when DR
ratios take 20%. In this case, if DR programs are performed on
Bus 4-6, the wind power at Bus 2 and Bus 3 will be consumed
by the more local load, which saves some costlier circuits to
transform the resource.
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TABLE 3. Results of the stochastic case with different DR distribution (TR-TNEP).

TABLE 4. Results of the stochastic case with different DR ratios for
Garver 6-bus system (DAR-TNEP).

TABLE 5. The transmission line investment reduction by unit DR for the
cases under different DR ratios.

TABLE 6. Results of the stochastic case with different DR ratios for IEEE
118-bus system (TR-TNEP).

3) COMPARISON BETWEEN TR-TNEP AND DAR-TNEP
The cost with the application of DAR-TNEP is given in
TABLE 4.

Compared with the TR-TNEP results in TABLE 1, the pro-
posed DAR-TNEP method can offer a more economi-
cal investment for all the DR ratios considered. However,
whether the DR program would effectively reduce the total
cost also depends on a reasonable DR ratio.

TABLE 7. Results of the stochastic case with different DR ratios for IEEE
118-bus system (DAR-TNEP).

TABLE 8. Decision variables and calculating time for IEEE 118-bus system.

TABLE 9. Extreme scenarios of wind power output obtained by TR-TNEP
for IEEE 118-bus system.

TABLE 10. Extreme scenarios of wind power output obtained by TR-TNEP
for Garver 6-bus system.

4) COST-EFFECTIVENESS ANALYSIS FOR DR PROGRAM
To analysis the benefits from DR programs quantitatively,
the line investment saved by unit DR is introduced and
denoted by COST kDR when the DR ratio is k . The index is
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TABLE 11. Extreme scenarios of wind power output obtained by DAR-TNEP for Garver 6-bus system.

defined as (36):

COST kDR =
COST 0

line − COST
k
line

k∗sum(PDi)
(30)

where COST kline is the line investment when the DR ratio
is k and k∗sum (PDi) represents the maximal available DR
resource. The index is calculated with the statistics in
TABLE 1 and TABLE 4, the result is shown in TABLE 5.

Compared to the current DR cost of 0.034∗106 $/MW in
China, the profit gained by DR is much more considerable.
As the line installation cost increases, the benefit of taking
DR as an alternative will be more remarkable, considering the
lower DR cost owing to the development of DR mechanism.

B. IEEE 118-BUS SYSTEM
For a modified IEEE 118-bus system, three wind farms are
installed at Bus 10, Bus 71 and Bus 73 with the extreme
output generated by TR-TNEP or DAR-TNEP (shown in
TABLE 11 or TABLE 12 in Appendix). The DR ratios are
assumed as 0, 10% and 20%. The cost of TR-TNEP case
or DAR-TNEP case is given in TABLE 6 or TABLE 7,
respectively.

It can be seen that the cost obtained byDAR-TNEPmethod
almost has a 40% decrease compared to that of TR-TNEP.

C. VALIDATION OF THE PROPOSED DAR-TNEP
The superiority of DAR-TNEP in conservativeness and cal-
culating efficiency compared with TR-TNEP is indicated in
TABLE 8. The variable Li−j denotes the number of the newly-
installed circuit between Bus i and Bus j.

Fewer line investment is needed to relieve all the over-
flow for DAR-TNEP, which means the decision made by
TR-TNEP is over-conservative. In addition, the calculating
process is markedly accelerated when applying DAR-TNEP.

V. CONCLUSION
In this paper, the data adaptive robust transmission network
expansion planning incorporating post-contingency demand
response is proposed. By utilizing the correlation observed
from historical data, the proposed DAR-TNEP overcomes the
disadvantage of traditional TNEP using robust optimization.
The conservativeness of the decisions is reduced. The combi-
nation of scenario-generation approach and robust optimiza-
tion enables the proposed model to achieve both simplicity
and robustness. The demand response alleviates the contin-
gency overflow in multiple scenarios, thereby DR reduces the
need for expansion while the reliability of system operation
is not compromised. Case studies indicate that despite not

TABLE 12. Extreme scenarios of wind power output obtained by
DAR-TNEP for IEEE 118-bus system.

every penny invested in DR makes a reduction in expansion
cost, the trade-off between DR and line investment can be
optimized via the carefully chosen DR ratio.

APPENDIX
See Tables 9–12.

REFERENCES
[1] Y. Zhang, X. Wang, W. Zhang, F. Hou, and Z. Wu, ‘‘Analysis of technical

strategies towards a low carbon electricity system in Europe,’’ in Proc. Int.
Conf. Electr. Utility Deregulations Restruct. Power Technol., Nov. 2015,
pp. 2561–2565.

[2] Z. Hungerford, A. Bruce, and I. MacGill, ‘‘Review of demand side man-
agement modelling for application to renewables integration in Australian
power markets,’’ in Proc. IEEE PES Asia–Pacific Power Energy Eng.
Conf., Nov. 2016, pp. 1–5.

[3] S. Mukhopadhyay, ‘‘Indian experience of smart grid applications in trans-
mission and distribution system,’’ in Proc. IEEE Power India Int. Conf.,
Dec. 2015, pp. 1–6.

[4] W. Li, P. Xu, X. Lu, H. Wang, and Z. Pang, ‘‘Electricity demand response
in China: Status, feasible market schemes and pilots,’’ Energy, vol. 114,
pp. 981–994, Nov. 2016.

[5] J. Dong, G. Xue, and R. Li, ‘‘Demand response in China: Regulations, pilot
projects and recommendations—A review,’’ Renew. Sustain. Energy Rev.,
vol. 59, pp. 13–27, Jun. 2016.

[6] J. Ning, Y. Tang, and B. Gao, ‘‘A time-varying potential-based demand
response method for mitigating the impacts of wind power forecasting
errors,’’ Appl. Sci., vol. 7, no. 11, p. 1132, 2017.

[7] X. Han, M. Zhou, G. Li, and K. Y. Lee, ‘‘Stochastic unit commitment
of wind-integrated power system considering air-conditioning loads for
demand response,’’ Appl. Sci., vol. 7, no. 11, p. 1154, 2017.

[8] D. Koolen, N. Sadat-Razavi, and W. Ketter, ‘‘Machine learning for identi-
fying demand patterns of home energy management systems with dynamic
electricity pricing,’’ Appl. Sci., vol. 7, no. 11, p. 1160, 2017.

[9] S. Fan, G. He, K. Jia, and Z.Wang, ‘‘A novel distributed large-scale demand
response scheme in high proportion renewable energy sources integration
power systems,’’ Appl. Sci., vol. 8, no. 3, p. 452, 2018.

[10] C. Li, Z. Dong, G. Chen, F. Luo, and J. Liu, ‘‘Flexible transmission
expansion planning associated with large-scale wind farms integration
considering demand response,’’ IET Gener. Transmiss. Distrib., vol. 9,
no. 15, pp. 2276–2283, 2015.

[11] A. Hajebrahimi, A. Abdollahi, and M. Rashidinejad ‘‘Probabilistic multi-
objective transmission expansion planning incorporating demand response
resources and large-scale distant wind farms,’’ IEEE Syst. J., vol. 11, no. 2,
pp. 1170–1181, Jun. 2017.

VOLUME 7, 2019 100303



Q. Zheng et al.: Data-Adaptive Robust Transmission Network Planning Incorporating Post-Contingency Demand Response

[12] N. Zhang, Z. Hu, C. Springer, Y. Li, and B. Shen, ‘‘A bi-level inte-
grated generation-transmission planning model incorporating the impacts
of demand response by operation simulation,’’ Energy Convers. Manage.,
vol. 123, pp. 84–94, Sep. 2016.

[13] Ö. Özdemir, F. D. Munoz, J. L. Ho, and B. F. Hobbs, ‘‘Economic analysis
of transmission expansion planning with price-responsive demand and
quadratic losses by successive LP,’’ IEEE Trans. Power Syst., vol. 31, no. 2,
pp. 1096–1107, Mar. 2016.

[14] X. Ai, J. Li, J. Fang, W. Yao, H. Xie, R. Cai, and J. Wen, ‘‘Multi-time-scale
coordinated ramp-rate control for photovoltaic plants and battery energy
storage,’’ IET Renew. Power Gener., vol. 12, no. 12, pp. 1390–1397, 2018.

[15] W. Gan, X. Ai, J. Fang, M. Yan, W. Yao, W. Zuo, and J. Wen, ‘‘Security
constrained co-planning of transmission expansion and energy storage,’’
Appl. Energy, vol. 239, pp. 383–394, Aug. 2019.

[16] H. Shuai, J. Fang, X. Ai, J. Wen, and H. He, ‘‘Optimal real-time operation
strategy for microgrid: An ADP-based stochastic nonlinear optimization
approach,’’ IEEE Trans. Sustain. Energy, vol. 10, no. 2, pp. 931–942,
Apr. 2019.

[17] J. Fang, Q. Zeng, X. Ai, Z. Chen, and J. Wen, ‘‘Dynamic optimal energy
flow in the integrated natural gas and electrical power systems,’’ IEEE
Trans. Sustain. Energy, vol. 9, no. 1, pp. 188–198, Jan. 2018.

[18] S. M. Ryan, J. D. McCalley and D. L. Woodruff. (2011). Long Term
Resource Planning for Electric Power Systems Under Uncertainty.
[Online] Available: http://works.bepress.com/sarah_m_ryan/27/

[19] R. A. Jabr, ‘‘Robust transmission network expansion planning with uncer-
tain renewable generation and loads,’’ IEEE Trans. Power Syst., vol. 28,
no. 4, pp. 4558–4567, Nov. 2013.

[20] B. Chen, J. Wang, L. Wang, Y. He, and Z. Wang, ‘‘Robust optimization
for transmission expansion planning: Minimax cost vs. minimax regret,’’
IEEE Trans. Power Syst., vol. 29, no. 6, pp. 3069–3077, Nov. 2014.

[21] S. Dehghan and N. Amjady, ‘‘Robust transmission and energy storage
expansion planning in wind farm-integrated power systems considering
transmission switching,’’ IEEE Trans. Sustain. Energy, vol. 7, no. 2,
pp. 765–774, Apr. 2016.

[22] L. Baringo and A. Baringo, ‘‘A stochastic adaptive robust optimization
approach for the generation and transmission expansion planning,’’ IEEE
Trans. Power Syst., vol. 33, no. 1, pp. 792–802, Jan. 2018.

[23] R. García-Bertrand and R.Mínguez, ‘‘Dynamic robust transmission expan-
sion planning,’’ IEEE Trans. Power Syst., vol. 32, no. 4, pp. 2618–2628,
Jul. 2017.

[24] C. Zhao, J. Wang, J.-P. Watson, and Y. Guan, ‘‘Multi-stage robust unit
commitment considering wind and demand response uncertainties,’’ IEEE
Trans. Power Syst., vol. 28, no. 3, pp. 2708–2717, Aug. 2013.

[25] R. Jiang, J. Wang, and Y. Guan, ‘‘Robust unit commitment with wind
power and pumped storage hydro,’’ IEEE Trans. Power Syst., vol. 27, no. 2,
pp. 800–810, May 2012.

[26] D. Bertsimas, E. Litvinov, X. A. Sun, J. Zhao, and T. Zheng, ‘‘Adaptive
robust optimization for the security constrained unit commitment prob-
lem,’’ IEEE Trans. Power Syst., vol. 28, no. 1, pp. 52–63, Feb. 2013.

[27] C. Zhao and Y. Guan, ‘‘Unified stochastic and robust unit commitment,’’
IEEE Trans. Power Syst., vol. 28, no. 3, pp. 3353–3361, Aug. 2013.

[28] Y. Dvorkin, H. Pandzic, M. A. Ortega-Vazquez, and D. S. Kirschen,
‘‘A hybrid stochastic/interval approach to transmission-constrained unit
commitment,’’ IEEE Trans. Power Syst., vol. 30, no. 2, pp. 621–631,
Mar. 2015.

[29] H. Pandzic, Y. Dvorkin, T. Qiu, Y. Wang, and D. Kirschen, ‘‘Toward cost-
efficient and reliable unit commitment under uncertainty,’’ in Proc. IEEE
Power Energy Soc. General Meeting, Jul. 2016, p. 1.

[30] Y. Zhang, S. Shen, and J. L. Mathieu, ‘‘Distributionally robust chance-
constrained optimal power flow with uncertain renewables and uncertain
reserves provided by loads,’’ IEEE Trans. Power Syst., vol. 32, no. 2,
pp. 1378–1388, Mar. 2017.

[31] Y. Guan and J. Wang, ‘‘Uncertainty sets for robust unit commitment,’’
IEEE Trans. Power Syst., vol. 29, no. 3, pp. 1439–1440, May 2014.

[32] P. Kumar and E. A. Yildirim, ‘‘Minimum-volume enclosing ellipsoids and
core sets,’’ J. Optim. Theory Appl., vol. 126, no. 1, pp. 1–21, 2005.

[33] X. Xu, X. He, Q. Ai, and R. C. Qiu, ‘‘A correlation analysis method for
power systems based on random matrix theory,’’ IEEE Trans. Smart Grid,
vol. 8, no. 4, pp. 1811–1820, Jul. 2017.

[34] W. Wei, F. Liu, and S. Mei, ‘‘Distributionally robust co-optimization of
energy and reserve dispatch,’’ IEEE Trans. Sustain. Energy, vol. 7, no. 1,
pp. 289–300, Jan. 2017.

[35] C. Zhao and Y. Guan, ‘‘Data-driven stochastic unit commitment for
integrating wind generation,’’ IEEE Trans. Power Syst., vol. 31, no. 4,
pp. 2587–2596, Jul. 2016.

[36] Y. Zhang, X. Ai, J. Wen, J. Fang, and H. He, ‘‘Data-adaptive robust
optimization method for the economic dispatch of active distribution net-
works,’’ IEEE Trans. Smart Grid, vol. 10, no. 4, pp. 3791–3800, Jul. 2019.

QIANWEI ZHENG received the B.S. degree in
electrical engineering from the Huazhong Univer-
sity of Science and Technology (HUST), Wuhan,
China, in 2017, where she is currently pursuing the
M.S. degreewith the School of Electrical and Elec-
tronics Engineering. Her current research interests
include transmission network planning and renew-
able energy integration.

XIAOMENG AI (S’11–M’17) received the B.Eng.
degree in mathematics and applied mathematics
and the Ph.D. degree in electrical engineering from
the Huazhong University of Science and Technol-
ogy (HUST), Wuhan, China, in 2008 and 2014,
respectively, where he is currently a Lecturer.
His research interests include robust optimization,
stochastic optimization, renewable energy integra-
tion, and integrated energy market.

JIAKUN FANG (S’10–M’13–SM’19) received
the B.Sc. and Ph.D. degrees from the Huazhong
University of Science and Technology (HUST),
Wuhan, China, in 2007 and 2012, respectively,
he is currently a Full Professor. He held a Postdoc-
toral position at the Department of Energy Tech-
nology, Aalborg University, Aalborg, Denmark,
in 2012, where he was an Assistant Professor,
in 2015, and an Associate Professor, in 2018. His
research interests include power system dynamic

stability control, power grid complexity analysis, and integrated energy
systems.

JINYU WEN (M’10) received the B.S. and
Ph.D. degrees in electrical engineering from the
Huazhong University of Science and Technol-
ogy (HUST), Wuhan, China, in 1992 and 1998,
respectively.

He was a Visiting Student, from 1996 to 1997,
and Research Fellow, from 2002 to 2003, with the
University of Liverpool, Liverpool, U.K., and a
Senior Visiting Researcher with The University of
Texas at Arlington, Arlington, TX, USA, in 2010.

From 1998 to 2002, he was a Director Engineer with XJ Electric Company
Ltd., China. In 2003, he joined HUST, where he is currently a Professor
with the School of Electrical and Electronics Engineering. His current
research interests include renewable energy integration, energy storage,
multi-terminal HVDC, and power system operation and control.

100304 VOLUME 7, 2019


	INTRODUCTION
	PROBLEM FORMULATION
	DETERMINISTIC TNEP PROBLEM
	BASE CASE CONSTRAINTS
	POST-CONTINGENCY CONSTRAINTS BASED ON DR MECHANISM

	PROBLEM REFORMATION

	SOLUTION TECHNIQUE
	COLUMN-AND-CONSTRATINT GENERATION (C&CG)
	MASTER PROBLEM: INVESTMENT OPTIMIZATION
	SUB-PROBLEMS: OVERFLOW CHECK FOR EVERY EXTREME SCENARIO

	SUMMARY OF THE SOLUTION PROCEDURE

	NUMERICAL RESULTS
	GARVER 6-BUS SYSTEM
	THE INFLUENCE OF DR RATIO ON THE TOTAL COST
	THE INFLUENCE OF DR DISTRIBUTION
	COMPARISON BETWEEN TR-TNEP AND DAR-TNEP
	COST-EFFECTIVENESS ANALYSIS FOR DR PROGRAM

	IEEE 118-BUS SYSTEM
	VALIDATION OF THE PROPOSED DAR-TNEP

	CONCLUSION
	REFERENCES
	Biographies
	QIANWEI ZHENG
	XIAOMENG AI
	JIAKUN FANG
	JINYU WEN


