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ABSTRACT Radiomics-based researches have shown predictive abilities with machine-learning
approaches. However, it is still unknown whether different radiomics strategies affect the prediction
performance. The aim of this study was to compare the prediction performance of frequently utilized
radiomics feature selection and classification methods in glioma grading. Quantitative radiomics features
were extracted from tumor regions in 210 Glioblastoma (GBM) and 75 low-grade glioma (LGG) MRI
subjects. Then, the diagnostic performance of sixteen feature selection and fifteen classification methods
were evaluated by using two different test modes: ten-fold cross-validation and percentage split. Balanced
accuracy and area under the curve (AUC) of the receiver operating characteristic were used to evaluate
prediction performance. In addition, the roles of the number of selected features, feature type, MRI modality,
and tumor sub-region were compared to optimize the radiomics-based prediction. The results indicated
that the combination of feature selection method L!-based linear support vector machine (L'-SVM) and
classifier multi-layer perceptron (MLPC) achieved the best performance in the differentiation of GBM and
LGG in both ten-fold cross validation (balanced accuracy:0.944, AUC:0.986) and percentage split (balanced
accuracy:0.953, AUC:0.981). For radiomics feature extraction, the enhancing tumor region (ET) combined
with necrotic and non-enhancing tumor (NCR/NET) regions in T1 post-contrast (T1-Gd) modality provided
more considerable tumor-related phenotypes than other combinations of tumor region and MRI modality.
Our comparative investigation indicated that both feature selection methods and machine learning classifiers
affected the predictive performance in glioma grading. Also, the cross-combination strategy for comparison
of radiomics feature selection and classification methods provided a way of searching optimal machine

learning model for future radiomics-based prediction.

INDEX TERMS Glioma grade, machine learning, feature classification, feature selection, radiomics.

I. INTRODUCTION

Glioma is the most common primary intracranial tumor in
adults [1]. It might occur anywhere in brain and appear
highly spatial-temporal heterogeneity. According to WHO,
glioma can be classified into grades I-IV based on histo-
logically malignant behavior [2]. Low-grade glioma (LGG,
grades I and II) patients typically have more than five years
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survival whereas only 3-5% of glioblastoma (GBM, grade [V)
patients survive more than five years, with median survival
about 12 months [3]. GBM is the most common glioma
histology type, accounting for 70% of primary brain tumors.
Preoperative glioma grading, particularly the differentiation
between GBM and LGG, is of great importance for making
diagnostic decisions in clinical [4].

MRI provides a way of grading glioma with high spa-
tial resolution and unique contrast between brain tissues
and tumor non-invasively [5], [6]. With a comprehensive
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view of brain structure and tumor, the highly heterogeneity
degree in the histological tumor sub-regions are revealed.
Then quantitative analysis can be performed in tumor regions
of interest (ROIs) to find the relationship between tumor
characteristics and clinical diagnosis. Radiomics is one of
the analysis methodologies which converts imaging data
into high-throughput mineable features [7], [8]. It is based
on the hypothesis that these image-based features could
capture phenotypic differences of tumor and be potentially
used as diagnostic features for clinical outcomes. Radiomics
provides a non-invasive way of exploring the relation-
ship between glioma and image-based descriptors such as
tumor appearance, shape, size, intensity, position and tex-
ture [9]. Recent quantitative radiomics-based diagnostic mod-
els have shown highly potential clinical values in predicting
glioma grades [10], gene expression patterns [11] and gene
mutation [12].

In current radiomics-based MRI glioma grading, various
radiomics features, feature selection methods and classifi-
cation or regression models are employed, which demon-
strates identical diagnostic performance. For the extracted
radiomics feature types, histogram-based features [4], shape-
features [13], texture features [14]-[16], wavelet fea-
tures [17], are designed. Subsequently, feature selection
strategies, e.g. filter-based [18] and embedded-based meth-
ods [19], [20], are applied to identify the valuable features
for grading glioma; and then machine-learning classifiers,
e.g. random forest [21], logistic regression [13], support vec-
tor machine [22] are utilized to classify glioma histological
types. Besides, multiparametric MRI sequences are employed
to extract imaging features for grading glioma [23], [24].
Most radiomics-based researches have shown predic-
tive abilities with multitudinous machine-learning approa-
ches [9], [25]. Only a few recent studies have compared
diagnostic performance by different radiomics feature selec-
tion and classification models [26]-[31]. However, it is still
unknown whether different feature selection and classifica-
tion methods affects radiomics-based prediction performance
in glioma grading. In these regards, extracting effective
imaging features and engaging reliable machine-learning
strategies are desired to compare in grading glioma.

In this study, we investigated the diagnostic value of fre-
quently used machine-learning approaches as well as the
discrepancy of different radiomics features for glioma grade
prediction. Sixteen feature selection methods and fifteen clas-
sification methods were evaluated in terms of their popularity,
effectiveness and complexity in literature. Publicly avail-
able implementations for feature extraction, selection and
classification strategies were adopted to reduce bias. Totally
210 GBM subjects and 75 LGG subjects were applied and the
diagnostic performance were estimated by balanced accuracy
and area under the curve (AUC) of receiver operating char-
acteristic in both repeated ten-fold cross-validation and per-
centage split test modes. Besides, the roles of selected feature
number, feature type, MRI modality and tumor sub-region
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were evaluated to optimize the radiomics-based glioma grade
prediction.

Il. METHODS AND MATERIALS

A. PATIENTS AND IMAGE PREPROCESSING

The public Multimodal Brain Tumor Segmentation Chal-
lenge (BraTS) 2018 magnetic resonance imaging (MRI)
dataset was utilized for this study [32], [33]. This dataset
was provided by Cancer Genome Atlas (TCGA) glioma
phenotype research group. Totally 210 GBM patients and
75 LGG subjects were included. Four MRI modalities includ-
ing native Tl-weighted (T1), T1 post-contrast (T1-Gd),
T2-weighted (T2) and T2-Fluid Attenuated Inversion Recov-
ery (FLAIR) were supplied for each subject. Tumor regions
of the subjects were provided, as well as three types of tumor
sub-regions (the enhancing tumor region, ET; the peritumoral
edema region, ED; the necrotic and non-enhancing tumor
region, NCR/NET).

The details of image processing were described in the pre-
vious study [32]. All the provided images were skull-stripped,
co-registered to the same anatomical structure by a rigid reg-
istration model with the mutual information similarity metric.
And all the image volumes were resampled to I mm isotropic
resolution in a standardized axial orientation with a linear
interpolator. No non-parametric, non-uniform intensity nor-
malization algorithm was used by the BraTS group to correct
for intensity non-uniformities caused by the inhomogeneity
of the scanner’s magnetic field during image acquisition, as
it was observed that application of such algorithm obliterated
the T2-FLAIR signal [32]. To ensure the comparability of
intensity-based features, we performed image intensity nor-
malization using the hybrid white-stripe approach, which has
been proven robust for MRI data intensity normalization [34].
Also, intensity discretization was performed for the following
extraction of texture features with fixed bin number method.

B. RADIOMICS FEATURE EXTRACTION

The public open-source pyradiomics feature extraction pack-
age (V1.3.0) was utilized to extract radiomics features
from the tumor regions [35]. With this package, three cat-
egories of features were extracted from original images,
including shape-based features, first-order statistics fea-
tures, and texture features. The texture features included
gray level co-occurence matrix (GLCM) features, gray
level run length matrix (GLRLM) features, gray level size
zone matrix (GLSZM) features, neighbouring gray tone dif-
ference matrix (NGTDM), gray level dependence matrix
(GLDM) features. Besides, the aforementioned texture fea-
tures (GLCM, GLRLM, GLDM and NGTDM) were also
extracted from the images preprocessed using the Laplacian
of Gaussian (LoG) band pass filter and Wavelet filter. The
concrete feature definition could be found in [35]. Overall,
as for each lesion, the radiomics features were extracted from
both original and filtered images. All the features were then
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TABLE 1. Summary of the used feature selection and classification methods with the acronyms and full names.

Acronym Feature selection method name Acronym Classification method name
CHSQ chi-square score GNB gaussion naive bayes

TSQ t-test score MNB multinomial naive bayes
WLCX wilcoxon BNB bernoulli naive bayes

VAR variance KNN k-nearest neighborhood

RELF relief RF random forest

MI mutual information BAG bagging

mRMRe minimum redundancy maximum relevance ensemble DT decision tree

RF random forest GBDT gradient boosting decision tree
ETE extra tree ensemble Adaboost adaptive boosting

GBDT gradient boosting decision tree XGB xgboost

XGB xgboost LDA linear discriminant analysis
L'-LGR L'-based logistic regression LGR logistic regression

L'-SVM L'-based linear support vector machine Linear-SVM linear support vector machine
LASSO least absolute shrinkage and selection operator RBF-SVM radial basis function support vector machine classification
EN elastic net MLPC multi-layer perceptron

PCA principal component analysis

extracted in the four types of MRI modality (T1, T1-Gd, T2,
FLAIR) images.

To explore the relationship between glioma grades and
radiomics features, which could be extracted from differ-
ent lesion types as well as MRI modalities, we combined
the tumor sub-regions into seven kinds of ROIs into ET,
NCR/NET, ED, ET + NCR/NET, NCR/NET + ED, ET +
ED, ET + NCR/NET + ED. Radiomics features were then
extracted from the ROISs respectively in different MRI modal-
ities. Because the extracted radiomics features were multiple
centers and magnitudes, feature normalization was performed
with a mean of zero and a standard deviation of one (z-score
transformation).

C. FEATURE SELECTION METHODS

Sixteen feature selection methods were chosen con-
sidering their popularity, effectiveness and complexity
reported in previous interrelated researches [26]—[28], which
included chi-square score (CHSQ), t-test score (TSQ),
wilcoxon (WLCX), variance (VAR), Relief (RELF), mutual
information (MI), minimum redundancy maximum relevance
ensemble (mRMRe), random forest (RF), extra tree ensem-
ble (ETE), gradient boosting decision tree (GBDT), xgboost
(XGB), L!-based logistic regression (L-LGR), L!-based
linear support vector machine (L!-SVM), least absolute
shrinkage and selection operator (LASSO), elastic net (EN)
and principal component analysis (PCA).

Filter method and embedded method are two kinds of fea-
ture selection methods. Filter method is computational effi-
ciency and classifier independent, while embedded method
incorporates feature selection as a part of training pro-
cess. Filter method has high generalizability and embed-
ded method generally achieves high accuracy in previous
study [28]. CHSQ, TSQ, WLCX and VAR are univariate filter
feature selection methods which score the feature by rele-
vancy, whereas RELF, MI and mRMRe are multivariate filter
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investigating the feature relevancy as well as the redundancy.
The embedded methods are mainly composed of penalty-
based and tree-based methods. L'-LGR, L!-SVM, LASSO
and EN are representative penalty-based embedded methods
while RF, ETE, GBDT and XGB are tree-based embedded
methods. Different from the other types, PCA is an important
feature extraction strategy which could generate new speci-
fied dimension features and achieve high performance in a
way of dimensional reduction [36].

Feature selection method wrapper was not investigated
in this paper because of its expensive computation [37],
although some wrapper methods e.g. Boruta, had been proven
valuable in preparing data [38]. Another feature selection
method named hybrid method, which could be formed by
combing multiple different feature selection methods [39],
was not investigated in this paper either. We believe the
comparison for single feature selection method will be bene-
ficial for providing the references for hybrid feature selection
method.

D. CLASSIFICATION METHODS

We investigated fifteen machine-learning classifiers: gaus-
sion naive bayes (GNB), multinomial nai ve bayes (MNB),
bernoulli naive bayes (BNB), k-nearest neighborhood (KNN),
random forest (RF), bagging (BAG), decision tree (DT),
gradient boosting decision tree (GBDT), adaptive boost-
ing (Adaboost), xgboost (XGB), linear discriminant analy-
sis (LDA), logistic regression (LGR), linear support vector
machine (Linear-SVM), radial basis function support vector
machine (RBF-SVM) and multi-layer perceptron (MLPC).
The acronym for each feature selection method and classifi-
cation method was listed in Table 1.

All the feature selection and classification meth-
ods were implemented using scikit-learn package in
python [40] (scikit-learn version 0.21, python version 3.6.3).
Cross-combination strategy was utilized to compare the
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performance of feature selection and classification methods.
Specifically, each feature selection method was combined
with all the fifteen classification methods respectively, and
each classification method was combined with all the sixteen
feature selection methods. Finally, we got 240 combinations
of feature selection and classification strategies.

E. EXPERIMENTAL DESIGN

1) DEFINING PREDICTION PERFORMANCE MATRIX

In this radiomics study, the performance of the feature reduc-
tion and classification methods was obtained by using two
different test modes: k-fold cross-validation and percentage
split [41].

a) k-fold cross-validation: we wused ten-fold cross-
validation, which split the data into 10 equal parts then used
9 parts for training and the rest part for testing alternately.

b) data percentage split criteria: the dataset was split
into training data and testing data by certain percentage
ratio. Here, for the totally 210 GBM and 75 LGG subjects,
we assigned 228 patients (147 GBM, 53 LGG) to the training
set, and 57 patients (63 GBM, 22 LGG) to the testing set
according to a ratio of 7:3.

Since the dataset was unbalanced, with the GBM group
about three times as large as that of the LGG group, which
might be biased by the unbalanced distribution of the sample.
We performed synthetic minority over-sampling technique
(SMOTE) [42], [43] for over-sampling the LGG group to
have the same number of instances as the HGG group in the
training procedure. Balance accuracy defined in the equation
(3) and AUC were used to as diagnostic indicators. True pos-
itive (TP, the correctly predicted positive instances number),
false positive (FP, the incorrectly predicted positive instances
number), false negative (FN, the incorrectly predicted nega-
tive instances number) and true negative (TN, the correctly
predicted positive instances number) were used to calculate
the indicators.

Sensitivity = TP/(TP + FN) @)
Specificity = TN/(TN + FP) 2)
Balanced accuracy = (Sensitivity + Specificity)/2 (3)

2) EVALUATION OF SELECTED FEATURE

NUMBER IN PREDICTING GLIOMA

Prediction accuracy was utilized to evaluate the number
of selected features for different feature selection methods.
To reduce the performance bias caused by different clas-
sifiers, we used balanced accuracy to rank the prediction
performance of the classification methods and then the top
four classifiers were selected to obtain the averaged balanced
accuracy of the selected feature number. For each kind of
feature selection method, a range of feature number from
10 to 160 with an interval of 5 was selected. The top four
classifiers were then utilized to evaluate the prediction accu-
racy with repeated ten-fold cross-validation strategy.
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3) EVALUATION OF FEATURE TYPE, MRI MODALITY

AND TUMOR REGION

To explore the diagnostic value of different feature types, the
normalized feature type importance (NFTI) coefficient was
defined to describe the selected feature types for each feature
selection method. Concretely, we counted the selected feature
number corresponding to their radiomics types as described
in the radiomics feature extraction section; the number was
firstly normalized by the extracted feature number in each
type and then normalized by the selected feature number for
all feature types. Finally, we get the NFTI coefficient for
each feature type in feature selection. Here, averaged NFTI
was acquired with selected feature number from 40 to 80 by
interval of 5 to reduce bias. Also, the prediction accuracy
of extracted features in the four MRI modalities and seven
combination of tumor sub-regions were compared to get the
predictive value of the extracted features. It should be noted
that not all the patients have the ET, ED or NCR/NET sub-
regions in clinical, especially for the LGG patients. In this
paper, we regarded the radiomics features in the missing
region as specific features as the missing of a certain sub-
region could also be correlated with the glioma grading.

IIl. RESULTS

A. COMPARISON OF FEATURE SELECTION AND
CLASSIFICATION METHODS

To compare different machine-learning methods for
radiomics models of glioma patients, we extracted quanti-
tative features from whole tumor region and the multipara-
metric sequences. The diagnostic performance of feature
selection and classification methods were evaluated by
repeated ten-fold cross-validation and percentage split strate-
gies. In this present study, the diagnostic performance was
quantified by balanced accuracy and AUC. We examined
240 combinations of feature selection and classification
methods. FIGURE 1 and FIGURE 2 depict the balanced accu-
racy and AUC results in repeated ten-fold cross-validation.
FIGURE 3 and FIGURE 4 depict the results in percentage
split strategy. In the ten-fold cross validation, feature selec-
tion method L!-SVM +- classifier MLPC achieved the highest
prediction accuracy (accuracy:0.944, AUC:0.986), followed
by XGB + classifier MLPC (accuracy:0.932, AUC:0.977),
and L'-SVM + classifier LDA (accuracy:0.930, AUC:0.988).
For accuracy in percentage split testing set, feature selection
method L'-SVM + classifier MLPC achieved the highest
prediction accuracy (accuracy:0.953, AUC:0.981), followed
by LASSO + classifier LDA (accuracy:0.942, AUC:0.974),
and L'-SVM + classifier LDA (accuracy:0.936, AUC:0.985).
Feature selection methods L!-SVM, LASSO, XGB, GBDT
exhibited valuable balanced accuracy and AUC performance
with the majority classifiers. Meanwhile, for classifiers,
XGB, LDA, LGR and MLPC demonstrated higher stabilities
with the majorities of feature selection methods. However,
VAR feature selection method showed low mean accuracy
with the majority classifiers and MNB classifier showed
lower mean accuracy.
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validation.

B. SELECTED FEATURE NUMBER SLIGHTLY INFLUENCED
PREDICTION ACCURACY

To explore the relationship between selected feature number
and diagnostic accuracy, we adjusted feature selection param-
eters for each method to obtain a range of selected features.
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In this study, the range of selected feature numbers was
from 5 to 160 with an interval of 5 as shown in FIGURE 5.
To reduce the predicted accuracy bias caused by classifiers,
the top four precise classifiers LDA, LGR, MLPC and XGB,
were selected in the diagnostic evaluation step. Each subset
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of selected features was then trained by the four classifiers the mean balanced accuracy 0.951 £ 0.014 and 0.946 £
respectively with repeated ten-fold cross-validation. 0.015 respectively. EN, L-LGR, XGB, GBDT, ETE, RF and

L!-SVM and LASSO outperformed the other feature MI achieved mean accuracy larger than 0.9 while the rest
selection methods on the majority of feature numbers with methods, e.g. VAR and RELF, showed lower mean accuracy.
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Also, we found that as increasing of selected feature number,
the predicted accuracy was relatively stable for the majority
of feature selection methods.

C. IDENTIFYING SELECTED FEATURE

TYPES FOR PREDICTION

There were totally sixteen feature selection types used in
this paper as described in the radiomics feature selection
section. In this assessment, PCA feature selection method
was excluded. As we can see from the FIGURE 6, for the
high mean accuracy feature selection methods, e.g. L'-SVM
and GBDT, the selected features contained nearly all kinds
of feature types while for the low performance methods,
e.g. VAR, partial feature types were selected. The first-order
statistics feature, GLCM and GLRLM texture features type
were frequently selected for the majority of feature selection
methods.

D. EXTRACTING PREDICTIVE RADIOMICS FEATURES

The diagnostic value for different MRI modalities and tumor
sub-regions were then evaluated. To reduce the predicted
accuracy bias caused by feature selection methods and classi-
fiers, we selected top four precise feature selection methods
(L'-SVM, LASSO, XGB and GBDT) and top four precise
classifiers (LDA, LGR, MLPC, and XGB) to get the average
performance for the evaluation of the diagnostic balanced
accuracy and AUC as shown in Table 2 in ten-fold cross vali-
dation. The ET + NCR/NET tumor region in T1-Gd modality
achieved the highest diagnostic performance with balanced
accuracy 0.901, AUC 0.953. For each tumor sub-region,
T1-Gd had the highest mean balanced accuracy. For each
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MRI modality, the ET + NCR/NET tumor region had the
highest mean balanced accuracy.

IV. DISCUSSION

Radiomics is an emerging and rapidly growing filed which
converts medical images into quantitative mineable data [44].
In this study, different radiomics feature selection and classi-
fication methods were investigated to evaluate the discrepant
performance for the prediction of glioma grade. Besides,
other controllable variables e.g. the number of selected
features, feature type, MRI modality and tumor ROI were
discussed for optimal radiomics-based glioma grade predic-
tion. We found that L'-SVM + MLPC machine-learning
strategy achieved the highest predictive performance in both
repeated ten-fold cross-validation and percentage split test
modes. Feature selection methods L!-SVM, LASSO, XGB,
GBDT exhibited valuable predictive balanced accuracy and
AUC performance with the majority classifiers. Meanwhile,
for classifiers, XGB, LDA, LGR and MLPC demonstrated
higher stability with the majorities of feature selection meth-
ods. As for the extraction of radiomics features, the ET +
NCR/NET region in T1-Gd modality provided the consider-
able tumor-related phenotypes in glioma grading.

Sixteen feature selection methods and fifteen classification
methods were investigated for radiomics-based glioma grade
prediction. Our results showed that L!-SVM feature selec-
tion method combined with MLPC classification method
yielded the highest diagnostic performance than the other
crossed methods in glioma grade prediction. Subsequently,
for the feature selection methods, L'-SVM, LASSO, XGB
and GBDT showed relatively higher predictive performance
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FIGURE 6. The NFTI coefficients of selected feature in each feature type for the fifteen feature selection methods.
TABLE 2. Diagnostic evaluation for each MRI modality combined with different tumor sub-regions.
Modality Indicator ET NCR/NET ED ET+NCR/NET NCR/NET+ED ET+ED ET+NCR/NET+ED
T1 balanced accuracy 0.770 0.748 0.775 0.852 0.832 0.732 0.845
AUC 0.815 0.799 0.808 0.871 0.880 0.767 0.879
T1-Gd balanced accuracy 0.896 0.887 0.891 0.901 0.889 0.861 0.896
AUC 0.931 0.936 0.934 0.953 0.931 0.923 0.924
T2 balanced accuracy 0.839 0.811 0.828 0.878 0.856 0.798 0.848
AUC 0.878 0.857 0.847 0.921 0.919 0.851 0.879
FLAIR balanced accuracy 0.790 0.767 0.779 0.861 0.844 0.740 0.847
AUC 0.841 0.814 0.828 0.872 0.898 0.774 0.890

with the majority of classifiers. Noted that LASSO has been
proven to be an efficient feature selection strategy previ-
ously [26]. For the classification methods, MLPC, LDA,
LGR, and XGB provided higher performance than other
classifiers when combined with specified selected features in
the most case. In previously evaluation of filter-based feature
selection strategy for radiomics analysis, WLCX achieves
satisfactory outcomes in NSCLC survival prediction [28].
In our study, although WLCX performed better than the
other filter feature selection method, it was inferior to the
embedded feature selection methods. RF classifier was fre-
quently utilized in machine learning [45] and it was proven
to be an efficient and powerful tree-based classification algo-
rithm [30]. Whereas in this study its predictive performance
was not outstanding than the other two boosting method
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XGB and GBDT. It should be noted that few researches have
been compared between RF method and the high predictive
performance classifiers provided in our paper previously for
radiomics-based clinal predictions. Besides, by using the
cross-combination strategy for feature selection and classi-
fication method comparison, we could filtrate the optimal
radiomics-based framework for glioma grading. The cross-
combination strategy might aid establishing framework for
the future radiomics-based analysis.

Only a few studies have investigated and compared
feature number and feature type in the radiomics based
researches [46], [47]. In our study, for the majority of feature
selection and classification methods, the diagnostic perfor-
mance was consistent with corresponding utilized methods
in previous results [28]. The highest performance feature

102017



IEEE Access

P. Sun et al.: Comparison of Feature Selection Methods and Machine Learning Classifiers for Radiomics Analysis in Glioma Grading

number interval was approximately between 40 and 80 for
the glioma grade prediction. Meanwhile, there was a slightly
decrease trend when the feature number exceeding 100. This
might suggest that the predictive result benefited from feature
selection. In other words, feature selection is an effective
strategy to improve radiomics-based predictive studies. In the
feature type analysis, we observed that for the high accuracy
feature selection method, the selected features had relatively
extensive coverage feature type than the low accuracy feature
selection methods. This might be on account that differ-
ent feature types contain different tumor characteristics [48]
and a comprehensive feature extraction strategy is likely to
improve the prediction of clinical outcome. These results
provide a dimension for feature extraction which is crucial for
the feature selection and classification and hence the overall
clinical analysis.

The results for MRI modalities and tumor regions analysis
showed that the ET + NCR/NET region in T1-Gd modal-
ity achieved the highest valuable tumor heterogeneity. This
enhanced the diagnosis of GBM and LGG in the applica-
tions of non-invasive and cost-effective radiomics glioma
grading based on MRI. ET + NET is routinely treated as
solid tumor region, which has been frequently regarded as the
ROI to extract radiomics features in a quantity of previous
studies [4], [49]. Our results add verification that the solid
tumor region is more relevant to the tumor grade than other
tumor subregion or their combinations. Moreover, by com-
paring the results of the diagnostic performance, we found
that the diagnostic value of combinative radiomics features in
all multiparametric MRI modalities outperformed the single
MRI modality.

There were also some limitations for this study. Firstly,
only four kinds of MRI modalities were utilized in this paper.
Quantitative imaging has been beneficial from the innova-
tions and progresses in medical imaging hardware, imaging
agents, standard protocol and imaging analysis strategies.
And new parametric MRI modalities such as apparent dif-
fusion coefficient (ADC) [50], diffusion kurtosis imaging
(DKI) [10] have also shown tremendous glioma grading
potential, while they are not investigated in our study. Sec-
ondly, the predictive value of radiomics for other glioma out-
comes in clinical, which include progression survival, overall
survival, recurrence of surgery, are expected to be discussed
in future researches. Thirdly, deep learning, which is one
of latest representative development of radiomics analysis,
is not discussed in this study [51], [52]. Different from the
traditional image features, the deep imaging features might
possess different diagnostic radiomics features for glioma
grading, and deep learning strategy might contribute to the
precise classification of glioma grade. Finally, the MRI scans
of glioma patients were collected from multi-institution,
which increased the heterogeneity of the image quality. The
standardization in image acquisition and reconstruction or
feature harmonization method, e.g. ComBat [53], should be
considered in future radiomics studies.
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V. CONCLUSIONS

In conclusion, our study compared disparate radiomics strate-
gies in the face of glioma grading. By comparing the feature
selection and classification methods, we found that L'-SVM
feature selection method combined with MLPC classification
method yielded the highest diagnostic performance. Mean-
while, feature selection methods, e.g. L'-SVM, LASSO,
XGB, GBDT and feature classification methods, e.g. LDA,
MLPC, LGR, XGB demonstrated high diagnostic perfor-
mance. As for the extraction of radiomics features, the ET +
NCR/NET region in T1-Gd modality might provide the con-
siderable tumor-related phenotypes in tumor grading, while
other MRI modalities and tumor regions also exerted the
tumor inhomogeneity. Our comparative investigation may be
an important reference in identifying the reliable and effective
machine-learning methods for radiomics-based diagnostic
analysis in glioma grading non-invasively.
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