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ABSTRACT This paper proposes a computation offloading scheme for precedence-constrained tasks in
a base station-assisted device-to-device (D2D) scenario for the information-centric Internet of Things
(IC-IoT). When specified precedence among subtasks cannot be described as simple sequential or parallel
relations in a task, the selection of task execution helper for subtasks offloading becomes complex due to the
constraints of latency and resources. We define this type of precedence and aim to minimize the time and
financial cost of computation task offloading for the user by optimizing subtask-helper pairs. This problem is
modeled as a dynamic generalized multi-resource-constrained assignment problem. The optimal offloading
policy is offered by searchingminimumweightmatchings in a bipartite graph. Computer simulations indicate
the effectiveness of the proposed approach compared with the random helper selection and priority-based
offloading scheme.

INDEX TERMS Computation offloading, precedence-constrained task, D2D, information-centric IoT,
weighted bipartite graph.

I. INTRODUCTION
Ubiquitous connections and heterogeneous devices show
new requirements for massive wireless access and complex
mobility support in various Internet of things (IoT) scenar-
ios [1] e.g. smart home, intelligent transport system, and
smart healthcare. The traditional IP-centric IoT architec-
ture now faces limits of extensible capacity and frequent
updates of route table. A new network paradigm, informa-
tion centric networking (ICN) is proposed to address these
challenges [2]. ICN decouples in terms of the content and
location by content-based naming and name-based content
discovery and delivery. Such feature makes ICN has potential
to support various IoT applications that involve different
perceptions and automations. Therefore, the integration of
information-centric networking and Internet of things form-
ing new paradigm information-centric Internet of things
(IC-IoT) has been discussed. It can directly locate het-
erogeneous IoT services by the specified content, which
enables in-network caching to reduce the network cost on the
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duplicate content transmission, and support a highly efficient
and scalable content retrieval [3].

To meet emerging demand of intense computing capacity,
the cloud function sinks to the edge of networks to form
mobile edge computing (MEC) [4], where both edge nodes
and cloud can help user to execute tasks. As the task execution
is closer to user, edge nodes can provide low-latency and
flexible computing augmentation services (e.g. large-scale
sensing tasks [5]) for users. On the other hand, device-to-
device (D2D) communication is recognized as a promising
solution to reduce the heavy load of cellular network [6].
D2D allows mobile devices to communicate directly to
achieve dependable content distribution [7] and informa-
tion dissemination [8] without cellular relay. Mature pro-
cess technology brings mobile devices much more powerful
computing capabilities for data analysis, which indicates that
smart mobile devices constitute to intelligent groups. In order
to achieve the multiplexing gain of available resources on
these intelligent devices, the idea of combination of D2D
and MEC come out. A novel D2D-MEC technique integrates
D2D communications and MEC to enhance the computa-
tion capacity of system [9] and support task collaborative
execution [10] with assistance of base station (BS).
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ApplyingD2D-MEC into IC-IoT, mobile devices can share
not only the communication and computing resources among
each other but also the popular task contents. In the integrated
structure, mobile devices share resources and contents
successfully relying on interest packet and data packet trans-
mission. User device floods interest packet to request exe-
cution help and send data packet to provide task content
for helper devices. In the other hand, helpers send back
task execution results in a data packet to user. The cooper-
ation of user and helpers couples high-speed task execution
and short-range data transmission to cut task service time.
Besides, information-centric task addressing could reduce
the occupancy of resources for repeated content transmission
and duplicate task execution to improve the resources utility
efficiency. However, appropriate helpers selection in dynamic
networks is a big challenge. Because of time-varying commu-
nication resource volume and computing capability offered
by helpers, the transmission and task execution cost is sophis-
ticated and unpredictable. Thus, the framework requires to
update cost of possible task-helper pairs according to the live
system information.

Generally, a task is composed of several divisible and log-
ical dependent subtasks. To meet user specified needs, there
are certain precedence relations among these subtasks, such
as sequential precedence, parallel precedence and general
precedence [11]. The precedence determines the execution
order and processing time of subtasks. In practice, the prece-
dence of a large delay-constrained task cannot be simply
described as sequential or parallel precedence, such as mobile
games. Considering data transfer delay and game rules, there
are some hard precedence constraints on execution steps, e.g.
the second step has not to start until a specified interval later
since the first step finished or a specified interval later since
the first step started. To the knowledge of our best, few works
concentrate on computation task offloading problemwith this
type of precedence relations.

Combing these aspects, the strategy of task offloading
is supposed to consider system dynamics and specified
precedence relations among subtasks. In summary, the main
contributions of this paper include:
• A new task graph model represents an application
with given precedence relations. For the precedence-
constrained task, the problem formulation aims to min-
imize the cost of task offloading jointly considering
subtasks delay constraints, association states between
user and helpers and available resources constraints.

• We propose an efficient task offloading scheme based on
weighted bipartite graph matching to pair subtasks and
helpers. By constructing appropriate weight of bipartite
graph according to the time-varying system information,
we search minimum cost (weight) subtask-helper pairs
as the optimal offloading policy.

• Extensive simulations are conducted to compare the
performance of proposal with random offloading and
priory-based offloading. Finally, we investigate the
effect of system parameters on performance.

The rest of the paper is organized as follows. Related works
about task offloading are reviewed in Section II. Section III
introduces the system model; Section IV formulates the
problem for precedence-constrained task offloading via D2D
in IC-IoT. A bipartite graph matching-based task offload-
ing algorithm is proposed, and its computing complexity
is analyzed in Section V. Then, Section VI evaluates the
cost performance of the proposed offloading algorithms, and
discusses the effect of model parameters. Finally, conclusions
are provided in Section VII.

II. RELATED WORKS
In this section, a brief overview about some related works in
regards to task offloading in edge networks is given. For user
perspective, the proper use case of task offloading can cut
energy cost and speed up the process of computing.

A crucial part regarding task offloading is weather to
offload or not, which is called binary offloading [11].
It mainly focuses on the whole task scheduling. In order to
minimize execution delay, offloading policy decides local
computing or task offloading according to the length of
application buffer queues, available processing powers, and
characteristic of the channel between local device and
edge server [12]–[14]. Another offloading strategy in binary
offloading is minimizing the energy consumption satisfying
the execution delay of the application. This optimization
problem is formulated as a constrained Markov decision
process in [15], which is solved by an online learning and
a pre-calculated offline approach. Labidi et al. [16] optimize
scheduling and computing offloading initiatives for each user
to guarantee QoE, with low energy consumption and average
queuing constraints. Moreover, some works discuss the task
offloading decision aiming to minimize the weighted sum of
energy consumption and execution delay. Chen et al. [17]
consider a policy for multi-user multi-channel environment
to tradeoff the energy consumption of users and the task
service delay. Zhang et al. [18] propose an online dynamic
tasks assignment to investigate the tradeoff between energy
consumption and execution delay for an MEC system with
energy harvest function.

The drawback of above-mentioned works is that the
offloading decision focus on an integrated task schedule and
an optimal edge node selection. Obviously, it is not acceptable
to the case when a task is relatively large and has to be
processed by multiple devices in the mobile edge. Therefore,
an application is considered to be divided into several smaller
subtasks, and some of them can be offloaded while others
only accept local computing. Partial offloading is carried out
to discuss how much and what should be offloaded [11]. The
main objective of [19] is to decide which parts should be
offloaded to the edge nodes to minimize energy consumption
with service delay constraints. Zhao et al. [20] address the
partial offloading problem for multiple user scenario. With
wider use of multi-antennas, the divided task parts can be
transmitted to different edge nodes simultaneously and be
executed in parallel. Authors in [21] propose to offload a
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FIGURE 1. Illustration of precedence-constrained task offloading via D2D
in IC-IoT with one user and several helper candidates in the same base
station coverage.

task from a user to multiple edge nodes through single and
multiple hops, to minimize the overall task response time.

To ensure the task can be finished on schedule, some works
take subtasks precedence into account for task offloading pol-
icy design. Zhang et al. [22] jointly consider resources sched-
ule and precedence among subtasks in task offloading policy
that supports hybrid strategies of sequential and parallel task
execution. The task with a sequential subtask arrangement
is considered in [23] that jointly optimizes user-program
partitioning and server-computation scheduling to minimize
the average service time. For component dependency graph
structures, authors in [24] suggest to process appropriate
components in parallel in the mobile and cloud to shorten
execution times. Furthermore, Kim et al. [25] take the cost of
mobile user into consideration by constructing the objective
function that includes financial cost (such as network price
and computing price) and energy consumption.

However, these works have considered pure relations
(i.e. sequential or parallel) among subtasks to construct sim-
ple task graph. In this paper, we focus on offloading scheme
for a new task model with specified precedence relations
aiming to minimize the cost of task scheduling (i.e. weighted
sum of service time and financial cost).

III. SYSTEM MODEL
As illustrated in Fig. 1, task can be offloaded via
D2D from user to helpers in an information-centric
IoT network. Mobile user with precedence-constrained
task tends to ask computing help from neighboring
mobile devices with ample computing resources. These
mobile devices are called forward nodes in this work
(e.g. forward nodes 1-3 in Fig.1). Motivated by the fact
that the BS generally has global network information and
high computation power, a BS-assisted D2D structure is
employed. The BS collects relative parameters, makes the
task offloading policy and manage both cellular and D2D
connections of mobile devices. The cellular links carry con-
trol information (e.g. task parameters, offloading policy).
In the other hand, task contents and execution results are
transmitted in data packet between mobile devices via D2D.

So far, it is possible but expensive and inflexible to sup-
port D2D by modifying many entities and protocols [6].
Fortunately, the combination of D2D and novel network
technologies, such as software-defined networking (SDN)
and network function virtualization (NFV), facilitates the
coexistence of D2D and cellular communication [26].
Moreover, we consider a slotted structure and each time
interval has the equal length.

A. PRECEDENCE-CONSTRAINED TASK GRAPH
Task decomposition methods are based on divided-and-
conquer technique, such as decomposition based on deep
priori knowledge, and processing data relations [27]. In gen-
eral, the subtask precedence management can be carried
out by a task queue controller in the upper layer of user
(e.g., application layer) according to specified need. This
work concentrates on a precedence-given task offloading
problem. Especially, unlike sequential, parallel and general
precedence, subtasks with specified precedence relations
construct a precedence-constrained task graph.

We mainly consider two specified precedence relations,
as depicted in Fig.1. 1) Finish-to-Start(FS): current subtask
i cannot start until its predecessor prei has been finished with
an additional given interval denoted as FSprei,i. As shown
in Fig.1, subtask 3© cannot start until tf later after comple-
tion of subtask 2©, recorded as F23 = tf . When tf = 0,
the precedence relation between 2© and 3© becomes conven-
tional sequential. 2) Start-to-Start(SS): the current subtask i is
able to begin after the predecessor started for a fixed interval
expressed SSprei,i. In Fig.1, subtask 2© can start till ts later
after beginning of 1©, i.e. SS12 = ts. ts = 0 presents the
traditional parallel precedence relation.

After decomposition, task graph G(V ,Z ,B,E) is given,
in which V is the set of subtasks, Z expresses the set of corre-
sponding computing resources demands (e.g. the number of
CPU cycles), B contains the amount of transmitted subtasks,
and E is the specified precedence relations among subtasks.

B. TASK OFFLOADING PROCEDURE IN IC-IoT
In view of characteristic of IC-IoT, mobile devices can play
three roles in the procedure of task offloading as depicted
in Fig.1: user, forward node, and helper. The BS is not only a
controller but also a powerful alternative forward node with
high resource rental cost. The network allows one-hop D2D
communication in interest or data packet.

When user suffers from computing resources limit and
cannot execute the remaining task, it broadcasts interest
packet to forward nodes (including BS) for task execution
help request. Interest packet includes parameters of task and
identity of user. The user may receive some responses of
the interest from forward nodes. BS selects suitable forward
nodes from them to offload subtasks.

We call the set of helper candidates as forward nodes
J = {1, 2, · · · j} that contains BS specially. The components
of J are time-varying due to devices mobility and dynamic
private task generation. As forward nodes receive interest
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packet, they would determine if computing resource they car-
ries matches this interest (e.g. processor version, application
compatibility). If they are compatible, and candidates are
willing to share computing resources, they will answer the
interest packet to user and controller BS. When the controller
BS receives answers, it analyzes mobility information of
forward nodes to get the association states between candi-
dates and user. Further, BS also examines the computing
capabilities of these nodes who reply to the interest. The
results of analysis are used to select appropriate forward
nodes as helper(s) (e.g. forward node 3 in Fig.1) to reduce
the cost of trial error for user. According to the matching
between selected forward nodes and subtasks, BS will help
user establish D2D links with helpers for subtasks and results
transmission.

H = {1, 2, · · · h} is the set of helpers. Helpers receive
different subtasks and try their best to help task execution.
Each helper executes subtasks in a best-effort and first-come-
first-server manner. In other words, helpers execute subtasks
with all current available resources and the execution of a
given subtask is assumed to be non-preemptive. After helpers
finishing subtask, the results are directly sent back via D2D
and the occupied resources will be released.

C. TASK PROCESSING
Task processing including two main parts, subtask content
transmission and subtask execution.

• Subtask content transmission
In the BS-assisted D2D system, BS can manage the
peer discovery, mode selection, power control and link
quality feedback to coordinate the coexistence of D2D
and cellular links. At the beginning of data transmis-
sion, BS will assign a D2D transmission power Pj(t)
for helper j ∈ N . Thus the interference in the coverage
between cellular and D2Dwill be controlled by BS [28].
We can get the D2D transmission rate rj from user to

helper j as rj(t) = Wj(t)log2
(
1+ Hj(t)Pj(t)

σ 2+Ij

)
based on

Shannon theory, whereWj(t) is the bandwidth allocated
for D2D link between user and helper j, σ 2 is the noise
power (e.g. background noise), and intra-interference
is denoted as Ij. In time slotted structure, considering
devices slow movement, limited sizes of subtasks, and
heavy sensing overhead, D2D link transmission rate is
assumed to update periodically and remain steady during
subtask transmission period. Besides, the transmission
cost of result and control information are negligible due
to the small data size, so the backward link and cellular
link quality are out of consideration. In addition, a user
can remain several D2D links for data transmission at
the same time with novel antenna technology (e.g. D2D
MIMO [29]).

• Subtask execution
Modernmobile device processors havemany scheduling
schemes to control their processing capacity such as
Performance governor (i.e., locking the device CPU at

maximum frequency) [10]. lj(t) denotes as the current
load (i.e., proportion of occupied processing capacity
because the helper j may run personal tasks locally).
Then, the available processing capacity in a time
interval t for user is denoted by fj(t) =

(
1− lj(t)

)
Fj,

where lj(t) is uniform distributed li ∈ [0,Li], and Fj is
the maximum computing capability of helper j.
With assistance of BS, user can offload subtask i to
a nearby mobile helper j via D2D link. In this case,
the time and resource rental cost for subtask i transmit-
ting from user to helper j throughD2D are given by T tij =
bi(t)/rj(t), bi ∈ B, and E tij = pbi (t)Wj(t), respectively.
pbi (t) is the price of per bandwidth for transmission.
In addition, the time and resources rental expenses for
executing the offloaded subtask i in helper j are given
by T eij = zi/fj(t), zi ∈ Z , and Eeij = pej (t)fj(t). The
pej (t) is the fees for unit computing capabilities from
helper j. Therefore, the total service time for subtask i
offloading from user to helper j is Tij = T tij + T eij , and
the corresponding total financial cost is Eij = E tij + E

e
ij.

IV. PROBLEM FORMULATION
Based on system model, this section describes the problem
formulation for mobile task offloading in IC-IoT, considering
necessary constraints.

A. DELAY CONSTRAINT
T0 is defined as the user sojourn time within the coverage.
The average velocity of user is v0 that has inverse relations
with T0 due to the limited coverage area.
T presents the time constraint of a service. According to

a given task graph G = (V ,Z ,B,E), the time constraint
of each subtask is estimated by computing the earliest start
time and latest finish time recursively, denoted as ESi and
LFi respectively. The estimated service time of each subtask
Di is computed, assuming that the processors run at the
average frequency of the first time interval, data is transmitted
with average rate and all subtasks run at their worst cases
(e.g. maximal size). For each subtask, there are EFi = ESi +
Di, and LFi = LSi + Di where the EFi, and LSi are the
earliest finish time and latest start time respectively. In the
graph, a subtask without any predecessor is called an entry
subtask (e.g. node 1 in Fig.1) and a subtask without any
successor is called an exit subtask (e.g. node 7 in Fig.1). For
the entry subtask ESentry = 0, and the exit subtask LFexit =
min(T ,T0).
By forward tracing along the graph, the earliest start time

of subtask i can be calculated by

ESi = max(EFprei + FSprei,i,ESprei + SSprei,i). (1)

Through back stepping, the latest finish time can be
computed starting from LFexit by

LFi = min(LSsuci − FSi,suci ,LSi − SSi,suci + Di). (2)

Actual service time of subtask i is Dai (j) = Tij. Actual start
time ASi and the actual finish time AFi of subtask i follow the
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rule AFi = AEi + Dai . Then, the time of each subtask should
satisfy:

0 ≤ ESi ≤ ASi ≤ AFi ≤ LFi, (i ∈ V ). (3)

This constraint ensures that each subtask could be finished
before the specified time constraint. After stopping the task
scheduling, the schedule length will be the actual finish time
of the exit task.

B. ASSOCIATION CONSTRAINT
One of the challenges of task offloading is the dynamic
topology due to devices mobility, which influences the com-
ponents of the forward node set J .

There are some human mobility models being used for
wireless networks, such as random walk model (RWM) and
fluid flow model [30]. Because task computing interest is
related to the usersąŕ activity tendency and habits tightly,
we apply individual mobility model (IMM) [31] to evaluate
the user mobility performance. Devices average velocity and
the area of the community influence the probabilities of
devices arrival, pause, and departure. The meeting periods
of the meeting between helper candidates and user can be
calculated with IMM. The period of forward node j is denoted
as < sj, ej >, where sj is the time of j arriving in the range of
user’s D2D link. ej is the moment of node j stepping out the
D2D range, which is not larger than T0. For time interval t ,
themet forward nodeswritten asM(t) = {mt1,m

t
2, · · · ,m

t
M },

where M (t) is the number of components in M(t).
Then, we use a binary variable aj to indicate whether a

forward node j could link to user with D2D based on themeet-
ing time. Then, we have the following association constraint:∑

j∈J
aj(t) = M (t), (4)

aj ∈ {0, 1} . (5)

The constraint of (4) represents that the number of forward
nodes who are able to link to user with D2D is equal to the
number of met forward nodes. aj = 1 indicates forward node
j ∈ J can communicate with user via D2D in time interval t .

C. RESOURCES CONSTRAINT
The BS can maintain multiple D2D links for user and each
subtask can be assigned to a helper. In this sense, in one time
interval, multiple subtasks can be offloaded to several helpers
coupling in pairs. If some helpers have additional spare
resources after they received a subtask, they have chance
to support more subtasks in following time interval. Thus,
the subtask-helpermatching can be only considered in current
time interval.

In the procedure of task scheduling, subtasks can be classi-
fied into three types based on the state of service,Can,Doing,
Done. When the time t goes to ESi, subtask i is ready for
transmission according to the precedence constraints and put
into Can(t) set who contains O(t) elements. While there is an
appropriate helper j for subtask i, subtask will be included
by Doingj(t) and deleted by Can(t). That means subtask i

is offloaded to helper j, denoted as ui,j(t) = 1, or there is
ui,j(t) = 0. Then, for subtask i, the maximal remaining time
for task computing is τf = (ej−t − dmt ), where d

m
t =

bi
max
j
rj

is the minimal data transmission delay for subtask i in time
interval t . Similarly, the maximal remaining time for task
transmission is τb = (ej−t − dmf ), and d

m
f =

zi
max
j
fj
. As the

subtask i is completed, it will be removed from Doingj(t)
to Done. Thus, the sum of sharing resources satisfies the
constraint:∑

i

ui,j(t) =
∑
j

ui,j(t) ≤ min(O(t),M (t)). (6)

ui,j(t)zi ≤ fj(t)τf , (7)

ui,j(t)bi ≤ rj(t)τb, (8)

ui,j ∈ {0, 1}, i ∈ V , j ∈ J (9)

The constraint of (6) represents that the assignment is pairing
subtasks and helpers, and the numbers of pairs cannot exceed
the minimum value of subtasks and helpers. The constraint
(7) means the sum of computing demand of subtask offloaded
to helper j in time interval t is no more than the computing
capabilities provided by helper j. The constraint (8) clarifies
the communication resources limits. It ensures that in time
interval t , the transmission amount of subtask i cannot exceed
the traffic bound between user and helper j. uij ∈ u denotes
the offloading decision. The constraint (9) illustrates the con-
trol variable (offloading decision) is a binary variable.

D. PROBLEM OBJECTIVE AND FORMULATION
In this paper, in terms of the given task delay constraint,
association constraint and resources constraint, we focus on
an efficient task offloading decision to minimize the cost of
task process.

Specifically, the integrated objective variable the cost for
the offloading process is defined as

Cij = Tij + εEij, i ∈ V , j ∈ J . (10)

Formally, the task offloading problem can be formulated
as follows:

min
ui,j(t)

∑
i∈V

∑
j∈J

ajui,jCij

s.t.
∑
j∈J

aj(t) = M (t),

0 ≤ ESi ≤ ASi ≤ AFi ≤ LFi,∑
i

ui,j(t) =
∑
j

ui,j(t) ≤ min(O(t),M (t)),

ui,j(t)zi < fj(t)τf ,

ui,j(t)bi < rj(t)τb,

aj ∈ {0, 1} , ui,j ∈ {0, 1} ,

1 ≤ t ≤ min(T0,T ), ∀i ∈ V , ∀j ∈ J . (11)

Cij is the weighted integration of service time and resource
rental fees of subtask i offloaded to helper j. Thus, the total
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cost of task processing depends on the task offloading
policy u. That is, a selected helper with more ample resources
will finish task quickly but cost much in rental fees for
computing capability and bandwidth. Otherwise, the second
resources-rich helper may lead a longer-term low payment.
Therefore, the expression

∑
i∈V

∑
j∈J

ajui,jCij stands for the cost

of the whole task processing. In addition, the value of tradeoff
parameter ε depends on the specific application scenarios.
For instance, in vehicular network the information about
traffic situation is delay-strict so ε must be small for timely
transmission to ensure security. ε in smart home is better to
be larger for energy conservation.

V. PRECEDENCE-CONSTRAINED TASK OFFLOADING
To realize the offloading of task with precedence constraints
in IC-IoT, this problem is modeled as a dynamic gener-
alized assignment problem (DGAP) with multi-resources
constraints in problem (11) which is a proved NP-hard
problem [32].

Despite many efforts and achievements in solutions of
this problem, most of them are feasible in specific given
scenarios. Some methods reduce the DGAP model to a num-
ber of classical deterministic assignment problems stated at
discrete time points but it is not feasible under multiple
resources constraints. Exact dynamic programming methods
(e.g., branch-and-bound) has higher time complexity, which
are not scalable and acceptable.

A. TASK OFFLOADING ALGORITHM BASED
ON BIPARTITE MATCHING
In general, key challenges of solving the problem are devices
mobility and dynamic private task generation that causes the
available resources changing with time. Dynamic environ-
ment urges us to sense the system information such as asso-
ciation states between user and helpers, and available devices
resources in each time interval. For reducing the complex-
ity of sense, the association states a among mobile devices
are predicted at first according to the mobility information
analysis with IMM.

After association states sensing, how to find optimal
subtask-help pairs for lowest cost in every time interval is the
important component of proposed task offloading algorithm.

1) FEASIBILITY DISCUSSION OF MATCHING THEORY
The centralized matching algorithms (i.e. there arises a
trusted third party who collects information, runs the match-
ing algorithm, and announces the matching results) are
already used in wireless communication system resources
allocation. For example, Gale-Shapley matching is used to
realize energy-efficient task assignment and route planning
in [33]. Gu et al. [34] find a stable matching between admis-
sible D2D pairs and channel reuse partners to maximize the
system throughput with matching algorithm.

In the BS-assisted D2D system, as mobile devices step into
the BS coverage, they will register to the network through BS.

Such registrations contain mobility and identity information
such as velocity or type of offered/required services [35].
Naturally, BS can collect global information of its coverage to
make D2D pairing process for more energy efficient and less
time consuming task offloading. Yet, the centralized control
brings more overheads. For overhead reduction, some works
have proposed alternative approaches on schedule methods
(e.g. building resources pool [35]) and control informa-
tion transmission (e.g. sparse vector coding for short packet
transmission [36]).

Algorithm 1 Bipartite Graph Matching With Hungarian
Algorithm

input: weight matrix C0
O(t)×M (t)

output: matching uij, sum of cost C
1: Construct cost matrix C0

n×n← C0
O(t)×M (t)

2: for i = 1→ n do
3: C1← cij −min

j
cij

4: end for
5: for j = 1→ n do
6: C2← c1ij −min

i
c1ij

7: end for
8: lines← 0
9: while lines < n do
10: Cover all zeros in C2 with least lines.
11: k ← the smallest element that is not covered
12: c3ij← elements that are not covered.
13: C3← c3ij − k
14: c4ij← elements that are covered twice.
15: C4← c4ij + k
16: end while
17: W ← The elements in C0 corresponds to the 0 elements

in C4 with the same index.
18: C ←

∑
W

19: ui,j← index of 0 elements in C4.

To take full advantage of network control, we draw on the
matching solution for this problem. In each time interval,
the subtasks offloading problem is regarded as a weighted
bipartite matching, where the one side represents the set of
all subtasks that need to be offloaded, the other side is the
set of forward/fog nodes who are willing and able to share
resources for task execution.Moreover, the objective function
values (cost) of subtask-helper pairs are used to label the
edges of bipartite graph.

2) SUBTASK-HELPER MATCHING BY
HUNGARIAN ALGORITHM
Hungarian algorithm is accepted to find optimal assignment
in graph matching. The main idea of it is replacing the
previous matching policy with a new augmenting path. The
optimal assignment come out until there is no new augment-
ing path. Specifically, the minimum weight binary graph
matching could follow algorithm 1.
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FIGURE 2. Illustration of IC-IoT with different number of subtasks and helpers in time interval t .

To satisfy the input requirement (i.e. a square matrix),
the cost matrix is reconstructed. If there are O(t) tasks in
Can(t) (Can(t) = O(t)), M (t) helpers candidates could
provide help and M (t) 6= O(t), then a weight matrix C(t)
with the max(M (t),O(t)) × max(M (t),O(t)) dimensions is
constructed by adding extra elements. The cost of filled
subtask(helper)- helpers(subtasks) pairs is∞ to express there
is no matching. Besides, if the forward nodes cannot sup-
port the execution of subtask i under delay constraint (i.e.
min(ej,LFi)) with their resources, the weight is also set to
∞ to meet the delay and resources constraints.

Take an example, there is a bipartite graph BG(t) =
{O(t),M(t),C(t)}. As illustrated in Fig.2, in time t , there are
two subtasks that need to be executed in Can(t) set, denoted
as O(t) = {o1(t), o2(t)}, by three helper candidates M(t) =
{m1(t) = 1,m2(t) = 2,m3(t) = 3}. The cost C(t)02×3 ={
ci,j
}
indicates the cost of subtask oi offloaded to helpermj(t)

is cij. Each helper can serve exactly one subtask in one time
interval. The objective is to minimize the total cost required
to perform all subtasks. To satisfy the input constraint of
Hungarian algorithm, one filled element is added inO(t) and
the weight is set to ∞ shown in Fig.2(a). In this example,
it turns out to be optimal to assign helper 1 to subtask o2,
helper 3 to subtask o1, and helper 2 is not to be assigned
in time t as presented in Fig.2(b). The total cost required is
2+ 2 = 4. All other assignments lead a larger cost. If in time
interval t the number of helpers is less than that of subtasks
which need to be offloaded as Fig.2(c), the extra subtasks
o2 would be computed locally or wait for next chance in
following time intervals when the time does not exceed LSi
(i = o2). In other words, after matching in time t subtask o2
is still in Can and other two subtasks is in Doing.
More details about proposed task offloading algorithm

is clarified in algorithm 2 that is accomplished by BS.
It includes delay constraints estimation and the minimum
weight matching between subtasks and helpers in each time
interval by Hungarian algorithm.

B. COMPUTATIONAL COMPLEXITY ANALYSIS
As to the complexity of the proposed task offloading
algorithm, the number of vertexes isN (N = O(t)+M (t)) and
the maximum number of edges is N 2/2 in the bipartite graph.

Algorithm 2 proposed Task Offloading Algorithm Based on
Weighted Bipartite Matching
input: G{V ,Z ,B,E}, T , v0
output: C , u, bf
1: T0← v0
2: ES ← ESentry = 0, eq.(1)
3: LF ← LFexist = min(T ,T0), eq.(2)
4: if ESi < 0, or LFi > T then
5: ESi← 0
6: LFi← T
7: end if
8: Get a(t),M (t), < sj, ej > from IMM.
9: t = 1
10: while t < min(T ,T0) or ∀i ∈ Done do
11: if t > ESi and t > AFsuci then
12: Put i into Can(t), Can(t)← i
13: end if
14: Compute cost CO(t)×M (t) for each pair based on

eq. (10).
15: C(t), ui,j(t)← Hungarian(CO(t)×M (t)).
16: Update sets: Can, Doing, Done.
17: t = t + 1
18: end while
19: C =

∑
C(t).

20: u = ∪
t
ui,j(t).

21: bf =
∑

i∈Done
bi(t).

The complexity of Hungarian algorithm is classic O(N 3)
implementation [10]. Therefore, the proposed task offloading
algorithm has a O(N 3) complexity in each time interval. The
iterations in Hungarian algorithm depend on the number of
vertexes requiring matchings. In practice, the numbers of
mobile subtasks O(t) and the number of met mobile helpers
M (t) in general are limited in a time interval. In addition,
the bipartite graph normally will be not fully connected, and
the resources constraints reduce the research space.

In the proposed algorithm, the matching between sub-
tasks and helpers occurs in each interval so the total com-
plexity of task offloading is O(T0N 3). The delay constraint
T0 is another impact factor. When user moves quickly,
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FIGURE 3. Cost performance with delay constraint T = 20, tradeoff parameter ε = 1, maximum current load percentage of helper L = 0.7.

the residence time T0 is limited decreasing the scheduling
times. Otherwise, when user move slowly, it in one time
interval gets more helpers which speed up task execution and
reach the terminating condition iteration quickly.

Therefore, we consider that the computation complexity of
the proposed task offloading algorithm should be acceptable
in practice. Besides, the BS can also leverage multiple
processors to adopt some parallel implementations for graph
matching.

VI. PERFORMANCE ANALYSIS
In this section, a simulation experiment is provided concern-
ing the precedence-constrained task offloading via D2D in
IC-IoT. Firstly, the performance of proposed task offloading
scheme is evaluated by comparing with priory-based offload-
ing and random helper selection. Then, the effects of tradeoff
parameter ε and maximum private load percentage of helper
L on the performance of task offloading are discussed.

A. EXPERIMENT SETUP
The BS coverage area is assumed as 100m × 100m, and the
D2D range is 20m. The user average velocity in the coverage
is 5m/s. As for the propagation gain, the path loss of D2D
links is −3 [10]. Besides, channel bandwidth W=20MHz,
noise power σ 2

= 2 × 10−8W , intra-interference In ∝ d−40
(d0 is the average distance between helpers and neighbor-
ing BS.), transmission power for user is Ptx = 200mW .
The data size of subtask is bi ∈ [0.5, 2]Mb, and the com-
puting demands of subtasks are uniformly distributed zi ∈
[0.5, 2]Gigacycles. The upper bound of helpers’ CPU fre-
quency are uniformly distributed Fj ∈ [3, 5]GHz. Moreover,
the task graph is assumed as Fig.1, which includes seven
subtasks connected with precedence relations. The price of
unit bandwidth and computing resource are set to unit cost
for simple simulation.

B. PERFORMANCE COMPARISON
The proposed task offloading approach in this paper is
compared with other two different offloading strategies:
priority-based offloading scheme and random selection

scheme. We formulate 2000 times for average value of cost
performance.

As for priority-based offloading scheme, every subtask
has a priority that is predefined. Then, subtasks are sched-
uled in the descending order of priorities. Moreover, the BS
sorts all feasible helpers for each ready subtask, and chooses
the lightest pair for subtask among the remaining helpers.
The priority is defined as the order of getting into Can. The
earlier subtask is put into Can, the higher priority it will
get. In random selection, BS chooses the subtask-helper pairs
randomly for task execution among all the feasible pairs.
We evaluate offloading performance according to cost for
per unit amount of finished task, called cost performance
(i.e. bf /C (Mb/cost), bf is the amount of finished task.).
A larger value of cost performance means a lower cost for
per-bit task service and a more efficient offloading policy.

The cost performance of different schemes for different
numbers of users in BS coverage are depicted in Fig.3(a).
As can be seen, cost performances of three schemes become
stable after a slight increase with the increase of helpers
number in the BS coverage. In addition, the performance of
proposed scheme represents notable improvement in all con-
ditions while the figure of priority-based offloading policy
takes over that of random selection at the helpers’ number
in 14. The reason is that a larger number of helpers in this
coverage would bring more neighbors for user in each time
interval. Thus, it leads user have more opportunities to select
suitable helpers to help task execution on the average, which
leads all the three scheme increase in general. Moreover,
the performance of random selection is better than that of
priority-based method when the helpers number is less than
14 because priority-based method selected the optimal helper
for the subtask with high priority ignoring the sum cost of
all available subtasks in the time interval. With the increase
of helpers number, user selects the helpers according to task
priority that leads first-arrival first-service, which reduces the
risk of following subtasks violating the delay constraints.

Fig. 3(b) shows the cost performances of three schemes
with different user velocities. With the increase of user veloc-
ity, the figure of them all decrease in terraces but greater
changes has occurred in the figure of random selection.
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FIGURE 4. Effect of tradeoff parameter ε.

FIGURE 5. Effect of helpers’ upper bound of current load percentage L.

Proposed approach shows the best performance while the
random one presents better than the priority-based method
until the user velocity is 10m/s. As user speed increases,
the situation of random and priority-based become oppo-
site. The reason of the result is that the faster user moves,
the shorter residence time in BS coverage is. That results in
less scheduling times for task and less task is completed by
helpers with the BS assistance. Hence, the high-speed user
movement affects the overall performance.

The cost performances of different schemes with different
subtask sizes are discussed in Fig. 3(c). Cost performance of
all three schemes are in decreasewith average subtask amount
increasing. The proposed scheme keeps the best result while
the figure of priority-based method remain larger than that of
random selection. The reason is that size of subtask becomes
larger and delay constraint T0 does not change. More helpers
cannot support task execution with spare resources under
the delay constraint. The number of idle helpers decreases,
and thus there are less feasible subtask-helper pairs. That
will raise the opportunities for helpers who carries ample
resources with high rental charges, thus it brings high
cost.

C. EFFECT OF PARAMETERS
This part discusses the effects of the tradeoff parameter ε and
upper bound of helpers current load L on the performance.
We formulate the scheduling process of one precedence-
constrained task and record cost of subtasks and number of
matchings in each time interval.

1) TRADEOFF PARAMETER ε
The effects of tradeoff parameter on subtasks cost and match-
ing numbers in each time interval are discussed in Fig. 4.
In different tradeoff parameters simulations, the value of ε is
respectively set to 0.5, 1, and 2 with the current load upper
bound L = 0.7. The cost of subtask in one time interval
increases as ε increases as shown in Fig. 4(a). For each time
interval, the numbers of matchings are closed with different ε
in Fig. 4(b). Larger εmeans BS prefers the helpers whose fees
of bandwidth and computing capabilities are lower among the
candidates even though it will bring long execution period.
That is suitable for delay sensitive applications. Because
different selection criterions decide different helper-selection
results among the same candidates, that does not affect the
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number of matchings. Besides, ε changes from 0.5 to 2 dou-
bling partial cost that leads the linear growth of subtasks cost
in one time interval.

2) CURRENT LOAD UPPER BOUND OF HELPER L
Fig. 5 shows the effect of the upper bound of helper current
load L on processing cost and matchings number in each time
interval. To analyze the effects, the load percentage upper
bound L is respectively set to 0.1, 0.5, 0.9 with the tradeoff
parameter ε = 1. The result indicates that the cost of subtasks
and the number of matchings will get heavier tail and lower
peak value with larger L. The larger L means there are more
private applications for helpers who remain less computing
resources for task offloading. Thus, when L is large, it is
difficult to find an appropriate helper whomay provide ample
resources to execute subtask satisfying the delay constraint.
That leads less matchings in each time interval, and naturally
less cost of subtasks. To finish the task, subtasks has to be
scheduled in more time intervals, which leads the heavier tail.

VII. CONCLUSION
In this paper, an efficient D2D computation task offload-
ing scheme is proposed for precedence-constrained task in
IC-IoT. It aims to minimize the weighted sum of task pro-
cessing delay and resources rental fees jointly considering
the constraints of task delay, association states and available
resources. Specifically, a precedence-constrained task graph
is constructed to calculate the subtask delay constraints and
mobility information is modeled to estimate the association
states between user and helper candidates. Then, because the
available resources is time-varying, Hungarian algorithm is
employed to find lightest subtask-helper pairs by updating
the cost matrix in each time interval. Finally, the simulation
results indicate the effectiveness of proposed approach on
cost performance comparing with priority-based offloading
scheme and random selection.
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