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ABSTRACT Task deployment has become a hot topic for load balancing in edge computing. In view of
the problem that most of the hosts are overloaded in the edge computing, the central load is unbalanced.
Much work focuses on the load balancing of the cloud data center or the short-term load balancing of edge
data centers. In order to solve the host selection problem of task deployment in joint cloud data centers with
edge computing while achieving the overall long-term load balancing, this paper utilizes that the deployment
mode of joint cloud model, on this basis, proposes a deployment strategy HEELS based on the analysis of
heuristic task clustering method and glowworm swarm optimization algorithm. Its main idea consists of two
parts. First, the task with large resources in the current task set is filtered out by the clustering analysis, and
the task offloading technology is exploited to upload the result to the cloud computing center for deployment
and calculation. Then, the optimized GSO algorithm is exploited in the edge computing center, and the idea
of SCA is combined into the optimization of step size so that the optimized GSO algorithm has an adaptive
step size, achieving better global search ability in the early stage and better local convergence ability in the
later stage. The experimental results show that compared with the existing research, HEELS realizes better
load balancing effect and makes the joint datacenter more green and efficient.

INDEX TERMS Task deployment, load balancing, edge computing, joint cloud model, clustering analysis.

I. INTRODUCTION
Edge computing [1] is a promising and valuable research
direction after distributed computing, grid computing and
cloud computing. It is a hot topic in current research. Edge
computing is a new architecture mode that extends com-
puting, bandwidth, and other capabilities from the cloud
to the edge of the network [2], where data processing and
computing are carried out to reduce network operation and
service delay. A large number of physical hosts are deployed
in resource pools of edge data centers, and the remaining
resources of physical hosts have been changing at any time.
When the resource amounts of task requests submitted by
users are greater than the remaining resource amounts of the
currently deployed hosts, task deployment events will fail.
When the resource amounts of task requests are close to the
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remaining resource amounts of the currently deployed hosts,
the current tasks will be processed slowly. Not only that, but
it also makes subsequent tasks unable to be deployed, and
makes the load of the edge data center unbalanced, which
cannot provide users with real-time calculation results while
losing the advantage of edge computing.

At present, task deployment for load balancing has become
a hot topic for joint cloud frameworks of combining edge
computing centers with cloud computing centers [3]. In order
to achieve joint load balancing between the edge computing
center and the cloud computing center, it is necessary to carry
out an efficient task deployment strategy. The selection of
target host is the key to efficient task deployment. Deploying
the user-requested tasks to the physical host with the best per-
formance can improve the computational efficiency of edge
computing and cloud computing, reduce the user’s waiting
time and system delay, and return the calculation results to
the user in a short time, so as to achieve the long-term load
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balancing of the joint cloud framework. However, current
research on task deployment for load balancing is not perfect
enough for the proposed joint cloud framework, and it cannot
guarantee that tasks will be deployed to appropriate hosts
every time.

In order to achieve efficient task deployment and load
balancing in the joint cloud framework, this paper proposes a
deployment approach based on analysis of heuristic task clus-
tering and GSO optimization algorithm. First of all, the cur-
rent task set is pre-processed, and the tasks requiring large
amount of resources are filtered out by the clustering method.
The task offloading technology is exploited to upload the
result to the cloud computing center for deployment and cal-
culation, and to a certain extent, it has the potential to achieve
efficient task deployment and long-term load balancing of the
joint cloud center. And then, the optimized GSO algorithm
is exploited in the edge computing center, and the idea of
SCA algorithm [4] is combined into the step size opti-
mization, so that the GSO algorithm has an adaptive step
size, achieves better global search ability in the early
stage and better local convergence ability in the later
stage.

This paper aims to achieve efficient task deployment and
load balancing of joint cloud frameworks, to provide users
with better computing capacity and achieve the best service
performance of systems. The key to achieving the above goals
is to enable the optimal deployment of the requested tasks
so that the load between the edge computing center and the
cloud computing center is more balanced, thereby improving
the computational efficiency of the joint cloud framework.
In this way, the high-quality service performance of systems
can be provided to users. The proposed task deployment
approach can not only efficiently find optimal physical hosts
for deployed tasks, but also achieve joint load balancing
between the edge computing center and the cloud computing
center.

The main contributions of this study are as follows:
1) A novel joint architecture of ‘‘cloud-edge’’ is proposed

to optimize deployment of tasks for load balancing
from a global perspective combining edge computing
and cloud computing.

2) The idea of SCA algorithm is integrated into the
optimization of step size so that the optimized GSO
algorithm has an adaptive step size, achieving precise
deployment of tasks in edge computing centers.

3) A preprocessing method based on clustering analysis
is designed to achieve optimal deployment of tasks and
improve the execution efficiency of algorithm.

The rest of this paper is organized as follows. In the sec-
ond part, the related work of task deployment approaches in
current edge computing and cloud computing environment is
briefly introduced. In the third part, we first briefly explain
the premise of the problem raised in this paper, and then
formalize the proposed problem. In the fourth part, the sys-
tem architecture of task deployment in joint edge comput-
ing and cloud computing environment is designed firstly.

Then the design and implementation process of the algorithm
are introduced in detail. Finally, the source of the algorithm
proposed in this paper is deeply analyzed. The fifth part
gives the experimental results in detail, which prove that the
proposed HEELS is effective and efficient. The sixth part
summarizes the full text.

II. RELATED WORK
The purpose of task deployment is to achieve efficient com-
puting performance of joint cloud frameworks by managing
and deploying current computational tasks, and to make joint
load balancing between edge computing centers and cloud
computing centers. Compared to cloud computing, resources
on edge servers are limited, dynamic, and heterogeneous.
The problem proposed in this paper is to process tasks effi-
ciently and improve the QoS (Quality of Service) of users
by deploying the currently requested task set in the joint
cloud framework. Finally, the joint load balancing between
edge computing centers and cloud computing centers can be
realized. Task deployment can be generally classified into
three categories based on different goals: latency awareness,
energy consumption awareness, and compute-intensive task
offloading.

Latency awareness is an important performance metric
for user experience. Souza VBC et al. in [5] proposed
an architectural model in combination with cloud com-
puting and fog computing, which minimizes service delay
while ensuring that capacity requirements are met. In [6],
Li CL et al. proposed a new task scheduling method under the
edge computing environment, which combined the optimal
placement of data blocks with the optimal task scheduling,
not only reducing the computation delay and response time
of tasks, but also improving the user experience of the edge
computing center. However, this method only considers the
problem of performance, and does not mention the energy
consumption and load balance of edge computing centers.
In [7], Islam T et al. made use of ford-fulkerson algorithm and
priority-based queue to enable fog devices or networks based
on edge data centers to rapidly process massive data or big
data, thus achieving load balancing and efficient task
deployment. In [8], Mach P et al. proposed a distributed
cloud-aware power control algorithm for the application of
delay-sensitive. In [9], Xu X et al. proposed a dynamic
resource allocation method for load balancing in the fog com-
puting environment - DRAM, which can effectively achieve
efficient deployment of tasks and load balancing of fog
computing nodes, and reduce service delay. In [10], Ebadi-
fard F et al. proposed a static scheduling method based on
particle swarm optimization algorithm, which assumes that
the task has non-preemptive and independence, and utilizes
load balancing technology to improve the performance of the
basic particle swarm optimization method. Compared with
the basic particle swarm optimization algorithm, the algo-
rithm reduces the delay of task execution to a certain extent,
improves resource utilization and performance, and main-
tains load balancing of the entire system.
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Energy-aware task scheduling not only effectively
improves users’ QoS experience, but also is a kind of impor-
tant methods to achieve load balancing in computing centers.
In [11], Tang C et al. modeled the task scheduling problem
at the end-user mobile device as an energy consumption
optimization problem, while considering task dependency,
data transmission and other constraint conditions such as task
deadline and cost. In [12], Gao Y et al. proposed a multi-
objective ant colony algorithm to solve the problem of the
virtual machine placement, which aims to minimize total
resource waste and power consumption while obtaining a set
of non-dominated solutions (Pareto set). The experimental
results showed that the algorithm can effectively place the
virtual machine to the corresponding physical host while
minimizing the total resource waste and power consumption.
However, the algorithm only considers the cost of virtual
machine deployment and does not mention the overall load
balancing of the data center. In [13], Mishra S K et al.
proposed a task-based virtual machine placement algorithm
(ETVMC), with the goal of effectively assigning tasks to
virtual machines and then assigning virtual machines to
hosts, thus to minimize the allocated energy consumption,
completion time and deployment task failure rate. In [14],
Zhang K et al. designed a threshold-based scheduling scheme
by considering energy consumption model and wireless
channel model, and combined the multi-access character-
istics of 5G heterogeneous network in [15], to design an
EECO scheme, which obtained the minimum energy con-
sumption under the delay constraint through joint optimiza-
tion of offloading and wireless resource allocation. In [16],
Sardellitti S et al. minimize the energy consumption of
the overall user by jointly optimizing radio resources and
computing resources.

The computing task offloading technology [17]–[19]
solves the shortcomings of the device in terms of resource
storage and computing performance, which not only reduces
the pressure on the core network, but also reduces the delay
caused by the transmission. In order to maximize the num-
ber of applications processed and meet the delay constraint,
Zhao T et al. in [20] proposed a priority-based offload strat-
egy, which defines several buffer thresholds for each priority
level. If the buffer is full, the application will be trans-
ferred to the CC process, which utilizes recursive algorithms
to find the optimal size of the buffer threshold. In [21],
Deng S et al. considered the dependency relations among
component services and aims to optimize execution time and
energy consumption of executing mobile services, propose a
novel offloading system to design robust offloading decisions
formobile services. In [22], Xu J et al. exploited deep learning
to allocate resources and proposed a dynamic offloading
scheme. In [23], Ketyko I et al. considered the load balancing
among multiple nodes during computational offloading, and
adopted knapsack model to carry out simulation verifica-
tion for the proposed resource allocation scheme. In [24],
Wang Y et al. developed partial computational offloading
scheme to minimize the delay of application execution.

Based on the above research, this paper utilizes a joint
deployment model. In the joint edge computing and cloud
computing environment, the task is efficiently deployed by
deploying the task set to the edge computing center and the
cloud computing center under certain conditions. The task
can be processed efficiently and the delay is minimal, thereby
improving the user’s QoS, and achieving joint load balancing
between the edge computing center and the cloud computing
center eventually.

III. THE PROPOSED PROBLEM AND ITS FORMALIZATION
A. PROBLEM STATEMENT
In edge computing centers, the system will deploy tasks to
the hosts of edge computing center when users submit task
requests. In general, the host will be randomly selected by the
edge computing center for deployment. When the resource
amount requested by the task is greater than the remaining
resource amount of the physical host, the edge computing
center cannot deploy the task. When the resource amount
requested by the task is close to the remaining resource
amount in the edge computing host, it will lead to the overload
of the physical host, resulting in the decline of its service
capacity and computing capacity, thereby causing the load
of the edge computing center to be unbalanced. Obviously,
in the face of large-scale task requests and limited computing
capacity of the edge computing center, different deployment
modes and deployment strategies will make the entire system
have different load distribution. As a result, it has different
execution efficiency and external computing service capabil-
ity. Undoubtedly, optimal task deployment modes and strate-
gies should enable load balancing between edge computing
centers and cloud computing centers, as shown in Figure 1.
Therefore, it is necessary to design and implement a high-
efficiency, load-balanced task deployment model and strat-
egy in the edge computing centers and the cloud computing
centers.

FIGURE 1. A joint deployment architecture for edge computing and cloud
computing.

B. FORMALIZATION OF THE PROBLEM
There are n task requests accumulated in the time
window 1t , which need to be deployed to an edge com-
puting center composed of m physical hosts and a cloud
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computing center composed of k physical hosts, respectively.
There are i tasks to be deployed to the cloud computing
center and n-i tasks to be deployed to the edge computing
center. Therefore, this paper utilizes a two-dimensional solu-
tion vector A = (a1, a2) to represent a task deployment
solution, where a1 represents the solution deployed to the
edge computing center composed of m physical hosts, and
a2 represents the solution deployed to the cloud computing
center composed of k physical hosts. Assume that in the
same network environment, the edge computing center has m
hosts available, and the cloud computing center has k hosts,
which are heterogeneous, dynamic, and utilize space sharing
allocation strategy. The problem can be described as follows.
Finding the optimal physical hosts in the edge computing
center and the cloud computing center for processing the
current tasks. In this way, the edge computing center and the
cloud computing center can rapidly deploy and calculate user
task request set. By optimizing the task deployment in each
1t time, the problem of joint efficient task deployment and
load balancing between the edge computing center and the
cloud computing center is solved in the long run. A binary
P = {TKi,C} is defined to describe the scenario of a cloud
computing center. C represents a set of available hosts in
a cloud computing center, C(k) = {c1, c2, . . . , ck}, and
TKi represents a set of tasks requested by users within a
1t time, TK (i,1t) = {tk1, tk2, . . . , tki}. At the same time,
a four-tuple Y = {E,TKn−i,Lc,Lmem} is defined to describe
the scenario of an edge computing center, E is represented
as a set of available hosts, E(m) = {e1, e2, . . . , em}, and
the TKn−i is represented as a set of user task requests
within 1t time, TK(n-i,1t) = {tk1, tk2, . . . , tkn−i}. Lc is
the set of current CPU remaining of n hosts in set E at
time t , Lc(n − i) = {L1

c,L
2
c, . . . ,L

n−i
c }. Lmem is the memory

remaining set of n hosts in set E at time t , Lmem(n − i) =
{L1mem,L

2
mem, . . . ,L

n−i
mem}. The goal of this paper is to deploy

tasks accumulated in 1t time to physical hosts in edge
computing centers and cloud computing centers, so that tasks
can be efficiently deployed and rapidly responded to users,
thus achieving a long-term load balancing between edge
computing centers and cloud computing centers to a certain
extent. Therefore, the optimization goal can be formalized
into the following formula (1):

V =

√√√√ 1
m
∗

m∑
i=1

(uie − ue)
2
+

√√√√√1
k
∗

k∑
j=1

(ujc − uc)
2

(1)

In order to achieve efficient deployment and load balancing
of tasks in the joint cloud framework, the task set is pre-
processed before deployment. Screen out the tasks with larger
resource requirements by the clustering method to ensure
that the remining tasks can be efficiently processed by the
edge computing center. And then these tasks gotten by the
clusteringmethod are deployed to the cloud computing center
and thus to use powerful computing abilities of the cloud
computing center to process them. In this paper, the idea

of clustering analysis is exploited to compare the similarity
between tasks with a given threshold. The tasks with the
above attributes are composed of a new set and uploaded to
the cloud computing center for deployment. The similarity
function is defined as follows:

d(tki, tkj) =

√√√√ d∑
k=1

(
aki − a

k
j

)2
(2)

SD
(
tki, tkj

)
=

1

d
(
tki, tkj

) (3)

where aki and akj are the k-th attribute of task i and task j
respectively, and SD(tki, tkj) is the similarity between task i
and task j.
After preprocessing, both the resource amount and time

delay of the tasks in the set can be satisfied and processed by
the host in the edge computing center. In this case, the remain-
ing task sets need to be deployed to the edge host. In this
paper, the idea of GSO algorithm is exploited to deploy tasks
in a set efficiently and reasonably. However, GSO algorithm
utilizes fixed step size and has its own defects in the iteration
process. There are some problems such as low accuracy, local
optimum and slow convergence speed, etc. In order to solve
these problems, this paper proposes a strategy of adaptive step
size based on sine and cosine. To a certain extent, this strategy
can make HEELS approach avoid falling into local optimum
too early, and the step size is adjusted adaptively with the
increase of iteration times, so that the algorithm can obtain a
more accurate solution at the later stage. The sine and cosine
functions are defined as follows:

si(t + 1) =


si(t)+ r1 × sin(r2)×

∣∣r3Xgbest(t) − Xi,best(t)∣∣
r4 < 0.5
si(t)+ r1 × cos(r2)×

∣∣r3Xgbest(t) − Xi,best(t)∣∣
r4 ≥ 0.5

(4)

r1 = a
(
1−

t
T

)
(5)

where t is the current number of iterations, si(t) is the step size
of the i-th individual of the t-th iteration, Xgbest(t) is the global
optimal position so far, and Xi,best(t) is the distance of the
i-th individual to the current optimal position. There are
four main parameters in formula (4), where r1 is the ampli-
tude adjustment coefficient of sine cosine, as defined by
equation (5), a is the normal number, T is the maximum num-
ber of iterations, and r1 determines the movement direction
of the next iteration of step size. r2 ∈ [0,2π ], r3 ∈ [0,2], and
r4 ∈ [0,1] are random numbers. r2 determines the moving
distance by the next iteration of the step size. r3 is the global
optimal individual weight coefficient. r4 is the discrimination
coefficient. When r4 is less than 0.5, sine function is used for
iterative optimization, on the contrary, the cosine function is
used for optimization and update.

In order to find hosts with the best performance, this
paper reflects the fitness through the residual load rate of
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the resources in each host node. The current remaining
resource Li (CPU and memory usage status) of each node is
defined as follows:

Li = αLc + βLmem (6)

α + β = 1 (7)

where Lc represents the amount of remaining CPU resource
of the host, Lmem represents the amount of remaining memory
of the host, α is the weight of CPU and β is the weight of
memory. α and β are determined and obtained by BP neural
network learning. The state of residual resource of a single
node can be calculated by formula (6) and (7), and the total
residual resource of available nodes in the edge computing
center can be denoted as follows:

Qi =
n∑
i=1

Li (8)

where Qi is the total residual load of all the computing nodes
in the edge computing center, and the residual load rate Gi is
the ratio of the residual load of the computation node i to the
total residual load, that is:

Gi =
Li
Qi

(9)

In order to deploy the task set obtained by clustering to
the cloud computing center, it is necessary to ensure that the
available resources of physical hosts of the cloud computing
center can accommodate the current task set. The remaining
amountW of the physical host resources of the cloud comput-
ing center can be calculated by formula (8). The total amount
of resources of the current task set is defined as follows:

LTreq =
e∑
i=1

(
αRic + βR

i
mem

)
(10)

where LTreq is the amount of total resource of tasks in the set,
Ric is the CPU resource required by task i, and Rimem is the
memory resource required by task i.

As mentioned above, the proposed approach is exploited to
find the best host for the tasks in the set to process and thereby
achieve the joint load balancing between the edge computing
center and the cloud computing center. The detailed algorithm
process will be given below.

IV. A HEURISTIC APPROACH FOR EFFICIENT TASK
DEPLOYMENT
A. SYSTEM ARCHITECTURE DESIGN
Figure 2 depicts the system architecture of the proposed joint
cloud framework consisting of the edge computing center
and the cloud computing center. It shows the interaction
between the proposed HEELS approach and other entities,
and shows the important role of HEELS in the whole archi-
tecture. Firstly, the system preprocesses tasks through the
preprocessor to get a new task set and deploy it to the
cloud computing center. After the preprocessing is com-
pleted, information such as the current task set and the hosts

FIGURE 2. The view of HEELS’s architecture.

in the edge computing center are obtained from the monitor.
The information obtained is transmitted through the moni-
tor, and the deployment strategy is generated by using the
HEELS approach. Finally, the deployment strategy is applied
to the deployment controller, and the task set received in the
1t time is deployed to the corresponding edge hosts through
the HEELS deployment strategy.

B. MAIN IDEA OF HEELS
The proposed HEELS approach in this paper is a heuristic
task deployment strategy based on clustering analysis and
optimization of GSO algorithm for long-term load balancing
of joint cloud framework combining the edge computing
center with the cloud computing center, which is exploited to
deploy collected tasks to hosts of the edge computing center
and the cloud computing center, as shown in Figure 3. First
of all, the idea of clustering is exploited to actualize task
preprocessing. The n tasks in the task set are regarded as
n objects to be clustered, and the task set requiring a large
amount of resources are screened out by means of clustering
and processed with the powerful computing power of cloud
computing centers. Secondly, by introducing the mathemati-
cal model of the SCA algorithm into the optimization of the
step size of GSO algorithm, the improved GSO algorithm
has an adaptive step size to achieve better global search
ability at the early stage and better local convergence ability
at the later stage. Finally, when the maximum number of
iterations is reached, the global optimal solution is obtained.
Implementation details of HEELS are given below.

C. IMPLEMENTATION OF HEELS
This section will detail the implementation of the proposed
HEELS algorithm.
Step1: monitor users’ task requests and initialize related

parameters of HEELS. In the initialization stage, the system
collects the task set in1t time, and the task set is taken as the
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FIGURE 3. The process of HEELS task deployment.

object of the current processing problem. The core algorithm
of HEELS will be executed once in each1t time, and the set
of tasks collected by the system during execution will be the
next processing problem. As mentioned earlier, the number
of tasks in the set, the number of hosts in the edge computing
center and the cloud computing center in one 1t time are
represented as n, m, k , respectively.
Step2: preprocessing of the initial set of tasks. After the

relevant parameters are initialized, the current set of tasks
needs to be preprocessed to ensure optimal deployment of
the current tasks. Define an empty set Q = {}. It is known
that there are n tasks TK = {tk1, tk2, . . . , tkn} in the set. The
requested resource amount Lt of a task is regarded as the
attribute of the task, and the resource amount of the task in
the set is arranged in descending order so that tkj represents
the task with the largest resource amount. Therefore, tkj is
selected as the cluster center in this paper. Then the similarity
between any other task tki in the set and the cluster center tkj
can be calculated by formula (2) (3) as follows:

SD
(
tki, tkj

)
=

1√(
Lti − Ltj

)2 (11)

where Lti is the resource amount of task i and Ltj is the
resource amount of task j, Lti 6= Ltj, SD(tki, tkj) is the
similarity between tasks i and j. The similarity between tkj
and other tasks in the set is calculated by using tkj as the
clustering center, and the threshold U is given according
to the similarity value. If the similarity value SD is larger
than the threshold U , this task is added to the empty set Q,
which is the final clustering result, ie Q = {tk ′1, tk

′

2, . . . , tk
′
e},

where e ≤ n. The total remaining resource amount W of the
cloud computing center and the total resource requirement
amount LTreq of the set Q can be calculated by the formula
(8) and (10). IfW is less than LTreq, then the cloud computing

center cannot accommodate the Q set, resulting in failures
of task deployment events. At this point, the threshold U
needs to be adjusted to form a new Q set, and the above
process is repeated until W is greater than LTreq. When
W is greater than LTreq, upload the Q set to the cloud com-
puting center for deployment. The remaining tasks in the
TK form a new task set H . If the task set Q is larger than
the set H , the number of tasks in the set Q is large and
the amount of resources is large. Due to limited computing
capacity of edge computing center, deployment failure and
load unbalancing of edge nodes may be caused. In this case,
the tasks in the set Q are deployed to the cloud computing
center for processing through the task offloading. If the task
setQ is less than the setH , the setQ has the characteristics of
small number and large amount of resources. If it is deployed
in the edge center, the computational burden of edge nodes
will be increased. In this case, the task offloading technology
is used to deploy tasks in the set Q to the cloud center,
which improves the computing capacity of the edge center
and reduces the delay of the computation tasks. At the end
of the preprocessing process, task set H is used as the initial
population in the HEELS algorithm.
Step 3: The core iteration process of HEELS algorithm.
(1) Initialization. Initialize the maximum iteration number

Itermax, the initial population of glowworm, the initial search
space of each glowworm and the luciferin value carried by
itself, and other relevant parameters.

(2) Calculate the luciferin value of the individual.
Update the luciferin value of each glowworm individual fi
(i = 1, 2 . . .N ) according to formula (12):

fi(t) = (1− ρ)fi(t − 1)+ γ J (xi(t)) (12)

where fi(t) represents the luciferin value of glowworm i at
the t-th iteration, i.e. the brightness of glowworm i; ρ rep-
resents the brightness decay constant (0< ρ <1), and (1-ρ)
represents the brightness decay rate, which is used to control
the proportion of past experience so that glowworm forgets
the past non-optimal solution in iteration; γ represents the
proportional constant, which is used to control the empirical
proportion of the search solution in the iteration. J (xi(t)) is
the fitness value. As mentioned above, the residual load rate
of the host is used as the fitness function in this paper, which
can be obtained according to formula (6), (7), (8), (9).

J (xi(t)) =
αL ic + βL

i
mem

n∑
i=1
αL ic + βL imem

(13)

The luciferin value of the glowworm individual can be
calculated according to formula (12), (13).

fi(t) = (1− ρ)fi(t − 1)+ γ
αL ic + βL

i
mem

n∑
i=1
αL ic + βL imem

(14)

(3) Look for neighborhood Ni(t). Each glowworm chooses
individuals whose luciferin value is higher than itself in its
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dynamic decision domain radius r id (t + 1) to form its domain
set Ni(t), where 0 < r id (t+1) < rs. rs is the perceptual radius
of the individual glowworm. The neighborhood set Ni(t) is:

Ni(t) = {j : ||xj(t)− xi(t)|| < r id (t); fi(t) < fj(t)} (15)

(4) Determine the movement direction. The movement
direction of glowworm i is affected by the glowworm with
the larger luciferin value in its neighborhood. The larger the
luciferin value is, the more attractive it will be. Correspond-
ingly, the probability which glowworm will choose to move
toward it with is larger. Suppose glowworm i moves towards
glowworm j with the highest probability, then J = max(pi)
where pi = (pi1, pi2, . . . , piNi(t)), the selection probability of
glowworm i moving to j is:

pij(t) =
fj(t)− fi(t)∑

k∈Ni(t) fk (t)− fi(t)
(16)

Among them, the denominator is the brightness of all
glowworms in the neighbor set of glowworm i, and the
numerator is the brightness of neighbor j. The higher Pij(t)
value of a neighbor in the neighbor of glowworm i, the greater
the probability of selecting it as the target of glowworm i.
In this paper, roulette is used to select the direction of indi-
vidual movement, and then one will move and update the
position.

(5) Update the glowworm position. The moving step is
adaptively adjusted according to formula (4), (5), and then the
step is brought into the formula (17) to update the position of
the glowworm. Therefore, the position update of the adaptive
step size of glowworm individuals is shown in formula (18).

Xi (t + 1) = Xi (t)+ s
(

Xj (t)− Xi (t)
‖ Xj (t)− Xi (t) ‖

)
(17)

Xi(t + 1) =



Xi (t)+

(
si (t)+ r1 × sin (r2)×

|r3Xgbest(t) − Xi,best(t)|

)
×

(
Xj(t)− Xi(t)
||Xj(t)− Xi(t)||

)
r4 < 0.5

Xi (t)+

(
si (t)+ r1 × cos (r2)×

|r3Xgbest(t) − Xi,best(t)|

)
×

(
Xj(t)− Xi(t)
||Xj(t)− Xi(t)||

)
r4 ≥ 0.5

(18)

(6) Update the value of dynamic decision domain radius
of the glowworm. Update the radius of the decision domain
according to formula (19).

r id (t + 1) = min
{
rs,max

{
0, r id (t)+ µ (nt − |Ni(t)|)

}}
(19)

where µ is the update rate of the decision domain and nt is
the threshold of the number of neighbor individuals.

(7) Determine whether the number of iterations exceeds
the maximum value Itermax. If not, go to step (2); otherwise,
go to step (8).

(8) Output the global optimal solution.
Step 4: Repeat the above process.

The pseudo-code of HEELS’s algorithm is as follows.
From the perspective of the overall framework, this paper
proposes a novel architecture of joint deployment based on
the existing deployment mode, which effectively integrates
cloud computing and edge computing, that is, ‘‘cloud-edge’’
as a whole. On this basis, an effective deployment strategy
has been utilized to achieve efficient computing power and
joint load balancing effect of the proposed joint architecture
to some certain extent. It has abilities in effectively miti-
gating the computational performance degradation and load
imbalance of cloud computing centers and edge computing
centers caused by the irregular deployment of tasks. The
shortcomings of existing deployment models are overcome
from a long-term perspective. As a result, the proposed joint
deployment framework is effective and efficient for a long
time, and the cooperative processing and the optimization of
‘‘Cloud-Edge’’ are realized.

Algorithm 1 Algorithm HEELS
Input: Current set of tasks, Current set of edge servers,
Current set of cloud servers, Maximum Iterations Itermax,
current Lc, current Lmem;
Output: final deployment solution vector V ;
1: Q = {}, TK = {tk1, tk2, . . . , tkn },
E = {e1, e2, . . . , em}, C = {c1, c2, . . . , ck},V=NULL;

2: tkj is the task with the Maximum resources in the set
and selected as the task clustering center;

3: Q = Q∪ tkj;
4: for each tki ∈TK do
5: SD (tki, tkj) is obtained according to the formula (11);
6: if SD (tki, tkj) > U then
7: Q = Q∪ tki;
8: end if
9: end for
10: Deploy Q to the set C in cloud computing center
11: The remaining tasks in TK form a new set H
12: set y = 1
13: while current iteration number y <Itermax do
14: for each ei ∈ E do

15: Gi =
αL ic + βL

i
mem

n∑
i=1
αL ic + βL imem

// Fitness function

16: Calculate the luciferin value fi(t) of individual i
17: for each n ∈ Ni(t) do
18: The individual’s moving probability Pij is obtained

according to the formula (16);
19: end for
20: According to formula (4) and (5), the moving step

size s of each individual is calculated
21: Update Xi // The latest location of glowworm i
22: Update rd // The dynamic decision domain radius
23: end for
24: y = y+1
25: end while
26: return V ;
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From the perspective of adaptability of HEELS algorithm,
this paper utilizes the SCA algorithm with strong mathemat-
ical foundation to determine the optimal step size of each
iteration. The reason why the SCA algorithm is used in this
paper to optimize the step size of GSO process is mainly
that the traditional swarm intelligence glowworm algorithm
uses fixed step size in solving global optimization problems,
which has the problems of low accuracy, local optimum and
slow convergence speed. By introducing the idea of SCA
algorithm, the original fixed step size is optimized to an adap-
tive variable step size, which can make the initial stage of the
algorithm have a larger step size and expand the search space
of HEELS. As the number of iterations increases, the step size
rapidly converges to the optimal state by updating parameters
such as sines, cosines functions and amplitudes. It can be seen
through analyzing the proposed algorithm that the computa-
tional complexity of the algorithm is O(n2).

From a micro point of view, this paper utilizes the idea
of clustering in the initial stage to realize a preprocessing,
so that the algorithm makes full use of the advantages of
cloud computing and edge computing. A task is regarded as
a clustering object, and the task set requiring large amount
of resources is screened out through clustering. The powerful
computing power of cloud computing center is utilized to deal
with the current tasks, which avoids the deployment failure
caused by the inability of edge computing centers and the load
imbalance of edge computing centers to some extent. The task
set requiring small amount of resources is deployed in edge
computing centers to make full use of the real-time advan-
tages of edge computing. In edge computing centers com-
bining clustering with bionic swarm intelligent glowworm
algorithm, the remaining task set after clustering exactly right
simulates the initial population of glowworm, and then the
glowworm algorithm is used to match the tasks in the set
to the hosts synchronously in the current edge computing
center, and the seamless connection between the clustering
method and the glowworm algorithm is achieved, and thus
the scientific problem raised by this paper is addressed.

V. PERFORMANCE EVALUATION AND ANALYSIS
In this part, we mainly evaluate the performance of the
proposed HEELS algorithm to verify and test its effec-
tiveness and efficiency. Firstly, the setting of algorithm
simulation environment is introduced. Then, a metric to
verify the effectiveness of HEELS is given. Finally, the
OTS deployment strategy [6], First Fit Decreasing (FFD)
algorithm and the proposed HEELS deployment strategy
are simulated and compared through the maximum comple-
tion time (MakeSpan), the success rate of deployment tasks,
throughput and load balancing degree.

The experimental results show that compared with FFD
and OTS, HEELS enables the edge computing center to
improve the success rate of deployment tasks, shorten the
maximum completion time (MakeSpan) of tasks, greatly
improve the system throughput and provides better ser-
vice performance for users. On this basis, the proposed

HEELS algorithm makes the edge computing center have a
better load balancing effect.

This paper uses Python language programming to realize
the simulation experiment on HEELS. In Python environ-
ment, the edge computing center is simulated and differ-
ent number of task requests are initiated to the computing
resource pool, and the amounts of resources required for these
requests are different, that is, the CPU and memory of the
physical host are different. The proposed HEELS approach
periodically calls and obtains the resource information and
status of physical hosts in the edge resource pool.

A. EXPERIMENTAL METRICS
The experimental metrics of the HEELS deployment strat-
egy proposed in this paper mainly include the success
rate of deployment tasks, the maximum completion time
(MakeSpan) of tasks, throughput and load balancing degree.

The maximum completion time (MakeSpan) is the total
execution time of all task requests processed by the system
in 1t time, as shown below:

MakeSpan = max
i∈N
{CTi} (20)

CTi is the completion time of the i-th task.
Deployment task success rate. If task i′s completion time

is less than its own deadline, it will be regarded as a suc-
cessful deployment within the deadline constraint; otherwise,
the deployment fails. Then the calculation formula of the task
deployment success rate ϕ is as follows:

ϕ =
nsuccess
N
× 100% (21)

nsuccess is the number of successful deployment and N is
the total number of tasks.

In this paper, throughput is used to evaluate the service
performance of the system. By measuring the total number
of tasks that the whole system can complete in a given time,
the more tasks processed per unit time, the better the service
performance of the system is proved. Throughput calculation
formula is as follows:

F = Vu × R
/
T (22)

where Vu is the number of users, R is the number of task
requests submitted by each user, and T is time.

Load balancing degree. Load balancing degree refers to
the balance degree of the load distributed on each process-
ing nodes of the parallel system. Load balancing degree is
an important factor affecting the parallel efficiency. When
the whole system has more tasks, the load on each node
may produce unbalanced phenomenon, which will reduce
the utilization rate of the whole system. The CPU utilization
variance of each physical host is used to represent the load
balancing degree, ui is used to represent the current CPU
utilization of physical host resource i, and m is the number of
physical hosts. The average CPU utilization rate at any time
is calculated by formula (23). Then load balancing degree is
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obtained as formula (24):

u =

m∑
i=1

ui

m
(23)

B =

√√√√ 1
m
∗

m∑
i=1

(ui − u)2 (24)

The above value is used to measure the load balancing
degree of the edge computing center, and the goal is to make
the value of B as small as possible.

Through the above four experimental metrics to verify
the efficiency of the algorithm, the edge center can achieve
efficient external service performance, and reach long-term
load balancing effect of the edge center while improving
computational efficiency.

B. COMPARISON IN MAKESPAN
In this set of experimental scenarios, the maximum com-
pletion time (MakeSpan) of the proposed HEELS approach
is compared with FFD and OTS. The MakeSpan of the
current deployment task can be obtained by formula (20).
The MakeSpan of the three deployment strategies can be
compared by increasing the number of tasks. As shown
in Figure 4, as the number of requested tasks increases,
the MakeSpan values of the three deployment strategies
will increase. When the number of tasks is 20, the three
deployment strategies have the same MakeSpan. The main
reason is that the three deployment strategies have a little
number of tasks in the initial stage, and time complexity of
processing tasks is approximately the same, so they have
the same MakeSpan. The MakeSpan increment of HEELS
is less than those of FFD and OTS when the number of
tasks is in the [40], [80] range. When the number of tasks
is 100, the proposed HEELS has the smallest MakeSpan
compared to FFD and OTS. The main reason is that the
FFD deployment strategy is to arrange the requested tasks
in descending order of the task size and deploy them to the
hosts in the edge computing center in order, which has better
processing performance at the beginning.With the increase of
the number of requested tasks, its processing ability gradually
weakens, so the task completion time will inevitably increase.
The OTS deployment strategy allocates the current task set
by calculating the similarity value between the task and the
host. With the increase of the number of requested tasks, the
computational complexity between the physical host and the
task is bound to increase, the processing capability of the task
is gradually weakened, and the required time will increase,
but it is always less than FFD. Since HEELS optimizes
the step size of the individual by using the SCA algorithm
in the iteration process, it can deploy the requested tasks
to the optimal hosts each time. With the increase of task
requests, the processing time of HEELS will also increase,
but less than those of FFD and OTS under the same task
requests.

FIGURE 4. Comparison of FFD, OTS, and HEELS on MakeSpan.

TABLE 1. Success rate of task deployment.

C. COMPARISON IN DEPLOYMENT SUCCESS RATE
In this set of experimental scenarios, HEELS is compared
with FFD and OTS for the success rate of deployment tasks.
The number of different tasks under three orders of magni-
tude is selected, and the success rate can be calculated by
formula (21). Table 1 shows the different success rates gener-
ated by the three strategies.When the number of tasks is in the
[0-100], they have the same success rate. With the increase of
the number and magnitudes of task, the deployment success
rates of the three strategies gradually decrease. When the
number of tasks is in the [100-1000], the number of tasks
is 600, the success rate of FFD begins to decline, while
HEELS and OTS remain unchanged. When the number of
tasks is greater than 800, the success rate of HEELS and
OTS is slowly decreasing, and HEELS always higher than
those of FFD and OTS. When the number of tasks is in the
[1000-10000], the success rate of deployment tasks of the
three strategies is gradually reduced, and the HEELS has
a higher success rate, OTS is second, and the FFD is the
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worst. This is because HEELS preprocesses the task set in
the early stage. Based on the attributes of tasks, one can
filter out the tasks with large amount and upload them to
the cloud computing center for deployment. while the rest of
the tasks according to the optimization of the improved GSO
algorithmwith global search optimization are deployed to end
hosts. After the above-mentioned processing, the efficient
deployment of tasks is guaranteed to a certain extent, and
the success rate of deployment tasks is improved. FFD sorts
tasks according to the size of current task resources, and then
deploys current tasks separately. Batch task requests and the
time complexity of FFD are greatly increased, which will
reduce the success rate of task deployment to a certain extent.
TheOTS only deploys tasks to the host based on the similarity
between the task and the host. The information about the
remaining resources of the physical hosts in the resource
pool cannot be obtained in real time, and the current tasks
cannot be deployed timely. The experimental results show
that HEELS can effectively improve the success rate of task
deployment.

D. COMPARISON IN THROUGHPUT
In this set of experimental scenarios, HEELS is compared
with FFD and OTS for throughput. The system throughput is
taken as a measure of the service performance of the system.
The current throughput of the system can be calculated by for-
mula (22). As shown in Figure 5, FFD enables the system to
have better throughput in the initial stage, and the throughput
of the system grows slowly as time goes by. HEELS and OTS
make the system throughput increase continuously. OTS has a
greater initial throughput than HEELS. As time increases, the
growths of the two strategies tend to be stable. However, the
throughput of HEELS is always greater than that of OTS since
the task preprocessing and heuristic optimization strategy of
HEELS in the initial stage enable tasks to be deployed and
responded rapidly, so that the system has the better through-
put. FFD deploys the current task set rapidly according to the
packing problem, so it has high throughput at the beginning.
But with the increase of time and number of tasks, its adaptive
ability is limited, and the throughput increment is always
smaller than the other two strategies. OTS determines task
deployment policies based on the similarity between the host
and the task, which has a potential for long-term efficient
deployment. By comparing the service performance of the
edge center system, it can be concluded that the deployment
strategy of HEELS has better stability and efficiency.

E. COMPARISON IN LOAD BALANCING DEGREE
In this experimental scenario, HEELS is compared with FFD
and OTS for load balancing degree. The load balancing
degree value of the current edge center is calculated by the
formulas (23) and (24). The smaller the value is, the more
balanced the system load is. As can be seen from Figure 6,
OTS has a better initial load balancing degree, followed
by FFD, and the HEELS load balancing effect is the worst.
When t = 300, the HEELS load balancing degree is less than

FIGURE 5. Comparison of FFD, OTS, and HEELS on throughput.

FIGURE 6. Comparison of FFD, OTS, and HEELS on load balancing degree.

OTS and FFD. When t > 300, the load balancing degree of
the three task deployment strategies is gradually decreasing,
and the load balancing degree of HEELS is always less
than FFD and OTS in the process of descending. OTS is
somewhere in between, and FFD performance worst. This is
because OTS calculates the cosine between each task to be
processed and hosts, then deploys the task according to the
cosine value. When the number of tasks is too large, the real-
time load information of the host cannot be guaranteed to be
obtained. FFD is random and cannot guarantee that tasks will
be deployed to the optimal host every time. The proposed
HEELS approach can pre-process tasks in the initial stage
of the algorithm, which can deploy the tasks requiring large
amount of resources and high performance requirements to
the cloud center, and then through heuristic optimization,
it ensures that tasks are deployed to the hosts with the best
performance to a certain extent, so each node has achieved
good load balancing effect. The experimental results show
that HEELS has better load balancing effect, so that the load
balancing optimization of the edge computing center can be
realized more effectively.

VOLUME 7, 2019 99667



Y. Dong et al.: A ‘Joint-Me’ Task Deployment Strategy for Load Balancing in Edge Computing

VI. CONCLUSION AND FUTURE WORK
Based on the joint deployment of edge computing and cloud
computing, this paper proposes a novel heuristic task deploy-
ment approach HEELS based on clustering analysis and
GSO optimization algorithm, and gives its main idea, spe-
cific implementation and performance evaluation. First of all,
the task analysis process adopts the heuristic idea based on
clustering, which filters out the tasks with large amount of
requested resources by clustering method, and uploads the
results to cloud computing center for deployment and calcula-
tion by using task offloading technology. To a certain extent,
it has the potential to achieve efficient task deployment and
long-term load balancing of joint edge computing centers and
cloud computing centers. Then, an improved GSO algorithm
is presented to deploy the tasks in the edge center, and the
idea of SCA algorithm is integrated into the GSO algorithm.
The mathematical model based on sine and cosine function
of SCA algorithm is used to fluctuate outwards or inwards
towards the optimal solution, which can explore different
regions of the step size space, so that the GSO algorithm has
an adaptive step size. By using the SCA algorithm to calculate
the adaptive step size of GSO individuals, the GSO algorithm
can get the global optimal solution vector faster. It makes the
GSO method have better global search ability at the early
stage and better local convergence ability at the later stage.
It also shows that the improved GSO approach has a strong
mathematical basis.

In order to evaluate the proposed HEELS approach, several
simulation experiments are carried out in this paper. Firstly,
in the comparison experiment of HEELS, OTS and FFD
on the total task completion time, HEELS has a smaller
maximum completion time under the same conditions. Sec-
ondly, HEELS has better load balancing effect than FFD and
OTS in the comparison experiment of load balancing degree.
Thirdly, in the comparison experiment of the system service
performance demonstrated by the edge computing center and
the cloud computing center after deploying the tasks through
the three deployment strategies, it is proved that the proposed
HEELS approach has better system service performance than
the other two. Finally, the deployment success rates of FFD,
OTS and HEELS are compared. The experimental results
show that comparedwith FFD andOTS,HEELS improves the
success rate of deployment tasks, and it is more efficient and
reasonable to deploy tasks. Through four sets of comparison
experiments, the proposed HEELS approach is more efficient
in processing real-time task requests and enabling long-term
load balancing between the edge computing center and the
cloud computing center.

In HEELS, there are some open problems that need to
be further studied and the empirical problems which require
a large number of experiments to gradually obtain a better
solution. Among them, the value α of CPU weight and the
value β of memory weight are empirical problems, andmulti-
ple experiments are needed to obtain the optimal values such
that α + β = 1. In this paper, all parameters are set to the
appropriate values.

In order to further improve the performance of joint
deployment of edge computing and cloud computing, it is
planned to carry out research from multi-dimensional heuris-
tic task analysis in the next step, and deploy the offloaded
tasks to the cloud computing platform with certain strategies
on the premise of reducing complexity. The joint deployment
model has ability to simultaneously ensure that tasks are
deployed to edge computing centers and cloud computing
centers according to different policies, thus maximizing over-
all benefits for the joint cloud framework. In the future work
and experiments, the empirical questions and open questions
proposed in this paper will be further studied. If possible,
we will study and implement the proposed task analysis and
deployment approach in a real joint edge computing and
cloud computing environment, evaluate its performance and
efficiency, and verify the joint load balancing effect.
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