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ABSTRACT This paper focuses on the anti-synchronization problem of complex-valued bidirectional
associative memory (BAM) neural networks with time-varying delays. Based on a suitable Lyapunov
functional, a sufficient condition for guaranteeing the anti-synchronization of the considered system is
derived by using the inequality techniques. For delayed complex-valued BAM neural networks, it is the
first time that the anti-synchronization control problem is addressed. So, our work not only fills the gap in
this field but also complements the previous results. In the end, two numerical examples are provided to
show the effectiveness of the obtained result.

INDEX TERMS Complex-valued BAM neural networks, anti-synchronization, time-varying delays.

I. INTRODUCTION
The bidirectional associative memory (BAM) neural net-
works model was first proposed by Kosko [1] in 1987,
which contains two layers of neurons represented by FX
layer and FY layer. As an important neural networks
model, it is widely used in image processing, signal pro-
cessing and pattern recognition. Moreover, owing to the
inevitable existence of time delays in practice [2]–[7], more
and more scholars have shown great interests in study-
ing delayed BAM neural networks and quite a number of
fruitful dynamic achievements have been proposed [8]–[12].
For instance, global lagrange stability problem is dis-
cussed for neural-type Cohen-Grossberg BAM neural net-
works with mixed time-varying delays in [11]. Global
exponential stability criterion is established in terms of
LMIs for neutral delayed BAM neural networks with
delays in leakage terms via new inequality technique
in [12].

It should be noted that the above-mentioned results
are based on the case of delayed real-valued neural
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networks. Although the real-valued dynamical systems
have been applied in various fields and a lot of achieve-
ments have been made, some inherent limitations also
exist at the same time. Compared with real-valued neural
networks, complex-valued neural networks have different
and more complex dynamic behaviors. It not only has
complex-valued states, activation functions and connec-
tion weights but can deal with many problems that can-
not be solved by real-valued neural networks, such as
the XOR problem [13]. Therefore, it is very important to
study the dynamics of complex-valued neural networks.
So far, many papers related to delayed complex-valued
neural networks have been published [14]–[37], in which,
some achievements refer to delayed complex-valued BAM
neural networks [29]–[37]. For complex-valued BAM neu-
ral networks with time-varying delays, lagrange exponen-
tial stability is investigated by combining the Lyapunov
function approach with some inequalities techniques in [29].
For complex-valued BAM neutral-type neural networks
with time delays, delay-independent stability criteria are
established in [33]. The exponential input-to-state stability
for delayed complex-valued memristor-based BAM neu-
ral networks model is considered in [34]. In [37], some
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novel sufficient conditions to guarantee the dissipativity of
complex-valued BAM neural networks are obtained by using
the inequality techniques, Halanay inequality, and upper right
Dini derivative concepts.

On the other hand, when analyzing dynamic behavior
of systems, synchronization and anti-synchronization are
very hot topic [38]–[40] since they have been successfully
applied in engineering applications and hardware implemen-
tations, such as image processing, information science and
so on. As a result, it becomes very important and neces-
sary to study the synchronization and anti-synchronization
control problems in theoretical work. Moreover, as we
know, for delayed complex-valued neural networks, some
results involving these problems have been reported, such as
synchronization of fractional-order delayed complex-valued
neural networks [41], [42], finite-time synchronization for
delayed complex-valued neural networks [43]–[46] and
anti-synchronization of complex-valued memristor-based
delayed neural networks [47], [48]. At the same time,
for complex-valued BAM neural networks models, many
researchers are interested in the synchronization problem of
complex-valued BAM neural networks and have achieved
some results. For example, a sufficient condition on global
asymptotic periodic synchronization of complex-valued
BAM neural networks is established by using novel LMI
method in [49]. However, for the anti-synchronization control
problem, there has been still no information. This motivates
our interests.

According to the discussions above, we know that it
is necessary to investigate the anti-synchronization control
problem of complex-valued BAM neural networks. In this
paper, we will study this issue for complex-valued BAM
neural networks with time-varying delays. The main con-
tributions of our work can be shown in the following
points:
(1) Compared with the previous results, it is the first time that
the anti-synchronization control problem of complex-valued
BAM neural networks with time-varying delays is investi-
gated.
(2) Via a suitable Lyapunov functional and the inequality
techniques, a sufficient condition is established to ensure the
anti-synchronization of the considered system.
(3) According to Hölder inequality, the right inequalities
different from those in the existing references are used to
derive the main result.

II. PROBLEM FORMULATION AND PRELIMINARIES
Throughout this paper, Rn and Cn denote n-dimensional
Euclidean space and Unitary space, respectively. i =
√
−1 denotes the imaginary unit. C([−τ, 0],Rn) and

C([−τ, 0],Cn) denote the family of continuous functions
ϑ from [−τ, 0] to Rn and Cn, respectively. For ϑ(s) =
(ϑ1(s), ϑ2(s), . . . , ϑn(s))T ∈ C([−τ, 0],Rn), the norm ‖
ϑ ‖= sup−τ≤t≤0{

∑n
k=1 |ϑk (s)|

%
}
1
% is equipped, where % > 1

is a constant.

In this paper, we consider the following complex-valued
BAM neural networks model:

żk (t) = −d1kzk (t)+
m∑
l=1

a1lk fl(hl(t))

+

m∑
l=1

b1lk fl(hl(t − τ2kl(t)))

ḣl(t) = −d2lhl(t)+
n∑

k=1

a2klgk (zk (t))

+

n∑
k=1

b2klgk (zk (t − τ1lk (t)))

(1)

with the initial conditions

zk (s) = ψ1k (s), hl(s) = ψ2l(s), s ∈ [−τ, 0] (2)

where k = 1, 2, . . . , n and l = 1, 2, . . . ,m; zk (t) and hl(t)
denote the complex-valued state variables; d1k > 0 and
d2l > 0 are constants; a1lk , b1lk , a2kl and b2kl are
complex-valued connection weights; fl(hl(t)), gk (zk (t)),
fl(hl(t − τ2kl(t))) and gk (zk (t − τ1lk (t))) denote the
complex-valued activation functions; τ2kl(t) and τ1lk (t) are
time-varying delays with 0 ≤ τ2kl(t) ≤ τ1, τ̇2kl(t) ≤ ρ1 ≤ 1,
0 ≤ τ1lk (t) ≤ τ2, τ̇1lk (t) ≤ ρ2 ≤ 1, τ1, τ2, ρ1, ρ2 are
positive constants. Let τ = max{τ1, τ2}, ψ1k (s) and ψ2l(s) ∈
C([−τ, 0],C).

Moreover, complex-valued activation functions fl(hl(t))
and gk (zk (t)) can be separated into the real and imaginary
parts as

fl(hl) = f Rl (x2l, y2l)+ if
I
l (x2l, y2l),

gk (zk ) = gRk (x1k , y1k )+ ig
I
k (x1k , y1k )

where hl(t) = x2l(t) + iy2l(t), zk (t) = x1k (t) + iy1k (t), and
hl(t), zk (t), x2l(t), y2l(t), x1k (t), y1k (t) are simplified as hl ,
zk , x2l , y2l , x1k , y1k , respectively. Additionally, fl(−hl) =
−fl(hl), gk (−zk ) = −gk (zk ), and satisfy the following
assumption.
Assumption 1: For any x1k , y1k , x ′1k , y

′

1k , x2l , y2l , x
′

2l and
y′2l ∈ R, there exist positive constants λ

RR
1l , λ

RI
1l , λ

IR
1l , λ

II
1l , λ

RR
2k ,

λRI2k , λ
IR
2k and λ

II
2k such that

|f Rl (x2l, y2l)− f
R
l (x
′

2l, y
′

2l)| ≤ λ
RR
1l |x2l − x

′

2l |

+ λRI1l |y2l − y
′

2l |

|f Il (x2l, y2l)− f
I
l (x
′

2l, y
′

2l)| ≤ λ
IR
1l |x2l − x

′

2l |

+ λII1l |y2l − y
′

2l |

|gRk (x1k , y1k )− g
R
k (x
′

1k , y
′

1k )| ≤ λ
RR
2k |x1k − x

′

1k |

+ λRI2k |y1k − y
′

1k |

|gIk (x1k , y1k )− g
I
k (x
′

1k , y
′

1k )| ≤ λ
IR
2k |x1k − x

′

1k |

+ λII2k |y1k − y
′

1k |. (3)
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In this paper, the corresponding response system is
described as follows:

ż∗k (t) = −d1kz
∗
k (t)+

m∑
l=1

a1lk fl(h∗l (t))

+

m∑
l=1

b1lk fl(h∗l (t − τ2kl(t)))+ u1k (t)

ḣ∗l (t) = −d2lh
∗
l (t)+

n∑
k=1

a2klgk (z∗k (t))

+

n∑
k=1

b2klgk (z∗k (t − τ1lk (t)))+ u2l(t)

(4)

with the initial conditions

z∗k (s) = θ1k (s), h∗l (s) = θ2l(s), s ∈ [−τ, 0] (5)

where k = 1, 2, . . . , n and l = 1, 2, . . . ,m, u1k (t) and u2l(t)
are to be designed to achieve a certain control objective. θ1k (s)
and θ2l(s) ∈ C([−τ, 0],C).
Let e1k (t) = z∗k (t) + zk (t) and e2l(t) = h∗l (t) + hl(t), for

k = 1, 2, . . . , n and l = 1, 2, . . . ,m, the anti-synchronization
error system between (1) and (4) can be given by

ė1k (t) = −d1ke1k (t)+
m∑
l=1

a1lkF1l(e2l(t))

+

m∑
l=1

b1lkF1l(e2l(t − τ2kl(t)))+ u1k (t)

ė2l(t) = −d2le2l(t)+
n∑

k=1

a2klF2k (e1k (t))

+

n∑
k=1

b2klF2k (e1k (t − τ1lk (t)))+ u2l(t)

(6)

with the initial conditions

e1k (s) = φ1k (s), e2l(s) = φ2l(s), s ∈ [−τ, 0] (7)

where F1l(e2l(t)) = fl(h∗l (t)) + fl(hl(t)), F1l(e2l(t −
τ2kl(t))) = fl(h∗l (t−τ2kl(t)))+fl(hl(t−τ2kl(t))),F2k (e1k (t)) =
gk (z∗k (t)) + gk (zk (t)), F2k (e1k (t − τ1lk (t))) = gk (z∗k (t −
τ1lk (t))) + gk (zk (t − τ1lk (t))), φ1k (s) = ψ1k (s) + θ1k (s) and
φ2l(s) = ψ2l(s)+ θ2l(s).

Define e1k (t) = eR1k (t) + ie
I
1k (t), e2l(t) = eR2l(t) + ie

I
2l(t),

u1k (t) = uR1k (t) + iuI1k (t), u2l(t) = uR2l(t) + iuI2l(t), a1lk =
aR1lk + iaI1lk , b1lk = bR1lk + ibI1lk , a2kl = aR2kl + iaI2kl and
b2kl = bR2kl + ibI2kl . Obviously, e

R
1k (t) = x1k (t) + x∗1k (t),

eI1k (t) = y1k (t)+ y∗1k (t), e
R
2l(t) = x2l(t)+ x∗2l(t) and e

I
2l(t) =

y2l(t) + y∗2l(t). For brevity, e1k (t), e2l(t), e1k (t − τ1lk (t)),
e2l(t − τ2kl(t)), eR1k (t), e

I
1k (t), e

R
2l(t), e

I
2l(t), e

R
1k (t − τ1lk (t)),

eI1k (t − τ1lk (t)), e
R
2l(t − τ2kl(t)), e

I
2l(t − τ2kl(t)), u

R
1k (t), u

I
1k (t),

uR2l(t), u
I
2l(t), x2l(t − τ2kl(t)), y2l(t − τ2kl(t)), x1k (t − τ1lk (t))

and y1k (t−τ1lk (t)) are simplified as e1k , e2l , eτ1k , e
τ
2l , e

R
1k , e

I
1k ,

eR2l , e
I
2l , e

Rτ
1k , e

Iτ
1k , e

Rτ
2l , e

Iτ
2l , u

R
1k , u

I
1k , u

R
2l , u

I
2l , x

τ
2l , y

τ
2l , x

τ
1k and

yτ1k . Then, system (6) can be separated into real and imaginary
parts as

ėR1k = −d1ke
R
1k +

m∑
l=1

aR1lkF
R
1l(e

R
2l, e

I
2l)

−

m∑
l=1

aI1lkF
I
1l(e

R
2l, e

I
2l)+

m∑
l=1

bR1lkF
R
1l(e

Rτ
2l , e

Iτ
2l )

−

m∑
l=1

bI1lkF
I
1l(e

Rτ
2l , e

Iτ
2l )+ u

R
1k

ėI1k = −d1ke
I
1k +

m∑
l=1

aR1lkF
I
1l(e

R
2l, e

I
2l)

+

m∑
l=1

aI1lkF
R
1l(e

R
2l, e

I
2l)+

m∑
l=1

bR1lkF
I
1l(e

Rτ
2l , e

Iτ
2l )

+

m∑
l=1

bI1lkF
R
1l(e

Rτ
2l , e

Iτ
2l )+ u

I
1k

ėR2l = −d2le
R
2l +

n∑
k=1

aR2klF
R
2k (e

R
1k , e

I
1k )

−

n∑
k=1

aI2klF
I
2k (e

R
1k , e

I
1k )+

n∑
k=1

bR2klF
R
2k (e

Rτ
1k , e

Iτ
1k )

−

n∑
k=1

bI2klF
I
2k (e

Rτ
1k , e

Iτ
1k )+ u

R
2l

ėI2l = −d2le
I
2l +

n∑
k=1

aR2klF
I
2k (e

R
1k , e

I
1k )

+

n∑
k=1

aI2klF
R
2k (e

R
1k , e

I
1k )+

n∑
k=1

bR2klF
I
2k (e

Rτ
1k , e

Iτ
1k )

+

n∑
k=1

bI2klF
R
2k (e

Rτ
1k , e

Iτ
1k )+ u

I
2l (8)

where

FR
1l(e

R
2l, e

I
2l) = f Rl (x

∗

2l, y
∗

2l)+ f
R
l (x2l, y2l),

F I
1l(e

R
2l, e

I
2l) = f Il (x

∗

2l, y
∗

2l)+ f
I
l (x2l, y2l),

FR
1l(e

Rτ
2l , e

Iτ
2l ) = f Rl (x

∗τ
2l , y

∗τ
2l )+ fl(x

τ
2l, y

τ
2l),

F I
1l(e

Rτ
2l , e

Iτ
2l ) = f Il (x

∗τ
2l , y

∗τ
2l )+ f

I
l (x

τ
2l, y

τ
2l),

FR
2k (e

R
1k , e

I
1k ) = gRk (x

∗

1k , y
∗

1k )+ g
R
k (x1k , y1k ),

F I
2k (e

R
1k , e

I
1k ) = gIk (x

∗

1k , y
∗

1k )+ g
I
k (x1k , y1k ),

FR
2k (e

Rτ
1k , e

Iτ
1k ) = gRk (x

∗τ
1k , y

∗τ
1k )+ g

R
k (x

τ
1k , y

τ
1k ),

F I
2k (e

Rτ
1k , e

Iτ
1k ) = gIk (x

∗τ
1k , y

∗τ
1k )+ g

I
k (x

τ
1k , y

τ
1k ).

Now, we rewrite the system (8) as the following vector
forms:

ėR1 = −D1eR1 + A
R
1F

R
1 (e

R
2 , e

I
2)− A

I
1F

I
1 (e

R
2 , e

I
2)

+BR1F
R
1 (e

Rτ
2 , e

Iτ
2 )− BI1F

I
1 (e

Rτ
2 , e

Iτ
2 )+ uR1

ėI1 = −D1eI1 + A
R
1F

I
1 (e

R
2 , e

I
2)+ A

I
1F

R
1 (e

R
2 , e

I
2)

+BR1F
I
1 (e

Rτ
2 , e

Iτ
2 )+ BI1F

R
1 (e

Rτ
2 , e

Iτ
2 )+ uI1

ėR2 = −D2eR2 + A
R
2F

R
2 (e

R
1 , e

I
1)− A

I
2F

I
2 (e

R
1 , e

I
1)

+BR2F
R
2 (e

Rτ
1 , e

Iτ
1 )− BI2F

I
2 (e

Rτ
1 , e

Iτ
1 )+ uR2

ėI2 = −D2eI2 + A
R
2F

I
2 (e

R
1 , e

I
1)+ A

I
2F

R
2 (e

R
1 , e

I
1)

+BR2F
I
2 (e

Rτ
1 , e

Iτ
2 )+ BI2F

R
2 (e

Rτ
1 , e

Iτ
1 )+ uI2

(9)

97538 VOLUME 7, 2019



X. Wei et al.: Anti-Synchronization for Complex-Valued BAM Neural Networks

where

eR1 = (eR11, e
R
12, . . . , e

R
1n)

T , eI1 = (eI11, e
I
12, . . . , e

I
1n)

T ,

eR2 = (eR21, e
R
22, . . . , e

R
2m)

T , eI2 = (eI21, e
I
22, . . . , e

I
2m)

T ,

eRτ1 = (eRτ11 , e
Rτ
12 , . . . , e

Rτ
1n )

T , eIτ1 = (eIτ11, e
Iτ
12, . . . , e

Iτ
1n)

T ,

eRτ2 = (eRτ21 , e
Rτ
22 , . . . , e

Rτ
2m)

T , eIτ2 = (eIτ21, e
Iτ
22, . . . , e

Iτ
2m)

T ,

FR
1 (e

R
2 , e

I
2)

= (FR
11(e

R
21, e

I
21),F

R
12(e

R
22, e

I
22), . . . ,F

R
1m(e

R
2m, e

I
2m))

T ,

F I
1 (e

R
2 , e

I
2)

= (F I
11(e

R
21, e

I
21),F

I
12(e

R
22, e

I
22), . . . ,F

I
1m(e

R
2m, e

I
2m))

T ,

FR
1 (e

Rτ
2 , e

Iτ
2 )

= (FR
11(e

Rτ
21 , e

Iτ
21),F

R
12(e

Rτ
22 , e

Iτ
22), . . . ,F

R
1m(e

Rτ
2m, e

Iτ
2m))

T ,

F I
1 (e

Rτ
2 , e

Iτ
2 )

= (F I
11(e

Rτ
21 , e

Iτ
21),F

I
12(e

Rτ
22 , e

Iτ
22), . . . ,F

I
1m(e

Rτ
2m, e

Iτ
2m))

T ,

FR
2 (e

R
1 , e

I
1)

= (FR
21(e

R
11, e

I
11),F

R
22(e

R
12, e

I
12), . . . ,F

R
2n(e

R
1n, e

I
1n))

T ,

F I
2 (e

R
1 , e

I
1)

= (F I
21(e

R
11, e

I
11),F

I
22(e

R
12, e

I
12), . . . ,F

I
2n(e

R
1n, e

I
1n))

T ,

FR
2 (e

Rτ
1 , e

Iτ
1 )

= (FR
21(e

Rτ
11 , e

Iτ
11),F

R
22(e

Rτ
12 , e

Iτ
12), . . . ,F

R
2n(e

Rτ
1n , e

Iτ
1n))

T ,

F I
2 (e

Rτ
1 , e

Iτ
1 )

= (F I
21(e

Rτ
11 , e

Iτ
11),F

I
22(e

Rτ
12 , e

Iτ
12), . . . ,F

I
2n(e

Rτ
1n , e

Iτ
1n))

T ,

D1 = diag(d11, d12, . . . , d1n), D2=diag(d21, d22, . . . , d2m),

uR1 = (uR11, u
R
12, . . . , u

R
1n)

T , uI1 = (uI11, u
I
12, . . . , u

I
1n)

T ,

uR2 = (uR21, u
R
22, . . . , u

R
2m)

T , uI2 = (uI21, u
I
22, . . . , u

I
2m)

T ,

AR1 = ((aR1lk )m×n)
T ,AI1 = ((aI1lk )m×n)

T ,

BR1 = ((bR1lk )m×n)
T , BI1 = ((bI1lk )m×n)

T ,

AR2 = ((aR2kl)n×m)
T , AI2 = ((aI2kl)n×m)

T ,

BR2 = ((bR2kl)n×m)
T andBI2 = ((bI2kl)n×m)

T .

Let

ω1 =

[
eR1
eI1

]
, D̃1 =

[
D1 0
0 D1

]
, U1 =

[
uR1
uI1

]
,

A1 =
[
AR1 −AI1
AI1 AR1

]
, F̃1(ω2) =

[
FR
1 (e

R
2 , e

I
2)

F I
1 (e

R
2 , e

I
2)

]
,

B1 =
[
BR1 −BI1
BI1 BR1

]
, F̃1(ωτ2 ) =

[
FR
1 (e

Rτ
2 , e

Iτ
2 )

F I
1 (e

Rτ
2 , e

Iτ
2 )

]
,

ω2 =

[
eR2
eI2

]
, D̃2 =

[
D2 0
0 D2

]
, U2 =

[
uR2
uI2

]
,

A2 =
[
AR2 −AI2
AI2 AR2

]
, F̃2(ω1) =

[
FR
2 (e

R
1 , e

I
1)

F I
2 (e

R
1 , e

I
1)

]
,

B2 =
[
BR2 −BI2
BI2 BR2

]
, F̃2(ωτ1 ) =

[
FR
2 (e

Rτ
1 , e

Iτ
1 )

F I
2 (e

Rτ
1 , e

Iτ
1 )

]
,

system (9) can be arranged as{
ω̇1 = −D̃1ω1 + A1F̃1(ω2)+ B1F̃1(ωτ2 )+ U1

ω̇2 = −D̃2ω2 + A2F̃2(ω1)+ B2F̃2(ωτ1 )+ U2
(10)

with the initial conditions

ω1(s) = 81(s), ω2(s) = 82(s), s ∈ [−τ, 0] (11)

where 81(s) = ((φR1 (s))
T , (φI1(s))

T )T , φR1 (s) = (φR11(s),
φR12(s), . . . , φ

R
1n(s))

T , φR1k (s) = Re(φ1k (s)), φI1(s) =
(φI11(s), φ

I
12(s), . . . , φ

I
1n(s))

T , φI1k (s) = Im(φ1k (s)), 82(s) =
((φR2 (s))

T , (φI2(s))
T )T ,φR2 (s) = (φR21(s), φ

R
22(s), . . . , φ

R
2m(s))

T ,
φR2l(s) = Re(φ2l(s)), φI2(s) = (φI21(s), φ

I
22(s), . . . , φ

I
2m(s))

T ,
φI2l(s) = Im(φ2l(s)), k = 1, 2, . . . , n and l = 1, 2, . . . ,m.
Then, let

ω =

[
ω1
ω2

]
, D̃ =

[
D̃1 0
0 D̃2

]
, U =

[
U1
U2

]
,

M =
[
A1 0
0 A2

]
, F̂1(ω) =

[
F̃1(ω2)
F̃1(ω1)

]
,

N =
[
B1 0
0 B2

]
, F̂2(ωτ ) =

[
F̃2(ωτ2 )
F̃2(ωτ1 )

]
,

system (10) can be rewritten as follows:

ω̇ = −D̃ω +M1F̂1(ω)+ N 1F̂2(ωτ )+ U (12)

with the initial condition

ω(s) = 8(s), s ∈ [−τ, 0] (13)

where 8(s) = (8T
1 (s),8

T
2 (s))

T .
Next, we introduce the following definition and lemmas to

get the desired result.
Definition 1: Systems (1) and (4) can achieve the expo-
nential anti-synchronization if for arbitrary initial condition
8(s) ∈ C([−τ, 0],R2n+2m) and properly designed feedback
controllers, there exist constants α ≥ 1 and ε > 0 such that{ 2n∑

k=1

|w1k (t)|% +
2m∑
l=1

|w2l(t)|%
} 1
%
≤ αe−εt ‖ 8 ‖,

for ∀ t ≥ 0

(14)

where ε is the estimated rate of exponential anti-
synchronization.
Lemma 1: (Young Inequality). Let a ≥ 0, b ≥ 0, p > 1,
1
p +

1
q = 1, then the following inequality hold:

ab ≤
ap

p
+
bq

q
. (15)

Lemma 2: (Hölder Inequality). Let ai ≥ 0, bi ≥ 0
(i = 1, 2, . . . , n), p > 1, 1

p +
1
q = 1, then the following

inequality hold:
n∑
i=1

aibi ≤
( n∑
i=1

api
)1/p( n∑

i=1

bqi
)1/q

. (16)

Especially, let bi = 1 and n = 2, one has

(a1 + a2)p ≤ 2p−1(ap1 + a
p
2). (17)

Moreover, it is obvious that the inequality (17) also hold when
p = 1.
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Remark 1: Based on Assumption 1 and Lemma 2, for
FR
1l(e

R
2l, e

I
2l), F

I
1l(e

R
2l, e

I
2l), F

R
2k (e

R
1k , e

I
1k ), F

I
2k (e

R
1k , e

I
1k ) and

p ≥ 1, the following inequalities hold:

|FR
1l(e

R
2l, e

I
2l)|

p
≤ 2p−1[(λRR1l )

p
|eR2l |

p
+ (λRI1l )

p
|eI2l |

p]

|F I
1l(e

R
2l, e

I
2l)|

p
≤ 2p−1[(λIR1l )

p
|eR2l |

p
+ (λII1l)

p
|eI2l |

p]

|FR
2k (e

R
1k , e

I
1k )|

p
≤ 2p−1[(λRR2k )

p
|eR1k |

p
+ (λRI2k )

p
|eI1k |

p]

|F I
2k (e

R
1k , e

I
1k )|

p
≤ 2p−1[(λIR2k )

p
|eR1k |

p
+ (λII2k )

p
|eI1k |

p].

(18)

Here, in fact, since f Rl (x2l, y2l) is odd function,
|FR

1l(e
R
2l, e

I
2l)| = |f

R
l (x
∗

2l, y
∗

2l)+ f
R
l (x2l, y2l)| = |f

R
l (x
∗

2l, y
∗

2l)−
f Rl (−x2l,−y2l)|. Then, according to Assumption 1 and the
inequality (17), we can obtain

|FR
1l(e

R
2l, e

I
2l)|

p
≤ (λRR1l |e

R
2l | + λ

RI
1l |e

I
2l |)

p

≤ 2p−1[(λRR1l )
p
|eR2l |

p
+ (λRI1l )

p
|eI2l |

p]. (19)

Similarly, we can also obtain the other inequalities in (18).
Moreover, FR

1l(0, 0) = f Rl (x2l, y2l) + f Rl (−x2l,−y2l) = 0,
F I
1l(0, 0) = 0, FR

2k (0, 0) = 0 and F I
2k (0, 0) = 0.

Remark 2: It should be pointed out that the inequalities
in Remark 1 of [47] are problematic. In Remark 1 of [47],
|FR

l (e
R
l (t), e

I
l (t))|

r
≤ (λRRl )r |eRl (t)|

r
+ (λRIl )r |eIl (t)|

r

and |F I
l (e

R
l (t), e

I
l (t))|

r
≤ (λIRl )r |eRl (t)|

r
+ (λIIl )

r
|eIl (t)|

r

(r ≥ 1), where the mathematical notations are the
same as those in [47] as a matter of convenience. In fact,
|FR

l (e
R
l (t), e

I
l (t))|

r
≤ (λRRl |e

R
l (t)| + λRIl |e

I
l (t)|)

r whereas
(λRRl |e

R
l (t)| + λ

RI
l |e

I
l (t)|)

r
≥ (λRRl )r |eR2l(t)|

r
+ (λRIl )r |eIl (t)|

r ,
so |FR

l (e
R
l (t), e

I
l (t))|

r
≤ (λRRl )r |eRl (t)|

r
+ (λRIl )r |eIl (t)|

r may
not be true. In this paper, we rectify it and give the right
inequalities (18) by using Hölder inequality.

III. MAIN RESULT
In this section, wewill give a sufficient condition to ensure the
anti-synchronization for system (1). For k = 1, 2, . . . , n and
l = 1, 2, . . . ,m, the state feedback control laws are designed
as

uR1k (t) = −π
R
1k (x1k (t)+ x

∗

1k (t))

uI1k (t) = −π
I
1k (y1k (t)+ y

∗

1k (t))

uR2l(t) = −π
R
2l(x2l(t)+ x

∗

2l(t))

uI2l(t) = −π
I
2l(y2l(t)+ y

∗

2l(t)) (20)

where πR1k , π
I
1k , π

R
2l and π I2l are the control gains to be

determined.
Remark 3: So as to obtain the proposed result, we designed
the control laws as shown above, which are simple and effec-
tive. Moreover, our work is carried out in theory. Hence, from
the theoretical viewpoint, it seems good. In practice, it also
has obvious advantages because of its simplicity. So, our
designed control laws are suitable.
Theorem 1: Suppose that Assumption 1 holds, systems (1)
and (4) can be exponentially anti-synchronized under control

inputs (20) if there exist positive constants ξ1k , ν1k , ξ2l , ν2l
and r ≥ 1 such that

−r(d1k + πR1k )

+

m∑
l=1

{[( ξ2l
ξ1k

aR2kl +
ν2l

ξ1k
aI2kl +

ξ2lδ2l

ξ1k (1− ρ2)

)
(λRR2k )

r

+
( ξ2l
ξ1k

aI2kl +
ν2l

ξ1k
aR2kl +

ν2lη2l

ξ1k (1− ρ2)
(λIR2k )

r)]2r−1
+L1(r − 1)

}
≤ 0

−r(d1k + π I1k )

+

m∑
l=1

{[( ξ2l
ν1k

aR2kl +
ν2l

ν1k
aI2kl +

ξ2lδ2l

ν1k (1− ρ2)

)
(λRI2k )

r

+
( ξ2l
ν1k

aI2kl +
ν2l

ν1k
aR2kl +

ν2lη2l

ν1k (1− ρ2)

)
(λII2k )

r
]
2r−1

+L1(r − 1)
}
≤ 0

−r(d2l + πR2l)

+

n∑
k=1

{[(ξ1k
ξ2l

aR1lk +
ν1k

ξ2l
aI1lk +

ξ1kδ1k

ξ2l(1− ρ1)

)
(λRR1l )

r

+
(ξ1k
ξ2l

aI1lk +
ν1k

ξ2l
aR1lk +

ν1kη1k

ξ2l(1− ρ1)

)
(λIR1l )

r
]
2r−1

+L2(r − 1)
}
≤ 0

−r(d2l + π I2l)

+

n∑
k=1

{[(ξ1k
ν2l

aR1lk +
ν1k

ν2l
aI1lk +

ξ1kδ1k

ν2l(1− ρ1)

)
(λRI1l )

r

+
(ξ1k
ν2l

aI1lk +
ν1k

ν2l
aR1lk +

ν1kη1k

ν2l(1− ρ1)

)
(λII1l)

r
]
2r−1

+L2(r − 1)
}
≤ 0 (21)

where δ1k = bR1lk + (v1k/ξ1k )bI1lk , η1k = bR1lk + (ξ1k/v1k )bI1lk ,
δ2l = bR2kl + (v2l/ξ2l)bI2kl , η2l = bR2kl + (ξ2l/v2l)bI2kl , L1 =
aR1lk + a

I
1lk + b

R
1lk + b

I
1lk ,L2 = aR2kl + a

I
2kl + b

R
2kl + b

I
2kl .

Proof. For the detailed proof process of Theorem 1, please
see Appendix.
Remark 4: In recent years, great achievements in dynamic
behavior analysis for complex-valued neural networks mod-
els have developed, in which some results are related
to complex-valued BAM neural networks. But there has
been no information for the anti-synchronization prob-
lem of complex-valued BAM neural networks up to now.
In this paper, by applying inequalities techniques, the anti-
synchronization of complex-valued BAM neural networks is
studied and the corresponding result is shown in Theorem 1.
Hence, our work fills the gap in this respect and supplements
the existing results.
Remark 5: Compared with real-valued neural networks,
the states, connection weights and activation functions of
complex-valued neural networks are defined in the complex
domain, which can provide a simple and natural way to main-
tain the physical characteristics of the original problems. For
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instance, the XOR problem in real numbers cannot be solved
with a single real-valued neuron, which can be solved by
complex-valued neurons. Therefore, complex-valued neural
networks models have more complex properties and wider
applications than real-valued ones, and it is very necessary to
study the dynamical behaviors of these models. In this paper,
for complex-valued BAM neural networks with time-varying
delays, the anti-synchronization problem is considered and
the corresponding criterion is presented.

IV. NUMERICAL EXAMPLES
In this section, we will provide two examples to illustrate the
availability of our result.
Example 1: Consider system (1) with the following
parameters:

fl(hl) =
ex2l − e−x2l

ex2l + e−x2l
+ i

ey2l − e−y2l

ey2l + e−y2l
, (l = 1, 2),

gk (zk ) =
ex1k − e−x1k

ex1k + e−x1k
+ i

ey1k − e−y1k

ey1k + e−y1k
, (k = 1, 2),

τ2kl(t) = τ1lk (t) =
1

1+ e−t
, ρ1 = ρ2 = 0.25,

d11 = 2.5, d12 = 2.5, d21 = 2.5, d22 = 2.5,

a111 = −2+ 3i, a112 = −0.5+ 3i, a121 = 1.2+ 2i,

a122= 0.9−0.3i, b111=−2− 0.5i, b112=1.5+ 0.2i,

b121 = 0.6+ 2i, b122 = 1.8+ 2.5i, a211 = 1.6+ 2.5i,

a212 = −1+ 2.8i, a221 = 0.6+ 2i, a222 = 1.6− 1.9i,

b211 = 1.5+ 3i, b212 = −2+ 1.9i, b221 = 1.5+ 2.5i,

b222 = 2− i.

It is easy to get that λRR11 = λ
II
11 = λ

RR
12 = λ

II
12 = λ

RR
21 = λ

II
21 =

λRR22 = λ
II
22 = 1 and λIR11 = λ

RI
11 = λ

IR
12 = λ

RI
12 = λ

IR
21 = λ

RI
21 =

λIR22 = λRI22 = 0. Then, let πR11 = πR12 = π I11 = π I12 = 10,
πR21 = πR22 = π I21 = π I22 = 12, r = 2 and ξ2l = ν2l =

ξ1k = ν1k = 1, via a simple calculation, the conditions of
Theorem 1 are satisfied. Hence, the drive system (1) and the
corresponding response system (4) with the above param-
eters can achieve the exponential anti-synchronization. For
simulations, the corresponding response curves are depicted
in Figs. 1-4. Figs. 1 and 2 show the time responses of real and
imaginary parts of variables z1, z2, h1, h2, z∗1, z

∗

2, h
∗

1, h
∗

2 for the
drive-response system without external control inputs. Figs.
3 and 4 display the time responses of anti-synchronization
errors eR11, e

R
12, e

I
11, e

I
12, e

R
21, e

R
22, e

I
21 and eI22 under external

control inputs with 15 different initial conditions. Figs. 1-4
further show the effectiveness of the proposed result.
Example 2: Consider system (1) with the following
parameters:

fl(hl) =
|x2l + 1| − |x2l − 1|

2
+ i
|y2l + 1| − |y2l − 1|

2
,

gk (zk ) =
x1k + y1k

2
+ i

x1k − y1k
2

, (l, k = 1, 2),

τ2kl(t) = τ1lk (t) =
1

1+ e−t
, ρ1 = 0.5, ρ2 = 0.2,

d11 = 2, d12 = 2, d21 = 3, d22 = 3,

FIGURE 1. The trajectories of real and imaginary parts of variables z1, h1,
z∗

1 , h∗

1 for the drive-response system without external control inputs in
Example 1.

FIGURE 2. The trajectories of real and imaginary parts of variables z2, h2,
z∗

2 , h∗

2 for the drive-response system without external control inputs in
Example 1.

FIGURE 3. The trajectories of anti-synchronization errors eR
11, eI

11, eR
12

and eI
12 under external control inputs with 15 random initial conditions in

Example 1.

a111 = 1.1+ i, a112 = 2.5− 2i, a121 = 1.2− 1.5i,

a122 = −0.5+ 3i, b111 = −1.2+ 2i, b112 = 1.44+ 1.5i,

b121 = 3+ 2i, b122 = −1+ 0.72i, a211 = −2+ 2.8i,

a212 = 0.8+ 2i, a221 = 1.2+ i, a222 = −0.8− 2i,
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FIGURE 4. The trajectories of anti-synchronization errors eR
21, eI

21, eR
22

and eI
22 under external control inputs with 15 random initial conditions in

Example 1.

FIGURE 5. The trajectories of real and imaginary parts of variables z1, h1,
z∗

1 , h∗

1 for the drive-response system without external control inputs in
Example 2.

FIGURE 6. The trajectories of real and imaginary parts of variables z2, h2,
z∗

2 , h∗

2 for the drive-response system without external control inputs in
Example 2.

b211=−1.5+2.1i, b212=1.6−0.12i, b222=3+ 1.6i,

b221 = 1.25− 0.1i.

It is easy to get that λRR11 = λII11 = λRR12 = λII12 = 1,
λIR11 = λRI11 = λIR12 = λRI12 = 0 and λRR21 = λII21 = λRR22 =

λII22 = λIR21 = λRI21 = λIR22 = λRI22 =
1
2 . Then, let π

R
11 =

πR12 = π I11 = π I12 = 10, πR21 = πR22 = π I21 = π I22 = 11,
r = 2, ξ2l = ν2l = 3, and ξ1k = ν1k = 4, via a

FIGURE 7. The trajectories of anti-synchronization errors eR
11, eI

11, eR
12

and eI
12 under external control inputs with 15 random initial conditions in

Example 2.

FIGURE 8. The trajectories of anti-synchronization errors eR
21, eI

21, eR
22

and eI
22 under external control inputs with 15 random initial conditions in

Example 2.

simple calculation, the conditions of Theorem 1 are satisfied.
Hence, the drive-response systems (1) and (4) with the above
parameters can achieve the exponential anti-synchronization.
For simulations, Figs. 5-8 depict the corresponding response
curves.

V. CONCLUSION
In this paper, the anti-synchronization control problem
of delayed complex-valued BAM neural networks has
been investigated. By using the inequality techniques,
a sufficient condition has been obtained to ensure the
anti-synchronization of the considered system. The effective-
ness of our result has been verified by two numerical exam-
ples. Moreover, the proposed result is the first one for delayed
complex-valued BAM neural networks, so our work fills the
gap in this field and complements the previous results. In the
future, we will focus on the anti-synchronization issues of
more complex-valued systems and endeavour to obtain more
refined achievements.

APPENDIX
Firstly, for the inequalities (21), we choose a sufficient small
constant ε > 0 such that

r(ε − d1k − πR1k )

+

m∑
l=1

{[( ξ2l
ξ1k

aR2kl +
ν2l

ξ1k
aI2kl +

ξ2lerετ2

ξ1k (1− ρ2)
δ2l
)
(λRR2k )

r
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+
( ξ2l
ξ1k

aI2kl +
ν2l

ξ1k
aR2kl +

ν2lerετ2

ξ1k (1− ρ2)
η2l
)
(λIR2k )

r
]
2r−1

+L1(r − 1)
}
≤ 0

r(ε − d1k − π I1k )

+

m∑
l=1

{[( ξ2l
ν1k

aR2kl +
ν2l

ν1k
aI2kl +

ξ2lerετ2

ν1k (1− ρ2)
δ2l
)
(λRI2k )

r

+
( ξ2l
ν1k

aI2kl +
ν2l

ν1k
aR2kl +

ν2lerετ2

ν1k (1− ρ2)
η2l
)
(λII2k )

r
]
2r−1

+L1(r − 1)
}
≤ 0

r(ε − d2l − πR2l)

+

n∑
k=1

{[(ξ1k
ξ2l

aR1lk +
ν1k

ξ2l
aI1lk +

ξ1kerετ1

ξ2l(1− ρ1)
δ1k
)
(λRR1l )

r

+
(ξ1k
ξ2l

aI1lk +
ν1k

ξ2l
aR1lk +

ν1kerετ1

ξ2l(1− ρ1)
η1k
)
(λIR1l )

r
]
2r−1

+L2(r − 1)
}
≤ 0

r(ε − d2l − π I2l)

+

n∑
k=1

{[(ξ1k
ν2l

aR1lk +
ν1k

ν2l
aI1lk +

ξ1kerετ1

ν2l(1− ρ1)
δ1k

)
(λRI1l )

r

+
(ξ1k
ν2l

aI1lk +
ν1k

ν2l
aR1lk +

ν1kerετ1

ν2l(1− ρ1)
η1k
)
(λII1l)

r
]
2r−1

+L2(r − 1)
}
≤ 0. (22)

Next, we construct a Lyapunov functional as follows:

V (w(t), t)=
2n∑
k=1

ζ1k

{
|w1k (t)|rerεt+

1
1− ρ1

2m∑
l=1

β1k

×

∫ t

t−τ2kl (t)
|F1l(w2l(s))|rerε(s+τ2kl (s))ds

}
+

2m∑
l=1

ζ2l

{
|w2l(t)|rerεt+

1
1− ρ2

2n∑
k=1

β2l

×

∫ t

t−τ1lk (t)
|F2k (w1k (s))|rerε(s+τ1lk (s))ds

}
(23)

where

w1k (t) =

{
eR1k (t), k = 1, 2, . . . , n
eI1k (t), k = n+ 1, n+ 2, . . . , 2n

ζ1k =

{
ξ1k , k = 1, 2, . . . , n
ν1k , k = n+ 1, n+ 2, . . . , 2n

w2l(t) =

{
eR2l(t), l = 1, 2, . . . ,m
eI2l(t), l = m+ 1, m+ 2, . . . , 2m

ζ2l =

{
ξ2l, l = 1, 2, . . . ,m
ν2l, l = m+ 1, m+ 2, . . . , 2m

β1k =

{
δ1k , k = 1, 2, . . . , n
η1k , k = n+ 1, n+ 2, . . . , 2n

β2l =

{
δ2l, l = 1, 2, . . . ,m
η2l, l = m+ 1, m+ 2, . . . , 2m

F1l(w2l(t)) =

{
FR
1l(e

R
2l(t), e

I
2l(t)), l = 1, 2, . . . ,m

F I
1l(e

R
2l(t), e

I
2l(t)), l = m+ 1, . . . , 2m

F2k (w1k (t)) =

{
FR
2k (e

R
1k (t), e

I
1k (t)), k = 1, 2, . . . , n

F I
2k (e

R
1k (t), e

I
1k (t)), k = n+ 1, . . . , 2n.

Then,

V (w(t), t) =
n∑

k=1

ξ1k |eR1k (t)|
rerεt +

1
1− ρ1

n∑
k=1

m∑
l=1

ξ1kδ1k

×

∫ t

t−τ2kl (t)
|FR

1l(e
R
2l(s), e

I
2l(s))|

rerε(s+τ2kl (s))ds

+

n∑
k=1

ν1k |eI1k (t)|
rerεt +

1
1− ρ1

n∑
k=1

m∑
l=1

ν1kη1k

×

∫ t

t−τ2kl (t)
|F I

1l(e
R
2l(s), e

I
2l(s))|

rerε(s+τ2kl (s))ds

+

m∑
l=1

ξ2l |eR2l(t)|
rerεt +

1
1− ρ2

m∑
l=1

n∑
k=1

ξ2lδ2l

×

∫ t

t−τ1lk (t)
|FR

2k (e
R
1k (s), e

I
1k (s))|

rerε(s+τ1lk (s))ds

+

m∑
l=1

ν2l |eI2l(t)|
rerεt +

1
1− ρ2

m∑
l=1

n∑
k=1

ν2lη2l

×

∫ t

t−τ1lk (t)
|F I

2k (e
R
1k (s), e

I
1k (s))|

rerε(s+τ1lk (s))ds.

(24)

By taking the upper Dini-derivative of V (w(t), t) along the
solution trajectories of system (8), we have

D+V (w(t), t)

= erεt
n∑

k=1

rξ1k
{
ε|eR1k |

r
+ |eR1k |

r−1sgn(eR1k )
[
− (d1k

+πR1k )e
R
1k +

m∑
l=1

aR1lkF
R
1l(e

R
2l, e

I
2l)−

m∑
l=1

aI1lkF
I
1l(e

R
2l, e

I
2l)

+

m∑
l=1

bR1lkF
R
1l(e

Rτ
2l , e

Iτ
2l )−

m∑
l=1

bI1lkF
I
1l(e

Rτ
2l , e

Iτ
2l )
]}

+erεt
n∑

k=1

rν1k
{
ε|eI1k |

r
+ |eI1k |

r−1sgn(eI1k )
[
− (d1k

+π I1k )e
I
1k +

m∑
l=1

aR1lkF
I
1l(e

R
2l, e

I
2l)+

m∑
l=1

aI1lkF
R
1l(e

R
2l, e

I
2l)

+

m∑
l=1

bR1lkF
I
1l(e

Rτ
2l , e

Iτ
2l )+

m∑
l=1

bI1lkF
R
1l(e

Rτ
2l , e

Iτ
2l )
]}

+
1

1− ρ1

n∑
k=1

m∑
l=1

erεtξ1kδ1k
{
|FR

1l(e
R
2l, e

I
2l)|

rerετ2kl (t)

−(1− τ̇2kl(t))|FR
1l(e

Rτ
2l , e

Iτ
2l )|

r
}
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+
1

1− ρ1

n∑
k=1

m∑
l=1

erεtν1kη1k
{
|F I

1l(e
R
2l, e

I
2l)|

rerετ2kl (t)

−(1− τ̇2kl(t))|F I
1l(e

Rτ
2l , e

Iτ
2l )|

r
}

+erεt
m∑
l=1

rξ2l
{
ε|eR2l |

r
+ |eR2l |

r−1sgn(eR2l)
[
− (d2l

+πR2l)e
R
2l +

n∑
k=1

aR2klF
R
2k (e

R
1k , e

I
1k )−

n∑
k=1

aI2klF
I
2k (e

R
1k , e

I
1k )

+

n∑
k=1

bR2klF
R
2k (e

Rτ
1k , e

Iτ
1k )−

n∑
k=1

bI2klF
I
2k (e

Rτ
1k , e

Iτ
1k )
]}

+erεt
m∑
l=1

rν2l
{
ε|eI2l |

r
+ |eI2l |

r−1sgn(eI2l)
[
− (d2l

+π I2l)e
I
2l +

n∑
k=1

aR2klF
I
2k (e

R
1k , e

I
1k )+

n∑
k=1

aI2klF
R
2k (e

R
1k , e

I
1k )

+

n∑
k=1

bR2klF
I
2k (e

Rτ
1k , e

Iτ
1k )+

n∑
k=1

bI2klF
R
2k (e

Rτ
1k , e

Iτ
1k )
]}

+
1

1− ρ2

m∑
l=1

n∑
k=1

erεtξ2lδ2l
{
|FR

2k (e
R
1k , e

I
1k )|

rerετ1lk (t)

−(1− τ̇1lk (t))|FR
2k (e

Rτ
1k , e

Iτ
1k )|

r
}

+
1

1− ρ2

m∑
l=1

n∑
k=1

erεtν2lη2l
{
|F I

2k (e
R
1k , e

I
1k )|

rerετ1lk (t)

−(1− τ̇1lk (t))|F I
2k (e

Rτ
1k , e

Iτ
1k )|

r
}

≤ erεt
n∑

k=1

{
rξ1k (ε − d1k − πR1k )|e

R
1k |

r

+

m∑
l=1

aR1lkrξ1k |F
R
1l(e

R
2l, e

I
2l)||e

R
1k |

r−1

+

m∑
l=1

aI1lkrξ1k |F
I
1l(e

R
2l, e

I
2l)||e

R
1k |

r−1

+

m∑
l=1

bR1lkrξ1k |F
R
1l(e

Rτ
2l , e

Iτ
2l )||e

R
1k |

r−1

+

m∑
l=1

bI1lkrξ1k |F
I
1l(e

Rτ
2l , e

Iτ
2l )||e

R
1k |

r−1

+
erετ1

1− ρ1

m∑
l=1

ξ1kδ1k |FR
1l(e

R
2l, e

I
2l)|

r

−

m∑
l=1

ξ1kδ1k |FR
1l(e

Rτ
2l , e

Iτ
2l )|

r
}

+erεt
n∑

k=1

{
rν1k (ε − d1k − π I1k )|e

I
1k |

r

+

m∑
l=1

aR1lkrν1k |F
I
1l(e

R
2l, e

I
2l)||e

I
1k |

r−1

+

m∑
l=1

aI1lkrν1k |F
R
1l(e

R
2l, e

I
2l)||e

I
1k |

r−1

+

m∑
l=1

bR1lkrν1k |F
I
1l(e

Rτ
2l , e

Iτ
2l )||e

I
1k |

r−1

+

m∑
l=1

bI1lkrν1k |F
R
1l(e

Rτ
2l , e

Iτ
2l )||e

I
1k |

r−1

+
erετ1

1− ρ1

m∑
l=1

ν1kη1k |F I
1l(e

R
2l, e

I
2l)|

r

−

m∑
l=1

ν1kη1k |F I
1l(e

Rτ
2l , e

Iτ
2l )|

r
}

+erεt
m∑
l=1

{
rξ2l(ε − d2l − πR2l)|e

R
2l |

r

+

n∑
k=1

aR2klrξ2l |F
R
2k (e

R
1k , e

I
1k )||e

R
2l |

r−1

+

n∑
k=1

aI2klrξ2l |F
I
2k (e

R
1k , e

I
1k )||e

R
2l |

r−1

+

n∑
k=1

bR2klrξ2l |F
R
2k (e

Rτ
1k , e

Iτ
1k )||e

R
2l |

r−1

+

n∑
k=1

bI2klrξ2l |F
I
2k (e

Rτ
1k , e

Iτ
1k )||e

R
2l |

r−1

+
erετ2

1− ρ2

n∑
k=1

ξ2lδ2l |FR
2k (e

R
1k , e

I
1k )|

r

−

n∑
k=1

ξ2lδ2l |FR
2k (e

Rτ
1k , e

Iτ
1k )|

r
}

+erεt
m∑
l=1

{
rν2l(ε − d2l − π I2l)|e

I
2l |

r

+

n∑
k=1

aR2klrν2l |F
I
2k (e

R
1k , e

I
1k )||e

I
2l |

r−1

+

n∑
k=1

aI2klrν2l |F
R
2k (e

R
1k , e

I
1k )||e

I
2l |

r−1

+

n∑
k=1

bR2klrν2l |F
I
2k (e

Rτ
1k , e

Iτ
1k )||e

I
2l |

r−1

+

n∑
k=1

bI2klrν2l |F
R
2k (e

Rτ
1k , e

Iτ
1k )||e

I
2l |

r−1

+
erετ2

1− ρ2

n∑
k=1

ν2lη2l |F I
2k (e

R
1k , e

I
1k )|

r

−

n∑
k=1

ν2lη2l |F I
2k (e

Rτ
1k , e

Iτ
1k )|

r
}
. (25)
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By using Lemma 1, one has

D+V (w(t), t)

≤ erεt
n∑

k=1

{
rξ1k (ε − d1k − πR1k )|e

R
1k |

r

+

m∑
l=1

aR1lkrξ1k
[1
r
|FR

1l(e
R
2l, e

I
2l)|

r
+
r − 1
r

(|eR1k |
r−1)

r
r−1

]
+

m∑
l=1

aI1lkrξ1k
[1
r
|F I

1l(e
R
2l, e

I
2l)|

r
+
r − 1
r

(|eR1k |
r−1)

r
r−1

]
+

m∑
l=1

bR1lkrξ1k
[1
r
|FR

1l(e
Rτ
2l , e

Iτ
2l )|

r
+
r − 1
r

(|eR1k |
r−1)

r
r−1

]
+

m∑
l=1

bI1lkrξ1k
[1
r
|F I

1l(e
Rτ
2l , e

Iτ
2l )|

r
+
r − 1
r

(|eR1k |
r−1)

r
r−1

]
+

erετ1

1− ρ1

m∑
l=1

ξ1kδ1k |FR
1l(e

R
2l, e

I
2l)|

r

−

m∑
l=1

ξ1kδ1k |FR
1l(e

Rτ
2l , e

Iτ
2l )|

r
}

+erεt
n∑

k=1

{
rν1k (ε − d1k − π I1k )|e

I
1k |

r

+

m∑
l=1

aR1lkrν1k
[1
r
|F I

1l(e
R
2l, e

I
2l)|

r
+
r − 1
r

(|eI1k |
r−1)

r
r−1

]
+

m∑
l=1

aI1lkrν1k
[1
r
|FR

1l(e
R
2l, e

I
2l)|

r
+
r − 1
r

(|eI1k |
r−1)

r
r−1

]
+

m∑
l=1

bR1lkrν1k
[1
r
|F I

1l(e
Rτ
2l , e

Iτ
2l )|

r
+
r − 1
r

(|eI1k |
r−1)

r
r−1

]
+

m∑
l=1

bI1lkrν1k
[1
r
|FR

1l(e
Rτ
2l , e

Iτ
2l )|

r
+
r − 1
r

(|eI1k |
r−1)

r
r−1

]
+

erετ1

1− ρ1

m∑
l=1

ν1kη1k |F I
1l(e

R
2l, e

I
2l)|

r

−

m∑
l=1

ν1kη1k |F I
1l(e

Rτ
2l , e

Iτ
2l )|

r
}

+erεt
m∑
l=1

{
rξ2l(ε − d2l − πR2l)|e

R
2l |

r

+

n∑
k=1

aR2klrξ2l
[1
r
|FR

2k (e
R
1k , e

I
1k )|

r
+
r − 1
r

(|eR2l |
r−1)

r
r−1

]
+

n∑
k=1

aI2klrξ2l
[1
r
|F I

2k (e
R
1k , e

I
1k )|

r
+
r − 1
r

(|eR2l |
r−1)

r
r−1

]
+

n∑
k=1

bR2klrξ2l
[1
r
|FR

2k (e
Rτ
1k , e

Rτ
1k )|

r
+
r − 1
r

(|eR2l |
r−1)

r
r−1

]
+

n∑
k=1

bI2klrξ2l
[1
r
|F I

2k (e
Rτ
1k , e

Rτ
1k )|

r
+
r − 1
r

(|eR2l |
r−1)

r
r−1

]

+
erετ2

1− ρ2

n∑
k=1

ξ2lδ2l |FR
2k (e

R
1k , e

I
1k )|

r

−

n∑
k=1

ξ2lδ2l |FR
2k (e

Rτ
1k , e

Iτ
1k )|

r
}

+erεt
m∑
l=1

{
rν2l(ε − d2l − π I2l)|e

I
2l |

r

+

n∑
k=1

aR2klrν2l
[1
r
|F I

2k (e
R
1k , e

I
1k )|

r
+
r − 1
r

(|eI2l |
r−1)

r
r−1

]
+

n∑
k=1

aI2klrν2l
[1
r
|FR

2k (e
R
1k , e

I
1k )|

r
+
r − 1
r

(|eI2l |
r−1)

r
r−1

]
+

n∑
k=1

bR2klrν2l
[1
r
|F I

2k (e
Rτ
1k , e

Iτ
1k )|

r
+
r − 1
r

(|eI2l |
r−1)

r
r−1

]
+

n∑
k=1

bI2klrν2l
[1
r
|FR

2k (e
Rτ
1k , e

Iτ
1k )|

r
+
r − 1
r

(|eI2l |
r−1)

r
r−1

]
+

erετ2

1− ρ2

n∑
k=1

ν2lη2l |F I
2k (e

R
1k , e

I
1k )|

r

−

n∑
k=1

ν2lη2l |F I
2k (e

Rτ
1k , e

Iτ
1k )|

r
}

= erεt
n∑

k=1

{
rξ1k (ε − d1k − πR1k )|e

R
1k |

r

+rν1k (ε − d1k − π I1k )|e
I
1k |

r

+

m∑
l=1

[
aR1lkξ1k + a

I
1lkν1k+

erετ1

1− ρ1
ξ1kδ1k

]
|FR

1l(e
R
2l, e

I
2l)|

r

+

m∑
l=1

[
aI1lkξ1k + a

R
1lkν1k+

erετ1

1− ρ1
ν1kη1k

]
|F I

1l(e
R
2l, e

I
2l)|

r

+

m∑
l=1

ξ1k

[
aR1lk + a

I
1lk + b

R
1lk + b

I
1lk

]
(r − 1)|eR1k |

r

+

m∑
l=1

ν1k

[
aR1lk + a

I
1lk + b

R
1lk + b

I
1lk

]
(r − 1)|eI1k |

r

+

m∑
l=1

[
bR1lkξ1k + b

I
1lkν1k

]
|FR

1l(e
Rτ
2l , e

Iτ
2l )|

r

−

m∑
l=1

ξ1kδ1k |FR
1l(e

Rτ
2l , e

Iτ
2l )|

r

+

m∑
l=1

[
bI1lkξ1k + b

R
1lkν1k

]
|F I

1l(e
Rτ
2l , e

Iτ
2l )|

r

−

m∑
l=1

ν1kη1k |F I
1l(e

Rτ
2l , e

Iτ
2l )|

r
}

+erεt
m∑
l=1

{
rξ2l(ε − d2l − πR2l)|e

R
2l |

r

+rν2l(ε − d2l − π I2l)|e
I
2l |

r
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+

n∑
k=1

[
aR2klξ2l + a

I
2lkν2l +

erετ2

1− ρ2
ξ2lδ2l

]
|FR

2k (e
R
1k , e

I
1k )|

r

+

n∑
k=1

[
aI2klξ2l + a

R
2lkν2l +

erετ2

1− ρ2
ν2lη2l

]
|F I

2k (e
R
1k , e

I
1k )|

r

+

n∑
k=1

ξ2l

[
aR2kl + a

I
2kl + b

R
2kl + b

I
2kl

]
(r − 1)|eR2l |

r

+

n∑
k=1

ν2l

[
aR2kl + a

I
2kl + b

R
2kl + b

I
2kl

]
(r − 1)|eI2l |

r

+

n∑
k=1

[
bR2klξ2l + b

I
2klν2l

]
|FR

2k (e
Rτ
1k , e

Iτ
1k )|

r

−

n∑
k=1

ξ2lδ2l |FR
2k (e

Rτ
1k , e

Iτ
1k )|

r

+

n∑
k=1

[
bI2klξ2l + b

R
2klν2l

]
|F I

2k (e
Rτ
1k , e

Iτ
1k )|

r

−

n∑
k=1

ν2lη2l |F I
2k (e

Rτ
1k , e

Iτ
1k )|

r
}
. (26)

Based on Assumption 1, δ1k = bR1lk + (v1k/ξ1k )bI1lk , η1k =
bR1lk + (ξ1k/v1k )bI1lk , δ2l = bR2kl + (v2l/ξ2l)bI2kl and η2l =
bR2kl + (ξ2l/v2l)bI2kl , we can further get that

D+V (w(t), t)

≤ erεt
n∑

k=1

{
rξ1k (ε − d1k − πR1k )|e

R
1k |

r

+rν1k (ε − d1k − π I1k )|e
I
1k |

r

+

m∑
l=1

2r−1
[
aR1lkξ1k +

erετ1

1− ρ1
ξ1kδ1k + aI1lkν1k

]
×

[
(λRR1l )

r
|eR2l |

r
+ (λRI1l )

r
|eI2l |

r
]

+

m∑
l=1

2r−1
[
aI1lkξ1k +

erετ1

1− ρ1
ν1kη1k + aR1lkν1k

]
×

[
(λIR1l )

r
|eR2l |

r
+ (λII1l)

r
|eI2l |

r
]

+

m∑
l=1

ξ1k

[
aR1lk + a

I
1lk + b

R
1lk + b

I
1lk

]
(r − 1)|eR1k |

r

+

m∑
l=1

ν1k

[
aR1lk + a

I
1lk + b

R
1lk + b

I
1lk

]
(r − 1)|eI1k |

r
}

+erεt
m∑
l=1

{
rξ2l(ε − d2l − πR2l)|e

R
2l |

r

+rν2l(ε − d2l − π I2l)|e
I
2l |

r

+

n∑
k=1

2r−1
[
aR2klξ2l +

erετ2

1− ρ2
ξ2lδ2l + aI2klν2l

]
×

[
(λRR2k )

r
|eR1k |

r
+ (λRI2k )

r
|eI1k |

r
]

+

n∑
k=1

2r−1
[
aI2klξ2l +

erετ2

1− ρ2
ν2lη2l + aR2klν2l

]
×

[
(λIR2k )

r
|eR1k |

r
+ (λII2k )

r
|eI1k |

r
]

+

n∑
k=1

ξ2l

[
aR2kl + a

I
2kl + b

R
2kl + b

I
2kl

]
(r − 1)|eR2l |

r

+

n∑
k=1

ν2l

[
aR2kl + a

I
2kl + b

R
2kl + b

I
2kl

]
(r − 1)|eI2l |

r
}

= erεt
n∑

k=1

{
rξ1k (ε − d1k − πR1k )

+

m∑
l=1

[(
aR2klξ2l + a

I
2klν2l +

erετ2

1− ρ2
ξ2lδ2l)(λRR2k )

r

+(aI2klξ2l + a
R
2kl +

erετ2

1− ρ2
ν2lη2l)(λIR2k )

r)2r−1
+ξ1k (aR1lk + a

I
1lk + b

R
1lk + b

I
1lk )(r − 1)

]}
|eR1k |

r

+erεt
n∑

k=1

{
rν1k (ε − d1k − π I1k )

+

m∑
l=1

[(
(aR2klξ2l + a

I
2klν2l +

erετ2

1− ρ2
ξ2lδ2l)(λRI2k )

r

+(aI2klξ2l + a
R
2klν2l +

erετ2

1− ρ2
ν2lη2l)(λII2k )

r)2r−1
+ν1k (aR1lk + a

I
1lk + b

R
1lk + b

I
1lk )(r − 1)

]}
|eI1k |

r

+erεt
m∑
l=1

{
rξ2l(ε − d2l − πR2l)

+

n∑
k=1

[(
(aR1lkξ1k + a

I
1lkν1k +

erετ1

1− ρ1
ξ1kδ1k )(λRR1l )

r

+(aI1lkξ1k + a
R
1lkν1k +

erετ1

1− ρ1
ν1kη1k )(λIR1l )

r)2r−1
+ξ2l(aR2kl + a

I
2kl + b

R
2kl + b

I
2kl)(r − 1)

]}
|eR2l |

r

+erεt
m∑
l=1

{
rν2l(ε − d2l − π I2l)

+

n∑
k=1

[(
(aR1lkξ1k + a

I
1lkν1k +

erετ1

1− ρ1
ξ1kδ1k )(λRI1l )

r

+(aI1lkξ1k + a
R
1lkν1k +

erετ1

1− ρ1
ν1kη1k )(λII1l)

r)2r−1
+ν2l(aR2kl + a

I
2kl + b

R
2kl + b

I
2kl)(r − 1)

]}
|eI2l |

r . (27)

Then, according to the inequalities (22), we have

D+V (w(t), t) ≤ 0. (28)

Hence,

V (w(t), t) ≤ V (w(0), 0), t ≥ 0. (29)
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Moreover,

V (w(0), 0)

≤

{
max

1≤k≤2n
ζ1k +

τ1erετ1

1− ρ1
λr1

2m∑
l=1

ζ1l max
1≤l≤2m

β1l

+ max
1≤l≤2m

ζ2l +
τ2erετ2

1− ρ2
λr2

2n∑
k=1

ζ2k max
1≤k≤2n

β2k

}
‖8‖r

= 5‖8‖r

V (w(t), t)

≥

2n∑
k=1

ζ1k |w1k (t)|rerεt +
2m∑
l=1

ζ2l |w2l(t)|rerεt

≥

{
min

1≤k≤2n
ζ1k

}
erεt

2n∑
k=1

|w1k (t)|r

+

{
min

1≤l≤2m
ζ2l

}
erεt

2m∑
l=1

|w2l(t)|r

≥ γ erεt
{ 2n∑
k=1

|wk (t)|r +
2m∑
l=1

|wl(t)|r
}

(30)

where λ1 = max{λRR1l , λ
RI
1l , λ

IR
1l , λ

II
1l}, λ2 = max{λRR2k , λ

RI
2k ,

λIR2k , λ
II
2k}, γ = min{min1≤k≤2n ζ1k ,min1≤l≤2m ζ2l} and

5 = max1≤k≤2n ζ1k +
τ1 erετ1
1−ρ1

λr1
∑2m

l=1 ζ1l max1≤l≤2m β1l +

max1≤l≤2m ζ2l +
τ2 erετ2
1−ρ2

λr2
∑2n

k=1 ζ2k max1≤k≤2n β2k .

From (29)-(30), we have

γ erεt
{ 2n∑
k=1

|wk (t)|r +
2m∑
l=1

|wl(t)|r
}
≤ 5‖8‖r (31)

that is,{ 2n∑
k=1

|wk (t)|r +
2m∑
l=1

|wl(t)|r
} 1
r
≤ αe−εt ‖ 8 ‖ (32)

where

α =
(5
γ

) 1
r
≥ 1. (33)

Thus, by Definition 1, systems (1) and (4) can achieve the
exponential anti-synchronization. This completes the proof.
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