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ABSTRACT This paper presents a novel off-line iterative learning control algorithm for multiple-input–
multiple-output time-varying discrete stochastic systems. Using the steady-state Kalman filtering method,
we provide a novel framework for the selection of optimal/sub-optimal fixed learning gain matrices in
real applications, which is convenient for engineers. Meanwhile, this framework considerably decreases
the calculation about the operations of inverting matrix by introducing a matrix Riccati equation at every
iteration. It is strictly proved that the input error covariance converges to its steady-state value asymptotically
in the mean square sense, and accordingly, the tracking error covariance also converges. The numerical
simulations verify the theoretical results.

INDEX TERMS Iterative learning control, steady-state Kalman filtering, sub-optimal fixed learning gain,
matrix Riccati equation.

I. INTRODUCTION
Iterative learning control (ILC) originates from the pio-
neering work of Arimoto et al. [1] in terms of track-
ing in robotic systems. The term ‘‘iterative learning’’
stems from ‘‘practice makes perfect’’. By capitalizing on
the errors in previous iterations, an ILC algorithm can
continuously correct the control input to achieve perfect
tracking performance. Thanks to its simple but effective con-
trol structure, ILC has been widely applied various systems
such as robotic systems [2], [3], multi-agent systems [4]–[6],
quantized control systems [7]–[9], event-triggered control
systems [10], [11] and networked control systems [12], [13].

From recent surveys [14], [15], it is observed that an over-
whelming majority of ILC algorithms have employed on-line
real-time learning in fixing the problems of actual engineer-
ing. Theoretically, it is natural to study convergence and
stability of robust ILC, adaptive ILC, and stochastic ILC.
Nevertheless, in practical applications, we usually implement
a fixed learning structure so as to save the computation burden
and seek for fast convergence rate; however, few literature
focuses on off-line optimality of ILC methods according to
the selection of learning gain matrices. In [16], [17], off-line
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ILC schemes were applied to seek the optimal gain of PID.
In [18], [19], ILC mechanism, available to produce initial
input signals through an off-line optimal tuning method, was
employed to achieve the desired final output.

Most ILC algorithms update their input signals u(t, i)
through an iterative form u(t, i + 1) = u(t, i) + Kf (e(·, i))
(t and i is the iteration number and time index) and the
learning gain matrix K is usually required to meet certain
necessary conditions such as ‖I−KL‖ < 1 (where the matrix
L is an input-output-coupling matrix of the system) in a bid to
guarantee the convergence of ILC. This necessary condition
serves as the selection guideline of learning gain matrix.
However, it is less discussedmore specific design of the learn-
ing gainmatrixK according to some given optimization index
for practical implementations. For all the tangible advances
in the online computation methods, the optimal/sub-optimal
learning gain matrixK is generally dependent on the iteration
number and time instant. Notably, it is not always convenient
for engineers to adopt an iteration-time-varying gain matrix
in practice. Thus, we are motivated to find a proper fixed
learning gain matrix K according to some specified index.
In other words, our main objective in this paper is to pro-
vide an optimal/sub-optimal off-line computed learning gain
matrix.
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Especially in the era featured ‘‘big data’’, many indus-
trial processes produce a huge amount of input/output (I/O)
data. Those online ILC algorithms are required to solve
inverse matrices with high dimensions continuously to gen-
erate the learning gain matrix, resulting in a considerably
large calculation burden. To solve this problem, the steady-
state Kalman filtering technique has been proved an effec-
tive approach [20]. In particular, this technique replaces the
varying Kalman gain matrix with a constant matrix, con-
sequently decreasing the online computation time while
applied to big data processes. In this direction, it is important
to establish a steady-state gain matrix according to some
specified index. Meanwhile, similar results are derived for
single-input-single-output systems [21], [22], undoubtedly
motivating us to consider an off-line ILC for general multi-
input-multi-output (MIMO) systems.

Motivated by the above observations, this paper consid-
ers to establish an off-line learning framework with a con-
stant learning gain matrix, which is designed according to
the steady-state Kalman filtering theory. As a result, this
framework is proved effective in increasing convergence rate
and achieving acceptable tracking performance. Comparing
with the existing literature, our novelties are summarized as
follows:
• A novel ILC algorithm is proposed on the basis of the
steady-state Kalman filtering method.

• The calculation burden is remarkably decreased by solv-
ing a matrix Riccati equation off-line.

• The advantage of the proposed algorithm compared
those with the arbitrarily selected constant gain matrix
is demonstrated by simulations.

The rest of this paper is organized as follows. The problem
formulation is given in Section II. In Section III, deriva-
tions of the ILC algorithm based on a 2D model is pre-
sented. A matrix Riccati equation and the generation of the
steady-state learning gain matrix are given in Section IV.
Convergence results of the proposed scheme is provided in
Section V. Illustrative simulations are given in Section VI.
Section VII concludes the paper.

II. PROBLEM FORMULATION
Consider the following discrete time-varying linear MIMO
system:

x(t + 1, i) = A(t)x(t, i)+ B(t)u(t, i)+ η(t, i),

y(t, i) = C(t)x(t, i)+ ξ (t, i), (1)

where i denotes the iteration number and t ∈ {0, 1, . . . ,T }
with T being the trial length. The input vector, state vector
and output vector are denoted by u(t, i) ∈ Rk , x(t, i) ∈ Rs

and y(t, i) ∈ Ro, respectively, and A(t) ∈ Rs×s, B(t) ∈ Rs×k ,
andC(t) ∈ Ro×s are systemmatrices with proper dimensions.
η(t, i) ∈ Rs and ξ (t, i) ∈ Ro are stochastic system noises and
measurement noises, respectively.

For further analysis, the following assumptions are
imposed for system (1).

Assumption 1: For all t, the matrix C(t + 1)B(t) is of
full-column rank.
Assumption 2: The desired output trajectory yd (t) can be

realized in the sense that there exists a unique ud (t) and xd (t)
satisfying the following equation:

xd (t + 1) = A(t)xd (t)+ B(t)ud (t),

yd (t) = C(t)xd (t). (2)

Assumption 3: Both stochastic system noises {η(t, i)} and
measurement noises {ξ (t, i)} are independent and identi-
cally distributed random variables with zero-mean nor-
mal distribution such that E(η(t, i)ηT (t, i)) = Qt is a
positive-semidefinite matrix and E(ξ (t, i)ξT (t, i)) = Rt is a
positive-definite matrix, ∀i. Moreover, {η(t, i)} is independent
of {ξ (t, i)}, ∀t, i.
Remark 1: From Assumption 1, the system relative degree

is one. The dimension of the system output is not smaller than
that of the system input, i.e., o ≥ k. Hence, according to the
desired reference, a unique input can be defined as follows:

ud (t) = [(C(t + 1)B(t))TC(t + 1)B(t)]−1(C(t + 1)B(t))T

× [yd (t + 1)− C(t + 1)A(t)xd (t)].

Assumption 3 implies E(η(t, i)ξT (t + 1, i)) = 0.
Assumption 4: The initial state error xd (0) − x(0, i) and

the initial input error ud (t) − u(t, 0) are random variables,
subject to zero-mean normal distribution such thatE[(xd (0)−
x(0, i))(xd (0) − x(0, i))T ] is a positive-semidefinite matrix
and E[(ud (t) − u(t, 0))(ud (t) − u(t, 0))T ] is a symmetrical
positive-definite matrix. In addition, xd (0) − x(0, i) have no
correlation with ud (t)− u(t, 0), η(0, i) and ξ (0, i).

The control objective of this paper is to derive a suitable
constant learning gain matrix such that an ILC algorithm is
established to generate the input signal enabling that the out-
put approximate to the desired trajectory as iteration number
increases. The details are given in the next section.

III. CONVENTIONAL KALMAN FILTERING-BASED
FRAMEWORK
In this section, we revisit the derivations in [24], [25] for
the iteration-time-varying Kalman filtering-based ILC algo-
rithm. These derivations establish the basis of our framework
in the next section.

The tracking error e(t, i) is defined as follows:

e(t, i) = yd (t)− y(t, i), 0 < t 6 N .

The learning update is given by

u(t, i+ 1) = u(t, i)+ K (t, i)e(t + 1, i) (3)

where K (t, i) ∈ Rk×o is the iteration- and time-dependent
learning gain matrix.
The following 2D model was given in [24], [25]:[
δu(t, i+ 1)
δx(t + 1, i)

]
=

[
I − K (t, i)C+B(t) −K (t, i)C+A(t)

B(t) A(t)

] [
δu(t, i)
δx(t, i)

]
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+

[
K (t, i)C+ K (t, i)
−I 0

] [
η(t, i)

ξ (t + 1, i)

]
. (4)

whereC+ , C(t+1), δu(t, i) = ud (t)−u(t, i), and δx(t, i) =
xd (t)− x(t, i).
For the sake of simplicity, let

X+ =
[
δu(t, i+ 1)
δx(t + 1, i)

]
, X =

[
δu(t, i)
δx(t, i)

]
, Z =

[
η(t, i)

ξ (t + 1, i)

]
and

8 =

[
I − K (t, i)C+B(t) −K (t, i)C+A(t)

B(t) A(t)

]
,

9 =

[
K (t, i)C+ K (t, i)
−I 0

]
.

Then, (4) is reduced as

X+ = 8X +9Z . (5)

Applying the conventional Kalman filtering technique,
we attempt to search an optimal learning gain matrix K (t, i),
which minimizes the trace of the error covariance matrix
P+ = E[X+X+T ]. From (5), we obtain

P+ = E[(8X +9Z )(8X +9Z )T ]
= 8E[XXT ]8T

+8E[XZT ]9T

+9E[ZXT ]8T
+9E[ZZT ]9T . (6)

Let

P = E[XXT ] =
[
P11,i P12,i
PT12,i P22,i

]
Q = E[ZZT ] =

[
Qt 0
0 Rt+1

]
,

where P11,i=E[δu(t, i)δuT (t, i)], P12,i=E[δu(t, i)δxT (t, i)],
P22,i = E[δx(t, i)δxT (t, i)], Qt = E[η(t, i)ηT (t, i)], Rt+1 =
E[ξ (t + 1, i)ξT (t + 1, i)].

Fcctness, define A = A(t), B = B(t), C+ = C(t+1), Ki =
K (t, i), 81 = I − KiC+B, 82 = KiC+A, 91 = −KiC+B,
and 92 = −KiC+A. Expanding the terms on the right-hand
side of (6), we obtain the equation displayed at the top of the
next page. As a consequence, the trace of P+ in (6) can be
calculated as follows:

trace(P+)

= trace{(81P11,i +82PT12,i)8
T
1 + (81P12,i +82P22,i)8T

2

+ (BP11,i + APT12,i)B
T
+ Qt + (BP12,i + AP22,i)AT

+KiC+Qt (KiC+)T + KiRt+1KT
i }.

Let F1 =
(
C+B, C+A

)
, F2 =

(
B, A

)
, and F3 =

(
I , 0).

Then, the above equation becomes

trace(P+) = trace{KiF1PFT1 K
T
i + F2PF

T
2 + F3PF

T
3

−KiF1PFT3 − F3PF
T
1 K

T
i

+Ki[(C+QtC+
T
+ Rt+1)]KT

i + Qt }. (7)

Therefore, calculating the derivative of trace(P+) with respect
to Ki leads to

∂trace(P+)
∂Ki

= 2KiF1PFT1 − 2F3PFT1

+ 2Ki[(C+QtC+
T
+ Rt+1)].

Letting ∂trace(P+)
∂Ki

= 0 yields that

2KiF1PFT1 − 2F3PFT1 + 2Ki[(C+QtC+
T
+ Rt+1)] ≡ 0.

Then, the optimal learning gain matrix Ki, which is
time-varying and iteration-varying, is given by:

Ki = F3PFT1 0
−1, (8)

where 0 = (F1PFT1 + C
+QtC+

T
+ Rt+1).

From (8), it is worth pointing out that Ki is an optimal
learning gain matrix by applying the conventional Kalman
filtering technique, whereas in real applications Ki is likely
replaced with a fixed gain to save control efforts. Therefore,
we are interested in establishing an ILC algorithm with a
fixed gain, which is optimal/sub-optimal according to certain
index. This is the major contribution in this study.

IV. STEADY-STATE KALMAN FILTERING-BASED
FRAMEWORK
In this section, we apply the steady-state (or limiting) Kalman
filtering technique to calculate the limiting learning gain
matrix

−→
K , which is employed to replace Ki in the ILC

algorithm. This replacement avoids online calculation of the
iteration-dependent gain matrix as in the previous section and
thus saves computation resources. Furthermore, we show that
this limiting gain matrix is an optimal/sub-optimal selection
among the set of constant learning gain matrices.

Using the derivations in [24], [25], we obtain

δx(t, i) =

[
t−1∏
m=0

AT (m)

]T
δx(0, i)

+

t−1∑
l=0

[
t−2∏
n=l

AT (n+ 1)

]T
[B(l)δu(l, i)− η(l, i)],

δu(t, i) =

[
i−1∏
m=0

ϒT
1,m

]T
δu(t, 0)

+

i−1∑
m=0

[
i−2∏
n=l

ϒT
1,n+1

]T
[ϒ2,lδx(t, l)− ht,l].

Define

ht,l , KiC+η(t, i)+ Kiξ (t + 1, i),

ϒ1,i , I − KiC+B(t),

ϒ2,i , −KiC+A(t).

If m > i− 2, we denote
∏i−2

k=m[item] = I . By Assumptions 3
and 4, there is irrelevance among δx(0.i), δu(0, i), η(0 6 m 6
t − 1, i), η(t, 0 6 m 6 i − 1) and ξ (t + 1, 0 6 m 6 i − 1).
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8E[XXT ]8T
=

[
81 82
B A

] [
P11,i P12,i
PT12,i P22,i

] [
8T

1 BT

8T
2 AT

]

=


(
81P11,i8T

1 +82PT12,i8
T
1

+81P12,i8T
2 +82P22,i8T

2

) (
81P11,iBT +82PT12,iB

T

+81P12,iAT +82P22,iAT

)
(
BP11,i8T

1 + AP
T
12,i8

T
1

+ BP12,i8T
2 + AP22,i8

T
2

) (
BP11,iBT + APT12,iB

T

+ BP12,iAT + AP22,iAT

)


9E[ZZT ]9T
=

[
KiC+ Ki
−I 0

] [
Qt 0
0 Rt+1

] [
(KiC+)T −I
(Ki)T 0

]

=


(
KiC+Qt (KiC+)T

+ KiRt+1(Ki)T

)
− KiC+Qt

−Qt (KiC+)T Qt

.

Furthermore, the term δu(0 6 m 6 t − 1, i) is irrelevant to
δx(t, 0 6 m 6 i − 1). This is because there is no functional
relationship between these terms and anyone cannot represent
the other. Hence, we have P12,i = 0.

Rewriting (8) as

Ki = P11,iLT [LP11,iLT + S1,i]−1. (9)

The input error covariance matrix becomes

P11,i+1 = (I − KiL)P11,i(I − KiL)T + KiS
−1
1,i K

T
i , (10)

where S1,i = [(C+A)P22,i(C+A)T +C+QtC+
T
+ Rt+1] and

L = C+B.
Moreover, from (4), we can get

P11,i+1 = E[δu(t, i+ 1)δuT (t, i+ 1)]

= F3PFT3 + KiF1PF
T
1 K

T
i − KiF1PF

T
3

−F3PFT1 K
T
i + Ki(C

+QtC+
T
+ Rt+1)KT

i

= P11,i − KiLP11,i − P11,iLTKT
i

+Ki[LP11,iLT + S1,i]KT
i

= (I − KiL)P11,i. (11)

Obviously, even if the system model (1) is simple, it is imper-
ative to invert a matrix at each iteration to get the optimal gain
Ki in the equation (9). In real applications, it is incredibly
imperative to replace Ki in equation (9) by a constant gain
matrix so as to reduce calculation, thereby saving computa-
tion time.

To this end, we borrow the idea of steady-state Kalman
filtering theory. In other words, a steady-state ILC framework
is provided by replacing Ki with its corresponding limit

−→
K .

Here,
−→
K is called the steady-state gain matrix.

We rewrite (3) as follows:

u(t, i+ 1) = u(t, i)+
−→
K e(t + 1, i). (12)

In [25], it is observed that the sequence Ki does converge
as the iteration number increases. In fact, tr‖Ki −

−→
K ‖2 tends

to zero exponentially. This observation, to certain extent, tells
us that the replacement of Ki with

−→
K may not affect the final

tracking performance much. However, due to the existence
of random noise, the input error will no longer retain a stable
convergence.

According to the definition of Ki in (9), in a bid to study
the convergence of Ki, it is necessary that we will study the
convergence of P11,i+1 := P11,i as i→∞.

From (9) and (10), we have

P11,i+1 = (I − KiL)P11,i(I − KiL)T + Ki(C+QtC+
T

+Rt+1)KT
i

= (I − KiL)(I − Ki−1L)P11,i−1(I − KiL)T

+Ki(C+QtC+
T
+ Rt+1)KT

i

= (I − KiL)[I − P11,i−1LT (LP11,i−1LT

+C+QtC+
T
+ Rt+1)−1L]P11,i−1(I − KiL)T

+Ki(C+QtC+
T
+ Rt+1)KT

i .

Because P11,i+1 := P11,i as i → ∞, the above equation can
be rewritten as follows:

P11,i = (I − KiL)(P11,i−1 − P11,i−1LT (LP11,i−1LT

+C+QtC+
T
+ Rt+1)−1LP11,i−1)(I − KiL)T

+Ki(C+QtC+
T
+ Rt+1)KT

i . (13)

Remark 2: To further simplify the calculation, the term S1,i
in (9) and (10) can be reduced to C+QtC+

T
+Rt+1, where the

term (C+A)P22,i(C+A)T is omitted. Such calculation results
in a sub-optimal selection, as has been proved in [24]. Details
are omitted here for saving space.

By setting

�(T ) = H (T − TLT (LTLT + Q′)−1LT )H + KiQ′KT
i , (14)

whereH = I−KiL andQ′ = C+QtC+
T
+Rt+1, it is apparent

that P11,i satisfies the following recursion,

P11,i = �(P11,i−1). (15)

This relation is known as a matrix Riccati equation. While
P11,i→

−→
P as i→∞,

−→
P meets the above relation, i.e.,
−→
P = �(

−→
P ). (16)
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Consequently, we can solve the above equation for
−→
P itera-

tively and define
−→
K =

−→
P LT (L

−→
P LT + C+QtC+

T
+ Rt+1)−1. (17)

Accordingly, Ki →
−→
K as i → ∞. Because P11,i is a

symmetric matrix, so is �(P11,i).
Remark 3: From (14), we notice the noise term KiQtKT

i in
the matrix Riccati equation. It is difficult for us to solve this
equation because Ki is coupled in this equation. For practical
applications, we solve the equation iteratively. In particular,
we first set the term KiQtKT

i as zero, because it has been
proved Ki → 0 uniformly in [0, n] as i → ∞ [25]. Then,
we solve the Riccati equation and generate a corresponding
gain matrix K∗. Next, we replace Ki by K∗ to solve the
Riccati equation again. Repeating the above process leads
to
−→
P and

−→
K .

V. CONVERGENCE ANALYSIS
In this section, convergence of the proposed framework is
analyzed in detail. We give the following claim first.
Claim 1: Suppose that both matrices

−→
P and S1,i are sym-

metric and positive definite, then for all iterations i and t ∈ T ,
we can easily get,

I −
−→
K L = [I +

−→
P LT S−11,i L]

−1.

The proof is similar to that of Claim 1 in [25] and thus is
omitted.
Lemma 1: If the matrix L is of full-column rank, adopting

the ILC framework defined by (12), (14), and (17), the eigen-
values of (I −

−→
K L) are positive and less than one.

Proof: Notice that the matrix
−→
P ia a symmetric

positive-definite matrix. DenoteD = I−
−→
K L. Using Claim 1,

we haveD = [I+
−→
P LT S−11,i L]

−1. Because L is of full-column
rank and S1,i is a symmetric positive-definite matrix, we have
that LT S−11,i L is symmetric and positive definite. Hence,
−→
P LT S−11,i L is symmetric and all eigenvalues of

−→
P LT S−11,i L

are positive. Then, the eigenvalues of I +
−→
P LT S−11,i M are

greater than one. Therefore, these eigenvalues of I −
−→
K L are

less than one. �
Remark 4: Since all the eigenvalues of (I −

−→
K L) are

positive and strictly less than one over the entire time interval
t ∈ [0, n], there exists a consistent norm ‖ · ‖ such that,
∀t ∈ [0, n]

‖I −
−→
K L‖ < 1. (18)

Theorem 1: If there exists a solution P for the following
discrete algebraic Riccati equation (DARE):

P = ATPA− ATPB(BTPB+ R)−1BTPA+ Q

with P = P11,i =
−→
P , A = H, B = L,R = Q′ and Q =

K∗Q′K∗T , then lim
i→∞

P11,i =
−→
P .

Proof: According to (11) and Claim 1, we can easily
obtain

−→
P = P11,i+1 ≤ P11,i ≤ · · · ≤ P11,0 [25]. In order to

prove the theorem, we will introduce the formula

d
ds
A−1 = −A−1[

d
ds
A(s)]A−1(s).

Setting T (s) = P11,i−1 + s(P11,i−1 − P11,i), we can obtain
�(P11,i−1) ≥ �(P11,i), shown at the bottom of the next
page. Notice that P11,1 = E[δu(t, 1)δuT (t, 1)] ≥ 0.
Moreover, both P11,i and P11,0 are symmetric. According to
�(P11,i−1) ≥ �(P11,i), we can obtain

P11,2 = �(P11,1) ≤ P11,1
· · ·

−→
P = P11,i ≤ �(P11,i−1) ≤ P11,i−1

Hence,{P11,i} is monotonic decreasing and bounded
by
−→
P . �
Remark 5: The value of

−→
P is a small non-negative con-

stant matrix,
−→
P ≥ 0. For different systems,

−→
P also varies.

It is feasible for practical applications while algorithms with
−→
P offer sufficient tracking precision.
Lemma 2 [27]: For the following DARE:

ATPA− P− ATPB(BTPB+ R)−1BTPA+ Q = 0

with Q = CTC, if (A,B) is stabilizable and (A,C) is observ-
able, then there exists a unique stabilizing solution P = PT >
0 for the above equation.
Theorem 2: In the proposed steady-state Kalman filtering-

based ILC framework, if L is of full rank, then there always
exists a unique positive definite solution P of DARE given in
Theorem 1.

Proof: Let us define matrices

Uii =
√
Qii, Uij = 0, when i 6= j

A := H ; B = C+B = L; C := U .

Because B is a full-rank matrix and is invertible, there exists
a matrix K such that λ(A − BK ) < 0. Since A and C
are non-zero diagonal matrices, the pair (A,C) is detectable.
Hence, by Lemma 2, the conclusion is proved. �
Remark 6: From [28], in addition to the conditions of

Lemma 2, if the pair (A,B) is controllable, then we always
have λ(A − BK ) < 0. Since the pair (A,B) is controllable,
we can easily obtain λ(H − LK ) < 0.
Theorem 3: Assume that Assumptions 1-4 hold for system

(1) and apply the novel ILC algorithm defined by (12), (14),
and (17), then P11,i→

−→
P and

P22,i→

[
t−1∏
m=0

AT (m)

]T
E[δx(0, i)δxT (0, i)]

[
t−1∏
m=0

AT (m)

]

+

t−1∑
l=0

[
t−2∏
n=l

AT (n+1)

]T
(Qt+

−→
P )

t−1∑
l=0

[
t−2∏
n=l

AT (n+1)

]
as i→∞.

Proof: From Theorem 1, we obtain lim
i→∞

P11,i =

lim
i→∞

E[δu(t, i)δuT (t, i)] = −→P .

VOLUME 7, 2019 99375



T. Zhang et al.: Novel Iterative Learning Control Approach Based on Steady-State Kalman Filtering

Furthermore,

δx(t, i) =

[
t−1∏
m=0

AT (m)

]T
δx(0, i)

+

t−1∑
l=0

[
t−2∏
n=l

AT (n+ 1)

]T
· [B(l)δu(l, i)− η(l, i)]

Notice that xd (0)−x(0, i) is uncorrelated with ud (t)−u(t, 0),
η(0, i), and ξ (0, i), thus we obtain the equation displayed at
the bottom of this page. Using this property of lim

i→∞
P11,i =

lim
i→∞

E[δu(l, i)δuT (l, i)] = −→P leads to

E[δx(t, i)δxT (t, i)] =

[
t−1∏
m=0

AT (m)

]T
E[δx(0, i)δxT (0, i)]

·

[
t−1∏
m=0

AT (m)

]
+

t−1∑
l=0

[
t−2∏
n=l

AT (n+1)

]T

· (Qt +
−→
P )

t−1∑
l=0

[
t−2∏
n=l

AT (n+ 1)

]
.

The proof is completed. �
Remark 7: By Theorem 3, along with the increase of the

iteration number, P22,i converges to a fixed matrix. If the
system is free of noise and varying initial state, then Qt →
0 and P22,i → 0 as i → ∞. Furthermore, from (4),
we obtain

P22,i(t + 1) = AP22,i(t)AT + BP11,i(t)BT + Qt .

(19)
The specific algorithm is given as follows:

Algorithm 1 ILC Based on Steady-State Kalman Filtering
(1) The initial input error covariance P11,0(t) is designed as
zI with z > 0, for all t and the initial state error covariance
P22,i(0) is designed as zero diagonal matrix, for all i;
(2) using Equation (14), compute

−→
P11;

(3) using Equation (19), compute P22,i(t + 1);
(4) using Equation (17), compute learning gain

−→
K ;

(5) using Equation (12), update the control u(t, i+ 1);
(6) i = i + 1, repeat whole process until the stop rule is
satisfied.

VI. ILLUSTRATIVE SIMULATION
A. EXAMPLE 1
To illustrate the effectiveness of the novel ILC scheme,
we consider a time-varying linear MIMO system, where the
system matrices (A(t),B(t),C(t)) are given as follows:

A(t) =


3
50

sin(
3t
10

) −
1
10

3t
100

1
10

−
t
50

−
1
20

cos(
3t
10

)

1
10

1
10

1
10
+

2
25

cos(
3t
10

)

,

B(t) =


3
2
−

2
5
cos2(

2π t
5

) 0

t
50

t
50

0
1
5
sin(

2π t
5

)

,

C(t) =


2
5
+

1
5
sin2(

3π t
10

)
1
10

−
2
5

0
2
5

2
5
−

1
5
sin(

3π t
10

)

.

�(P11,i−1)−�(P11,i) =
∫ 1

0

d
ds
�(P11,i−1 + s(P11,i−1 − P11,i))

= H
{∫ 1

0

d
ds
{(P11,i−1 + s(P11,i−1 − P11,i))− (P11,i−1 + s(P11,i−1 − P11,i)LT

· [L((P11,i−1 + s(P11,i−1 − P11,i))LT + Q′]−1L(P11,i−1 + s(P11,i−1 − P11,i))}ds
}
HT

= H
{∫ 1

0
[P11,i−1 − P11,i − (P11,i−1 − P11,i)LT (LT (s)LT + Q′)−1LT (s)

−T (s)LT (LT (s)LT + Q′)−1L(P11,i−1 − P11,i)+ T (s)LT (LT (s)LT + Q′)−1

·L(P11,i−1 − P11,i)LT (LT (s)LT + Q′)−1LT (s)]ds
}
HT

= H
{∫ 1

0
[T (s)LT (LT (s)LT + Q′)−1L](P11,i−1 − P11,i)

· [T (s)LT (LT (s)LT + Q′)−1L]T ds
}
H

≥ 0.
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FIGURE 1. The desired trajectory and the output at the 30th iteration,
where the upper and lower plots correspond to the first and second
dimensions of the output.

The desired trajectory is presented in the following:

yd (t) =

 sin(
π t
8
)+

11
10
−

11
10

cos(
π t
6
)

− sin(
π t
8
)−

11
10
−

11
10

cos(
π t
6
)

, t ∈ Z50.

Both the stochastic system noise η(t, i) and mea-
surement noise ξ (t, i) are subject to normal distribution
N (0, 0.12).

The conventional online stochastic ILC based on Kalman
filtering method in [25] is also simulated for comparison.
These algorithms run for 100 iterations.

From Fig. 1, we can clearly see that the proposed
ILC algorithm performs acceptable tracking performance

FIGURE 2. Comparison of avgt∈[0,50]ρ(P11,i (t)) for the proposed
algorithm and Saab’s algorithm.

compared with the conventional stochastic ILC [25]. Fig. 2
illustrates that the proposed steady-state ILC has a faster
convergence rate than that of Saab’s algorithm; how-
ever, the convergence precision is not as good as Saab’s
algorithm. These observations coincide with our theoret-
ical analysis. Furthermore, to demonstrate the optimality
of the proposed ILC, we select two different fixed gain
matrices:

gain 1 =
[
0.05 0
0 0.05

]
and gain 2 =

[
0.1 0
0 0.1

]
.

Themaximum absolute tracking error profiles along the itera-
tion axis are provided in Figs. 3 and 4 for the first and second
dimension of the output, respectively, compared with those
generated by the proposed steady-state ILC algorithm. It is
observed that the tracking performance of the proposed algo-
rithm is significantly better than the other two.

E[δx(t, i)δxT (t, i)] =

[
t−1∏
m=0

AT (m)

]T
E[δx(0, i)δxT (0, i)]

[
t−1∏
m=0

AT (m)

]

+

t−1∑
l=0

[
t−2∏
n=l

AT (n+ 1)

]T
E {[B(l)δu(l, i)− η(l, i)]

· [B(l)δu(l, i)− η(l, i)]T
} t−1∑
l=0

[
t−2∏
n=l

AT (n+ 1)

]

=

[
t−1∏
m=0

AT (m)

]T
E[δx(0, i)δxT (0, i)]

[
t−1∏
m=0

AT (m)

]

+

t−1∑
l=0

[
t−2∏
n=l

AT (n+ 1)

]T {
B(l)E[δu(l, i)δuT (l, i)]B(l)T

+E[η(l, i)ηT (l, i)]
} t−1∑
l=0

[
t−2∏
n=l

AT (n+ 1)

]
.
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FIGURE 3. Comparison of maximum absolute tracking error with two
fixed constant gain matrices: The first dimension of the output.

FIGURE 4. Comparison of maximum absolute tracking error with two
fixed constant gain matrices: The second dimension of the output.

B. EXAMPLE 2
To further demonstrate the effectiveness of the proposed
steady-state ILC algorithm for practical applications, the fol-
lowing model of permanent magnet linear motor (PMLM) is
used [29]:

x(t + 1) = x(t)+ v(t)1

v(t + 1) = v(t)−1
k1k2ψ2

f

Rm
v(t)+1

k2ψf
Rm

u(t)

y(t) = v(t)

where x denotes the motor position and v is rotor velocity.
1 = 0.01s, R = 8.6, m = 1.635kg, ψf = 0.35Wb are the
discrete time interval, the resistance of stator, the rotor mass
and the flux linkage, respectively. k1 = π/τ and k2 = 1.5π/τ
with τ = 0.031m represent the pole pitches. It is effortless

to find these coefficient matrices, A =

[
1 1

0 1−1
k1k2ψ2

f
Rm

]
,

B =
[

0
1
k2ψf
Rm

]
and C =

[
0 1
]
. It is clear that the output/input

coupling matrix CB is full-column rank. Besides, the desired

FIGURE 5. The desired trajectory and the output at the 30th iteration for
the proposed algorithm and Saab’s algorithm.

FIGURE 6. Comparison of avgt∈[0,50]ρ(P11,i (t)) for the proposed
algorithm and Saab’s algorithm.

FIGURE 7. Comparison of maximum absolute tracking error with six fixed
constant gains.

trajectory is presented by yd (t) = − sin( tπ20 )+
1
2 −

1
2 cos(

t
50 ),

0 ≤ t ≤ 1
2 .

Fig. 5 illustrates the tracking performance of the proposed
algorithm and Saab’s algorithm at the 30th iteration, where
we can observe that the output of the proposed algorithm
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affords a high tracking precision. The convergence rate and
convergence precision of these two algorithms are shown
in Fig. 6, where the advantages and disadvantages of the pro-
posed algorithm can be observed. Lastly, Fig. 7 demonstrate
the comparison of the proposed algorithm with other ILC
algorithms using arbitrary fixed gain. In particular, we sim-
ulate the case of gain being 0.5, 1, 2, 5, 10, and 15. The
results demonstrates the optimality of the proposed algorithm
to certain extent.

VII. CONCLUSION
In this paper, we proposed a novel ILC algorithm based on
the steady-state Kalman filtering theory for linear stochastic
MIMO systems. The learning gain matrix is derived off-line
and thus saves online computation resource and increases the
convergence rate. To this end, we revisited the conventional
Kalman filtering-based ILC and then compute the desired
stead-state learning gain matrix by solving a DARE. The
computed matrix is optimal/sub-optimal in the set of fixed
gain matrices according to certain index. In other words,
the proposed approach can help engineers select a good gain
matrix according to real applications. Convergence of the
proposed algorithm is strictly analyzed. For further research,
it is of significance to extend the approach to nonlinear
systems.
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