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ABSTRACT Electric vehicles (EVs) have been increasingly experiencing sales growth, and it is still not
clear how to handle the associated impacts of a substantial integration of EVs against the power network
performance and electricity deregulated market. Power networks development moves slowly compared to
EVs, so it is hard to harmonize the two systems. Also, the associated cost required to modernize electric
networks to accommodate the EVs additional loading is so huge that it makes it impractical. An electric
network would suffer from many performances and quality-related problems if a significant number of EVs
are not taken into account. Thus, it is vital to calculate at a reasonable accuracy the additional capacity to
which the network would take. Also, the modeling of these EVs in terms of charge/discharge procedure
(central or distributed) is essential to enable the optimization and compute potential impacts. The electricity
market has to interface with the bidirectional supply nature of the EVs, so they become economically
feasible. A business model that incorporates market structure and standards is selected in harmony with
the charge/discharge model for best outcomes. Some approaches, algorithms, and schemes are deemed
necessary to mitigate the effects of having EVs in the network. This paper presents a comprehensive review
categorically on the recent advances and past research developments of EV paradigm over the last two
decades. The main intent of this paper is to provide an application-focused survey, where every category
and subcategory herein is thoroughly and independently investigated.

INDEX TERMS Businessmodel, central chargingmodel, distributed chargingmodel, electric vehicle, power
network.

I. INTRODUCTION
The CO2 emission, fossil fuel depletion, and capability to
balance the electric grid stability make transportation sec-
tor shift to electric vehicles (EV) or plug-in hybrid elec-
tric vehicles (PHEV) [1]–[3]. However, the EVs are being
developed at a slow pace due to the battery high cost
and lack of charging infrastructure [1], [4]. Thus, govern-
ments in many countries adopted some policies, such as tax
exemption financial subsidies, to boost the EVs purchase
rate [5]. Also, many automobile manufacturers have started
developing their production lines to include this emerg-
ing technology [6]–[8]. The EV expected market growth in
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conjunction with the policy incentives and technology
advancement will result in a significant growth in EV
market, which in turn would impact electric networks
adversely [1], [9]. Seemingly, the question arises: how would
the additional loading caused by EVs be accommodated by
existing electric networks?

Uncoordinated charging of EVs would elevate load peak-
ing at rush hours, or even create new load peaking at different
times [10], [11]. Hence, a straight solution is to invest in rein-
forcing the electric grids so as to accommodate the additional
EVs load. Nevertheless, the resources required for such an
investment is so huge that the whole proposal might be turned
out economically infeasible [12], [13]. Several concepts were
proposed to formulate so-called coordinated charging that is
a cost-effective solution dealing with the EVs load peaking.
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FIGURE 1. Hierarchical control schematic [19].

Smart charging and its derivative could shift the peak loading
to off-peak hours [14]–[16].

Basically, the charging/discharging techniques in smart
grids can be classified as follows [17]–[20]:

• Centralized and decentralized techniques: A central con-
troller is adopted in the centralized strategy where the
global optimal solution is achieved, but at a high cost.
The computation requirements and the signaling over-
head for information collection are so huge that it might
render it impractical. On the other hand, the decentral-
ized strategy adopts a local iterative-based controlling
decisions by EVs. Of course, iterative information is
exchange with lesser complexity compared to the cen-
tralized strategy.

• Dumb charging: It’s an uncontrolled charging mode
in which EV is plugged with no delay or incentives.
Basically, EVs are freely charged at will and it lasts
till battery is fully charged or unplugged. Moreover,
the electricity cost is fixed, so users receive no economic
incentives to coordinate their charging timings in order
to minimize coincidence factor and peak hour loading of
load profiles.

• Multiple tariffs: It is similar to the previous approach
except that price is not fixed throughout the day for EVs
charging to manage electricity demand whereby prices
during valley hours are low, whilst the prices during peak
hours expensive. That being said, this approach is not an
active strategy, as it relies on users’ willingness to adhere
to the regulation, so one expects that only part of EVs
would shift to valley hours.

• Smart charging: The EVs charging requests are handled
by a hierarchical control structure (see, e.g., Fig. 1)
headed by an aggregator who is in control of all EVs
charging rates. This active management system is in
operation only when the electric grid is in normal con-
ditions. Typically, aggregators group the EVs charging
requests to grasp business opportunity in the electricity
market where they tend to buy energy during valley
hours to reduce the energy price to their respective
clients. Hence, this ensures efficiency in resource uti-
lization of the overall system. Also, aggregators’ mar-
ket behavior aid to prevent network overloading and
excessive voltage drops, alleviating the need to enforce

existing network. EV users acceptance of smart charging
is critical to widely adopt such technique, especially
from the user economic perspective.

• Vehicle-to-Grid (V2G): V2G is simply an extension
to the smart charging approach in which the charging
direction is a two-way street for a grid to which EVs
can inject power. The load controllability and the storage
capacity both help providing peak power to flatten the
energy demand through the course of the day. How-
ever, there are several downsides that adversely impact
this approach, such as battery degradation due to cyclic
charge/discharge operation. Thus, the economic incen-
tives planned for this approach must be higher than
its counterpart in smart charging to account for battery
deterioration.

There are several differences between the liquid-fuel vehi-
cles and the electric vehicles, like the rather high capital
cost of the EVs and the ancillary services provided by the
EVs. These ancillary services are not easy to quantify, which
brings business models into picture. The EVs capital cost
as well as the battery cost are the main obstacles to adopt
them widely, so governments employ incentive policies to
promote EVs. Apart from effectiveness of these policies,
the business model of oil-filled vehicles is that an operator
purchases a vehicle that is used for transportation, and the
operator pays for fuel andmaintenance. On the contrary, EVs’
interaction is much different from liquid-fueled vehicles, and
many business models are presented in the literature.

Studies are being held to investigate the impacts of poten-
tial EVs’ rise in transportation market. Electric networks
need more power capacity to supply additional EVs load,
and the interconnection between the grid and the EVs raises
concerns about harmful impacts against the electric networks.
The issues associated with the EVs grid interconnection are
inferred from extensive researches in the literature: system
equipment overloads, harmonics, voltage drop, system losses,
stability issues, and phase unbalance [21].

Power system planning should account for additional
EVs loading for future substations, whereas it should find
cost-effective solutions for existing substations rather than
adopting costly retrofittings. These solutions range from sim-
ple optimization tactics to compounded coordinated charg-
ing/optimization procedures. Ultimately, they boil down to
utilizing available resources (energy) effectively and effi-
ciently to avert such adverse impacts. Also, V2G process
requires systematic ways to coordinate power flow and finan-
cial transactions between EV users and power networks in
deregulated power markets. The evaluation process of EVs
on electric networks starts with quantifying the anticipated
capacity of bidirectional power flow in order to have a base
line before selecting suitable chargingmodel. The power flow
is controlled through modeling the charge/discharge process,
whereas the financial transactions are governed via a business
model concept. A centralized charging model is one option
in opposition to a distributed model. The selection of the two
models rely on many factors, like the system scale and the
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TABLE 1. Society of automotive engineers charging levels [21].

existing power network infrastructure conditions. Optimiza-
tion techniques are a good choice that help achieve resource
efficient utilization. The charge/discharge model has to be
formulated in adherence with the business model so as not
to have any contradictions among these two models. The
business model involves not only regulations and standards
of monetary transactions, but also the market structure within
which power networks operate. The whole modeling proce-
dures of the V2G capacity, charge/discharge, and business
model are interlinked to each other and a slight deviation
might influence the inter-system effectiveness, which in turn
would affect the grid impact profiles. Society of Automo-
tive Engineers (SAE) has formulated charging standard for
EVs that consists of both AC-based chargers and DC-based
chargers. The AC chargers are on-board chargers that usually
reside in residential and commercial areas, while DC chargers
are off-board chargers that are subsations dedicated for EVs
charging [22]. In accordancewith the standard, there are there
levels of charging rates for both AC chargers and DC chargers
as illustrated in Table 1. Note that the level 3 charger for both
AC and DC are not yet finalized, and they are promising in
terms of charging duration reduction [21].

A thorough application-based review of the V2G
charge/discharge approaches, business models, and the tech-
nical impacts attributed to V2G grid integration over the
past decade is addressed. This paper is organized as fol-
lows: Section II discusses the charge/discharge scheme in
which V2G capacity is assessed prior to addressing cen-
tral/distributed scheme characteristics. Business models are
discussed to integrate V2G into energy markets in Section III.
Section IV, addresses the adverse issues accompanying
EV-to-power-grid integration are addressed with some pro-
posed solutions. Conclusion is in Section V.

II. CHARGING/DISCHARGING SCHEME
In all the literature, there has been no comprehensive strat-
egy to represent charging/discharging dispatch procedure

for EVs; this strategy needs to consider both the network
operational requirements as well as the drivers preferences.
Basically, the merge between the two aspects results in dif-
ferent dispatching patterns, so one needs to assess the relative
importance of each requirement upon determining a dispatch
mode of EVs.

The V2G concept is formed by a group of EVs that are
controlled by an aggregator, and hence this EVs fleet func-
tions as a storage system. The EVs fleet exchange power
with electric networks for charging the EVs and discharging
to the grid loads, and the whole process is controlled by
communication signals traversing throughout the system in
both directions. An aggregator is the focal point of the system
who interfaces the EVs to the electric grids as shown in Fig. 2.
Essentially, the quantitative assessment of V2G capacity (i.e.,
charging/discharging power ranges) ahead of time forms the
basis to which V2G is based [23]. Charge/discharge capacity
is evaluated prior to formulating a strategy to coordinate the
V2G process. The coordination strategy could be central,
distributed, or a combination of the two to set-up the suitable
procedure that does not violate any of a grid constraints. The
charging/discharging concept, techniques, and types were
reviewed extensively in [24].

A. V2G CAPACITY EVALUATION
Researchers have done extensive work in doing the capac-
ity evaluation, some of which forecasted the V2G capacity
based on a single EV charging demand forecast. Basically,
the capacity provided in this scheme and the particular EV
that serves a timely demand are all valid questions that are
addressed in algorithms in the literature [25]. In [26], a basic
methodology was formulated to forecast the V2G capacity
from an individual EV charging demand estimate. Three fac-
tors limit the V2G capacity-namely, current-carrying capac-
ity of the circuit interconnecting EVs to a grid, EV stored
energy, and EV power electronics rating. Often, the power
electronics rating is much higher than the other two factors,
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FIGURE 2. V2G architecture [23].

so it is excluded from analysis. Moreover, the V2G capacity
is as large as the lowest rating of these three factors. The
underlying assumption was that the aggregator, whose main
task is to collect enough number of EVs to build up large
capacity that can influence the network operation [27], has
accurate information on EVs driving patterns, so an optimal
V2G charging scheduling is achieved [28].

EVs data can be acquired at different levels to estimate
the available capacity for dispatching. Authors in [29] used
roll-up approach whereby timely data of each EV is compiled
at three levels: EV charging point level, bus level, and micro-
grid level. The final stage conveys the maximum capacity that
can be dispatched. Furthermore, some algorithms were based
on a precise estimate of EVs charging demand, like [30] that
presumes that every single EV can be estimated exactly in
terms of charging demand and the V2G capacity of each EV
can be computed. Unlike other approaches in the literature
that consider capacity assessment for a group of EVs at fixed
instant of times, this algorithm uses real-time dynamic smart
charging scheduling to assess V2G capacity of EVs con-
nected to a building. Aggregate methods, also, compute V2G
capacity at any interval of time, but none of them considers
dynamic scheduling for capacity calculation.

There are two constraints on which this algorithm bases
its estimate. First, maximum and continuous V2G power
that is confined to the EVs’ power electronics rating. The
EV’s battery has a higher rating than its power electronic
components, so the battery part is ignored in this algorithm
computation. Seemingly, it is vital to take this point into
consideration to determine an aggregate power of a group of
EVs. Second, V2G energy availability is an auxiliary service
that is ensured after securing the primary function of EVs:
chargeability and drivability (i.e., ability to charge EV to

proper SOC and ability to drive). EV’s scheduling algorithm
would ensure the EV chargeability to required SOC prior to
departure and drivability factors, so such an algorithm forms
the cornerstone of V2G capacity estimation.

The algorithm was tested in three case studies resulting
in many interesting findings. Several parameters, such as
contracted capacity, EV battery capacity, EV arrival and
departure time, and load demand were studied to evaluate the
algorithm performance, and it was found that such parameters
have unique impacts on V2G capacity estimation. SOC alone
may not be the best choice for accurate capacity estimation,
and then other parameters could be employed to obtain pre-
cise V2G capacity. An algorithm presented in [31] did this by
combining SOC and open circuit voltage (OCV) and devel-
oping a table that contains preliminary values of SOC-OCV
and a corresponding capacity of EV batteries. This table and
the capacity are updated successively in accordance with
previous readings till required values are met. It turned out
that the estimate error of SOC is high, but the capacity esti-
mate error did not exceed 3 % in the implemented case. The
real-time capacity forecasting tactic optimizes EV energy for
usage without compromising the prime function of EV users.
Renewable energy integration comes into play in [32], where
EVs flexibility was assessed on the basis of renewable energy
increase consumption due to the coordinated EVs charging.
This work is only restricted to unidirectional EVs charging
and requires accurate EVs charging demand.

A price-based charging technique is considered in which
electricity price varies with the load peaks. In [33] an
aggregator could exploit the electricity and reserve mar-
kets by bidding strategy to maximize its profit. Presumably,
the aggregator has the EVs charging demand known at least
a day ahead of time. Social and human factors can influ-
ence the capacity evaluation in different ways, such as EV
drivers’ inclination to charge EVs fully (i.e., full SOC) and
the drivers’ tendency to deplete most of battery capacity.
These factors had not been considered in previous models
as per [34], so the authors incorporated such aspects in their
proposed capacity evaluation model. The model was tested
on University of Queensland parking area, which proved
that the willingness of EV users could introduce different
results from other models that do not account for human
factors. A critical review was made for on-board capacity
estimation techniques in [35] that are electrochemical-based
models, incremental capacity analysis and differential voltage
analysis models, aging prediction-based models, and esti-
mated electromotive force methods. Despite the inherent dif-
ferences among these techniques, they all use same principle
for the capacity estimate, which is the relationship between
amp-hour charge/discharge reading and the voltage-based
SOC readings, which in turn are analyzed relative to the
initial and end points of the measured amp-hour throughput.
The main challenge of the reviewed techniques is to detect
the capacity loss for each user over the battery lifetime to
optimize the operation process for lower costs. This note
was highlighted in [36] for the incremental capacity analysis
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and differential voltage analysis methods for on-board capac-
ity estimation and SOC. The proposed method was evalu-
ated for battery aging for different cells, which indicated
that desirable estimated were achieved at relatively low
errors.

The stochastic nature of EVs charging demand is a function
of many variables that would influence it differently, such as
weather condition, drivers’ travel pattern, social factors, etc.
Moreover, the EVs demand forecast is difficult even for EVs’
users, so the assumption of acquiring EVs charging demand
accurately in [26], [28], [32], [37], [38] is rather strong. Also,
it is prohibitively computationally expensive to assess V2G
capacity and schedule V2G power for all EVs independently
and simultaneously for the whole V2G fleet. Alternatively,
stochastic estimation could provide acceptable capacity esti-
mates under some reasonable assumptions to ease on the
capacity evaluation process. A blend of EVs and renewable
resources was assessed in [39], where the probabilistic nature
of renewable resource generation was the driver for esti-
mating the available V2G capacity using power flow anal-
ysis. The main obstacles in finding aggregate power capacity
according to [40] lie in the probability of both EVs availabil-
ity and EVs connectivity. The EVs availability probability
is solely driven by the drivers’ behavior, whereas the EVs
connectivity probability depends on availability of charging
points at charging stations and the driver connectivity-related
behavior; both random variables were modeled in the paper
for a fleet of EVs.

The EVs mobility was modeled using so-called trip chain-
ing, and the driving patterns were based on statistical fig-
ures from conducted surveys in Singapore. Also, an avail-
ability probability table was prepared to keep track on EVs
availability taking into consideration the EV reliability as
well as the traffic congestion indices. A case study in Sin-
gapore was presented to test previous models whereby EVs
availability is estimated with the aid of probabilities assigned
for each possible trip. Moreover, plug-in points in charg-
ing stations are linked to each EV to obtain the availabil-
ity probability table, thereby mapping infrastructure with
varying connection points availability. Consequently, average
power capacity is estimated using the availability probability
table and the power capacity. The outcomes showed there
is a direct relationship between the driving pattern and the
EVs availability in the grid. The maximum availability was
noticed to be at homes and offices, so they can be utilized for
providing maximum capacity to V2G process. The stochastic
nature of EVs is complicated further if integrated with dis-
tributed generators and renewable sources, and therefore the
sophisticated stochastic model is a valid requirement. In [41],
authors devised a two-stage dispatching model to tackle this
issue. The first stage produces dispatch decisions for the
next 24-hours, and the second stage determines the EVs
charge/discharge profile for each scenario. The simulation
showed that the underlying model can efficiently produce at
a good accuracy the grid production and consumption rates
including the EVs figures.

It is not practical to use individual EV charging demand
techniques with large-scale V2G fleet due to computational
problems that render it infeasible. Instead, aggregate mod-
els do not need an individual EV charging demand esti-
mation, nor capacity assessment. These models are used to
evaluate V2G capacity for large-scale EVs. Queuing the-
ory was used to evaluate the parking lot charging station
V2G capacity [42]. The underlying system is considered as
time-invariant system, so a single time interval was used
for such a proposal. A probabilistic model proposed in [43]
assumes that V2G capacity is proportional to the number of
EVs plugged into the network. The V2G fleet capacity is a
function of both EVs rated charging/discharging power and
EVs’ SOC. Also, EVs that are fully charged are not subject
to further charging, whilst EVs with low SOCs cannot be
further discharged. Therefore, one can infer that the V2Gfleet
capacity cannot be estimated precisely in accordance with the
number of EVs connected to the network. The driver behavior
is essential in estimating the probability distribution model of
the V2G capacity, so the drivers’ lifestyle and EVs’ behavior
sampling govern the modeling process. The authors in [30]
devised an algorithm that computes aggregator real-time
scheduled capacity that is constrained by drivers travelling
demand, battery life, and SOCs. The first two factors set the
upper-limit of EVs capacity, while the last one sets the lower-
limit.

Charge/discharge scheduling might change the EV bat-
tery status, which in turn would change the V2G capacity.
For instance, the charging power scheduled during low-tariff
intervals may result in a huge number of EVs that are fully
charged so that the charging capacity during forthcoming
intervals would adversely be impacted and vice versa. Thus,
the charge/discharge scheduling shall be considered for eval-
uating the V2G capacity; smart charging could be the answer
to overcome the mentioned issue. In [44], the impact of V2G
fleet that participates in a ramp market on power systems is
investigated. A Markov process estimated the V2G capacity
of the EVs under the assumption that such a capacity is not
affected by V2G fleet charge/discharge scheduling.

Aggregate queuing network model introduced in [45]
along with smart charging technique is used to evaluate
large-scale EVs’ V2G capacity such that the V2G capacity
was accomplished in real-time operation. The model can
estimate deficit power as well as excess power, which aids
setting up regulation contracts between an aggregator and
a grid operator to facilitate transactions in a given business
model. Nonetheless, the exponential distribution was used
to model the duration of EVs’ charge/discharge process, but
this may not reflect the actual situation. This is attributed to
the interdependence between EV population affecting their
related behavior. Also, the memoryless assumption is not
practical since the exponential distribution is time-invariant,
while it is not for actual systems.

The proposed approaches for computingV2G capacity suf-
fer frommany shortcomings. The contribution of [12] tackles
such limitations differently. A V2G aggregate model puts
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FIGURE 3. Framework of V2G capacity evaluation [12].

constraints on energy and power of the whole EVs population
size. The model makes use of several aggregate variables of
the V2G fleet rather than the individual charging approach,
so the forecasting process is significantly lessened. Also,
a quantitative assessment of the capacity of a large-scale
V2G fleet improves the efficiency of computation, avoiding
an expensive calculation algorithm. The availability of V2G
capacity data ahead of time is achieved in the proposed
approach, and therefore a real-time operation is accurately
estimated.

The methodology followed of this approach is simply to
replace the random individual demand of each EV by a single
smooth aggregate model that relaxes generating timely fore-
casts of aggregate power and energy boundaries of the entire
V2G fleet. These boundaries are computed at two stages as
follows:

• New EV arrivals, not yet engaged in real-time
charge/discharge operation, are evaluated in terms of
aggregate energy and power boundaries.

• EVs that are already connected to grid are evaluated in
terms of aggregate energy and power boundaries.

A storage-like aggregat model (SLAM) was formulated
in [46] to represent energy and power constraints of the whole
EV population. Also the paper designed a heuristic-based
charging technique that relies on EVs charging demand
laxity-SOC to enhance the SLAM modeling accuracy. The
paper was extended in [12] whose outline of the V2G capac-
ity assessment is illustrated in Fig. 3. Prior to the capacity
evaluation process, the EV new arrivals power boundaries
are forecasted, and the connected EVs power boundaries are
updated accordingly. After that, the total of power and energy
boundaries of the two stages are added to evaluate V2G
capacity and set power schedule subsequently.

Fundamentally, real-time V2G capacity estimation is
made possible through a heuristic smart charging tactic
called Laxity-SOC-based, whereby EVs are segregated into
groups based on their associated Laxity-SOC values, thereby
increasing computational efficiency. Dynamic scheduling for
EVs is the proposed algorithm to estimate V2G capacity [30],
where real-time EV data of scheduling is used in conjunction
with the building energy management system that forecasts

FIGURE 4. Direct V2G system architecture without using aggregators [49].

a building demand without EVs and predicts the load profile
of connected EVs to the building to obtain theV2G capacity
estimate. Moreover, the model ensures that EVs are charged
to desired level of SOC before departure while the V2G
capacity is being estimated. The algorithm tested three sce-
narios on residential, commercial, and office buildings in
Singapore to prove its effectiveness. The results showed that
the V2G capacity is uniquely affected by several factors,
such as arrival and departure times, contracted capacity, bat-
tery capacity, and load demand. Also, it was found that the
proposed algorithm is superior to the fixed minimum SOC
limited estimation method and estimated plug-in probability
in terms of estimate accuracy that do not get impacted by the
time precedes EVs departure. High-rise buildings can be a
source of distributed energy storage system that would pro-
vide many services to their surroundings. The model in [47]
proved the effectiveness of exploiting available V2G capacity
for peak-shaving in a case study.

B. V2G CHARGE/DISCHARGE CENTRALIZED MODEL
A centralized charge/discharge approach uses a central con-
troller, where a global optimal solution is reached at an
aggregator level upon gathering all required data pertaining
to the EVs power requirements. Nevertheless, the associated
cost with such an approach is so huge that it can be considered
prohibitive, thereby impeding its implementations. The EVs
can communicate their electric-related parameters like SOC,
maximum batter capacity, and charging rate to an aggregator,
who in turn makes a contract with an Independent System
Operator (ISO) based on its power needs. After that, ISOs
decide fair power shares for each aggregator using an energy
management system. At last, the aggregator executes an opti-
mization technique so as to grant each EV user its antici-
pated energy share [48]. The aggregator role can be fulfilled
by an ISO instead [49]. The same reference presented the
advantages and disadvantages of the two approaches and their
corresponding layuts are shown in Fig. 4 and Fig. 5.
The computation requirements and the signaling overhead

for information collection are so huge that it might ren-
der it impractical. Also, the communication protocol being
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FIGURE 5. Indirect V2G system architecture with aggregators [49].

utilized to exchange real-time data is vital for reliable central
controlled V2G. The literature addresses and resolves the
central V2G controller at the power system level in which
the EVs residing in different areas are assumed to be ready
for charging process, which might not be the case. The
authors in [50] confront these issues differently to come up
with an enhanced centralized V2G charge/discharge model.
Real-time vehicular data is important to generate accurate
models that tackle EV mobility and its effect against power
capacity and availability.Most of the current works depend on
cellular networks and Wi-Fi networks to exchange vehicular
data on the move. There are many shortcomings, however,
that render such tactics impractical.

First, EVs location could be inaccurate if the network
is overwhelmingly dense, which would impact the com-
putational process adversely. Second, the mentioned net-
works are not specifically designed for vehicular commu-
nication purposes, so a bulk of vehicular data exchang-
ing is costly and congestion-oriented, especially in dense
vehicular areas. Hence, the so-called Vehicular ad-hoc net-
work (VANET) supports real-time communication between
mobile EVs and communication units for real-time EV
mobility data and charging/discharging decision without suf-
fering from the drawbacks of the above mentioned sys-
tems. Furthermore, the model considers the V2G controller
from the EV perspective. The vehicle mobility is highly
important in modeling the centralized system so as to
maximize the overall charging energy. The architecture of
VANET is depicted in Fig. 6 that comprises a power dis-
tribution system, a traffic server, charging stations, EVs,
and road-side units (RSU). The power distribution sys-
tem provides energy to the whole network through feeders.
Also, the charging stations provide fast-charging scheme

FIGURE 6. The VANET-Enhanced smart grid architecture [50].

for all EVs. Furthermore, centralized and distributed charg-
ing modes were addressed altogether in the same source
for a review that described up-to-date techniques in both
approaches. Also, it offered a comparison between central-
ized charging model and the distributed charging model,
including static and mobility-aware modes. These modes
apply to both charging models, where the former excludes the
mobility pattern of EVs, while the latter accounts for such a
pattern.

The uncertainty of EVs charging on electric systems is
inevitable, as it relies on drivers’ arrival pattern and daily
driving habits. The uncertainty related to EV drivers’ behav-
ior, such as time distribution, energy consumption each user
spends in a trip, and economic as well as social attributes
that contribute towards a model that computes EVs charging
demands as the probabilistic agent-model in [51] states. The
model combines social, technical, and economic variables
to compute EV charging demand as shown in Fig. 7. Also,
the paper formulated a benchmark to compare different case
studies like different cities or zones in the same city, so zones
with high density of EVs can be easily located. A simpler
approach is to compute the capacity margin available and
prioritize the EVs to be charged first as in [52]. The strategy
formulated in the reference is to propose an efficient approach
that generates optimal solutions that meet the EVs charging
demand as well as alleviate adverse impacts on power sys-
tem networks. Moreover, the computational requirements are
moderate compared to other centralized strategies, which is
attributed to an easy technique using two indices to prior-
itize EVs charging demand-namely, capacity margin index
and charging priority index. The basic strategy format is to
quantitatively analyze the load profiles and the EVs charging
demand using the two indices, and the EVs charging load
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FIGURE 7. Basic scheme of EV charging demand parameters [51].

FIGURE 8. EV charging method using valley-filling approach [52].

demand is scheduled during low demand hours (valley hours)
to utilize surplus power at proper period of times, which is
shown in Fig. 8. The approach was verified in a case study
held in China that showed its effectiveness as well as its
efficiency.

On the contrary, [53] assumes the determinism of the EV
behavior (e.g., arrival/departure time and charging charac-
teristics) in which so-called large scale charging facility is
capable of handling large amount of EVs simultaneously by
setting right policy considering energy consumed, overall
charging power capacity, and the arrival/departure pattern.
The algorithm showed a superior performance compared to
other off-line algorithms.

Limited resources raise many concerns related to service
reliability and continuity, and V2G is no exception. Besides,
the uncertainty and dynamics associated of EVs mobility
make the V2G system so much complex so that only opti-
mization techniques can manage power flow between EVs
and the grid, or vice versa. Thus, the optimization techniques
came into picture to utilizing available power margin effi-
ciently. The centralized control models usually use certain
algorithms to represent the process, which include: linear pro-
gramming, quadratic programming, dynamic programming,
mixed-integer linear programming, mixed-integer nonlinear
programming, stochastic programming, robust optimization,
heuristic and meta-heuristic algorithm, and model predictive
control [17]. Traditionally, optimal power dispatch is deter-
mined using unit commitment concept, which they can be
applied to V2G system. It has been known that linear pro-
gramming (LP) and quadratic programming (QP) are widely
used for unit commitment optimization techniques [54].
Mathematically, these techniques determine the best solu-
tions for the optimization problem, but they are limited to
simple and linear problems. Hence, nonlinear programming
andmixed integer nonlinear programmingwere employed for
more complicated problems, but they tend to underperform
with uncertainty, and they lack of efficient computations.

Other techniques used for optimization purposes are prior-
ity list technique and Lagrangian Relaxation technique. The
former is mostly heuristic, while the latter is difficult to get
feasible solutions, so they cannot be used effectively for the
V2G system [17]. That being said, the most popular methods
for V2G system optimization are Genetic Algorithm (GA)
and Particle Swarm Optimization (PSO) [55]. GA is defined
as an iteration method used to search for a global optimal
solution within a time limit, while PSO is a memory-oriented
computational algorithm searching for a global optimal solu-
tion in a population of random solutions. The advantage of
PSO is the requirement of a lesser computational timing and
memory [55], [56].

Authors in [57] utilized GA to optimize V2G scheduling
so as to minimize electric network load variance, which is
contributing towards network stability. In [58], the optimiza-
tion algorithm varies the charging rate around a set point
that is determined based on the cost-versus-revenue ratio to
optimize the charging rate point called the preferred operating
point (POP). The reference addresses two approaches used to
select POP: heuristic smart charging algorithm and optimal
selection algorithm. The smart charging algorithm employs
so-called price-based technique and load-based technique.
The load-based tactic is preferred, as it includes the effect
of renewable generation sources, thereby enhancing the sys-
tem performance. The optimal selection algorithm, on the
other hand, imposes aggregators as interface between EVs
and utilities, so the V2G asset optimization is done by the
aggregator to maximize profit, which in turn leads to maxi-
mizing the EVs charging rate as well as providing regulation
service to electric networks. This practice ensures optimality
achievement compared to suboptimality of smart charging
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techniques. These algorithms were applied to the Pacific
Northwest system case study, which revealed that only the
optimal algorithm provide benefits to all parties: utilities,
customers, and aggregators.

In addition to EVs random mobility, authors in [59] incor-
porates time of use (TOU) pricing policy to so-called state-
dependent policy (i.e., timely battery energy level and optimal
battery level) to formulate an energy minimization func-
tion for optimal cost-based V2G modeling. The paper uses
stochastic inventory theory to optimize energy delivery prob-
lem, where the EVs’ SOC resembles the inventory stock
level. The reference proved that the state-dependent pol-
icy is truly optimal through real data gathered from Cana-
dian utilities. Optimization techniques produce good results
for V2G as seen before, but the V2G performance can be
enhanced further by integrating such tactics together or with
heuristic strategies for optimal results. This was experienced
in [60] that combined PSO, GA, and the author proposed
dynamic crossover and adaptive mutation techniques. These
combinations were compared to an approach that is based
on spot pricing of energy market for optimal charging prior-
ity technique along with a battery swapping technology for
EVs. These comparisons were conducted on IEEE 30-bus
test system indicating that the combined strategy of PSO and
GA outperformed all other strategies in terms of charging
costs and power quality aspects. Operation cost is linked
to emissions, as certain precautions are applied to mini-
mize anti-environmental emissions. The cost-emission opti-
mal mix was the topic analyzed in [61] in which a number
of EVs in parking lots were utilized using unit commitment
concept to balance the cost-emission equation, leading to
enhanced profit and reliability of the whole system. EDISON
project described in details in [62] modeled an optimization
technique for cost minimization and charging prediction.

The previous papers assume that the EVs connectivity to
charging stations is certain. That is, the stochastic nature is
related to drivers’ daily travel, but the plug-in process is not
uncertain. Queuing theory was employed in [63] to account
for such uncertainty and integrates it with a price-basedmodel
that presents incentives/penalties to optimize the EVs charg-
ing/discharging penetration rate. The EVs’ charging stations
were modeled as multiqueued system, where each station
represents a queue. Markov chain is another stochastic tool
that could help modeling V2G random driving pattern and
the end-user price preferences [64]. The stochastic process
explains the EV users’ behavior that can be modeled as
inhomogeneous Markov chain, which is solved recursively
using stochastic dynamic programming technique. Conse-
quently, the results address issues pertaining to V2G schemes
and availability of EVs. The optimal charging policy is then
selected in accordance with electricity price, EV usage, and
risk aversion of EV users. The central charging control intro-
duces many applications which V2G can provide. The cen-
tralized optimization modeling in [65] offers a model that
uses time coordinated optimal power flow (TCOPF) formu-
lation to utilize the V2G concept and on-load transformer

FIGURE 9. Bi-directional model of PEVs and their interactions with the
grid [11].

tap-changer (OLTC) to influence system losses. Also, the res-
idential loads can put constraints on the maximum charging
rate of each EV as stated in [66]. However, the capability
to control load side allows EVs to vary their charging rates
accordingly. This is orchestrated by an aggregator to safe-
guard the grid variable constraints while maintaining the pro-
cess. The algorithm employs linear programming approach,
so the involved computations are not intense, thereby sim-
plifying its integration into coordinated charging schemes.
Of course, several factors (e.g., environmental) can be added
for more accurate results, but rather complex modeling. For
instance, [51] integrates travel pattern model, energy con-
sumption model, and historical records of temperature values
in one model that produces optimal results for EV charging
allocation.

C. V2G CHARGE/DISCHARGE DISTRIBUTED MODEL
EVs are equipped with some computational capabilities,
so the charge/discharge decision is taken by both EV users
and an aggregator. In contrast to the centralized approach,
EVs communicate only their energy requirements to the
aggregator to decide on an optimal charging schedule [67].
The advantages of de-centralized charging/discharging tech-
niques over the centralized one are significant, so authors
exploited such an approach to come up with optimal results.
The differences between the centralized and the distributed
schemes are discussed at two charging aspects: unidirec-
tional and bidirectional [24]. The same paper discussed the
advantage and the disadvantages of the two schemes of the
two charging types along with their applications; this lay-
out is depicted in Fig. 10. The so-called estimation dis-
tribution algorithm (EDA) is employed to account for a
large PHEV penetration that would otherwise have harmed
the network. The energy consumption management of local
households to which EVs are connected aid reducing peak
loading as in [11]. The model in [68] compares a centralized
technique ‘‘Equal Share’’ concept to uncontrolled charging
and de-centralized charging techniques. The former measures
power at the distribution transformer side to allot equal power
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FIGURE 10. Charge scheduling process system view [24].

share to all EVs, while the latter uses a local voltage signal
to determine whether the network load is high (EVs shall
not be charged) or low (EVs can be charged). The results
inferred from this study indicated that both centralized and
distributed methods provide improved performance over the
uncontrolled approach. Actually, the centralized technique
offered 3-6 times as many EVs to be connected to the grid
as in the uncontrolled approach, while it is 3-4 times in
distributed approach as many EVs as in uncontrolled case.

Also, [69] offers a sensitivity analysis comparison between
a local control charging technique (LCC) and a centralized
control charging (CCC). Furthermore, the paper claimed that
the two approaches can have roughly close performance level
in terms of energy supplied to EVs; however, the LCC is
claimed to have a superior performance provided that a set of
expected household load-related sensitivity measures are cal-
culated for several scenarios. Scalability is a major constraint
to promoting centralized charging approach, so distributed
charging strategies to overcome this limiting factor in accor-
dance with [69], [70]. Importantly, the economic aspects of
shifting from centralized to de-centralized models are case-
sensitive, so the fact of the matter is that detailed analyzes is
required. The authors in [71] investigates the economic and
its corresponding technical aspects of selecting centralized or
de-centralized option.

The charging revenue is the parameter for which the
reference opts, so anticipated new peaks arise under TOU
pricing basis. Hence, the reference proposed a technique to
reduce the peak-valley difference whereby an aggregator has
incentives to exploit such a difference to maximize profits
and minimize user-related costs. Regarding the decentralized
approach, on the other hand, so-called rolling-update pricing
technique was suggested for individual users to overcome
the TOU new peaks issue. Price-based techniques can be
combined with renewable sources for enhanced performance.
The renewable production rate and the network demand fore-
cast at short-term allow the distributed price-based charg-
ing control to allocate EV loads during off-peak (valley)
hours with a priority to hours that have surplus renewable
energy production and exploit the V2G process to mini-
mize the system loading as elaborated in [72]. The technique
given in [73] offers a two-level optimization algorithm that
achieve valley-filling and frequency regulation services using
the distributed modeling. In addition, individual and collec-
tive efforts can contribute to shift load peaks as presented
in [74] that offers two approaches for valley-filling purpose.

cooperative and noncooperative techniques were developed
in the source to handle the load peak issue, where the for-
mer is into reducing a user charging cost, while the lat-
ter is more into optimizing the overall charging cost. Most
of the literature works assume idealism in the customers
behavior, communication infrastructure integrity, and knowl-
edge about the system parameters, which might not be the
case most of the time. The game theory was conceptualized
in [75] to suit a decentralized charging system for EVs to
avoid these assumptions and prepare a more realistic model
that mimics the actual situation. The decentralized charging
approach utilized so-calledNash Folk technique to coordinate
game-based charging mechanism. The mutual benefit of EV
users and electric network are the focus of [76] that used
analytical hierarchy process to govern the dispatch process.
Themodel was tested on IEEEReliability Test System, which
was proven effective. The infrastructure needed to serve EVs
was elaborated in a case study in Beijing [77] that emphasized
the significance of fast charging stations in the general layout
of other charging station types. In fact, the radius to which the
fast charging station extends is vital in founding new stations
provided that the EV users satisfaction is met.

III. BUSINESS MODEL
A. BUSINESS MODEL SYNOPSIS
The models dealing with V2G charge/discharge process ana-
lyze the feasibility of the scheme from a technical perspective,
but only a few look at economic factors (business model)
that requires extensive assumptions [48]. These assumptions
cause a highly volatile revenue such that the electricitymarket
becomes unstable. Also, policies set to govern EVs market
growth may complement cost reduction of renewable energy
sources that are tied to EVs through the V2G process [78].
Recent R&D of storage batteries paved a rout towards a
cost-effective energy source [78]. Often, many business mod-
els focus on a single aggregator profit performance, but only
few consider full-scale grid profit maximization. Authors
in [79], however, concentrated on maximizing the aggregator
total profits, considering the possibility of inter-aggregator
energy trading to exploit any energy trading between aggrega-
tors. The reference developed distributed optimization heuris-
tics to overcome the computational complexities arose from
the nonconvexity nature of the formulated EVs charging
problem, which was proven successful after testing it in a
case study. Renewable energy sources go hand in hand with
EVs because of the interrelated services provided mutually.
The authors in [80] reviewed business model concept of V2G
in terms of renewable energy source solely. Many business
model topics were reviewed intensively in [81].

Cloud computing finds its way into many applications
in different industries because of the features given by the
technology. Interestingly, authors in [82] designed a business
model that made use of the cloud computing technology in
which it helped finding nearest charging station with mini-
mum waiting time cost. The model, also, provided service
to all stakeholders involved like aggregators and charging
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vendors. Uncertainty associated with EV integration intro-
duces financial risks that might put a business model in jeop-
ardy. A risk averse optimization strategy was devised in [83]
to enable smart charging management of EVs. Moreover,
it evaluated technical, social, and commercial uncertainties
in energy market to generate a bidding strategy for smart
charging that act as an aggregator formanaging financial risks
caused by the mentioned uncertainties.

Specifically, a closed system like building-integrated
energy system can economically benefit from EVs integra-
tion, as utilities are tuned optimally so as to incur revenue and
keep the system stable through EVs integration as explained
in [84]. Authors presented in [48] a thorough view of EVs
business model at different aspects ranging from industry per-
spective and charging/discharging process to EVs integration
to electric grids forming V2G services. The source is rich of
global perspectives of EVs integration and the impact against
proposed business models, and it presented several case stud-
ies at different location of the world to explore the business
model shape at different energy market global wise. Beside
technical attributes of V2G, [85] addressed the importance
of sociotechnical attributes of it in the published researches
that span the period between 2015 and 2017. Particularly,
market segments, complexity of EV drivers’ motivation, and
any other human/social-related aspects did not receive proper
attention in the literature, which could result in bias results.
Social and human factors are equally important as technical
aspects, so no unforeseen results catch us by surprise.

B. BUSINESS MODELS AND ECONOMIC EVALUATION
In [48], the authors presented a V2G model that accounts for
revenues associated with the scheduled charging/discharging
process that is overseen by an aggregator. There are many
proposed models and standards that govern the bi-directional
communication and power exchanges between vehicles and
the grid. These business models range from a simple model
like ‘‘EVs as Appliance’’ that offers no connectivity service
to the grid, through ‘‘EVs charging as a Service’’ and ‘‘EV
Battery andCharging as a Package Service’’ where the former
lumps EVs management and cost into a single package with
a monthly fee payment, while the latter is similar to the
former one except that an EV battery is owned by the service
provider, resulting into more expensive monthly payments,
to an advanced model ‘‘Paying the Owner for Providing Grid
Services’’ in which V2G requirements are fulfilled. Also,
the reference introduced many integration project examples
in which economic integration is illustrated in each example
to compare these approaches. The technology described for
these projects cover two main topics: software and hardware
components that manage all required computational require-
ments and the communication protocols that are used to
exchange data among entities.

Pricing-based strategies(valley-filling) are usually utilized
successfully for mitigating harsh impacts resulted from a high
EV penetration rate. Likewise, business models can employ
the same concept to minimize charging schedule cost, which

in turn raises profit margin. The valley-filling technique was
the core of [74] that had two mechanisms to achieve the
valley-filling strategy: noncooperative and cooperative. The
former assumes that an aggregator is in control of all EVs
parameters, while the latter assumes that each EV can sched-
ule its own charging power without cooperating with other
EVs. The cooperative scenario adopts a rolling optimization
tactic to schedule EVs charging power according to charg-
ing price function. On the other hand, the noncooperative
scenario employs a charging guide approach to help EV
drivers specify their charging power schedule and do the
cost-minimization process. Basically, the results showed that
both approaches indicated provide incentives for aggregators
or EV drivers to shift their charging schedules to valley
hours. Moreover, the authors in [86] introduced a price-based
optimization formulation in which linear programming as
well as quadratic programming are used tominimize charging
costs. The Danish network was set as an appealing example
for such an approach because of several reasons listed in
the paper, one of them is the substantial difference between
power surplus and power deficit during a day, which sup-
ports the price-based approach. Basically, the paid price is
composed of a twofold set: availability fixed payment and
activation flexible payment. The study concluded that there
is an inverse relationship between number of participants and
the flexible cost the customers incur. Later, the model in [11]
was developed under the assumption that the grid aggregator
already is aware of the grid constraints. The model (see,
e.g., Fig. 9) assumes the central controller (CC) accumulates
the contributions of distributed energy resources (DER) and
coordinate EVs charge/discharge process.

Furthermore, the CC can fetch data from optimization
module planted in the EVs so as to select appropriate
charge/discharge schedule for each set of EVs,and authors
in [58], [87] explored the possibility of meeting users’
requirements during the charging planning stage. In other
words, there are many available connections that are cheaper
than the full power connection point, so users have the option
to select the proper channel. Furthermore, a central price
predictor based on the market status can be used to influence
the V2G behavior through different techniques, such as for-
ward charging, backward charging, and other market-related
pricing that rely on the timely power price. An objective
function of cost minimization was formulated in [63] to man-
age the charging/discharging process. Importantly, themarket
price is so much volatile so that the charging scheduling
could get impacted adversely at certain instants of time. This
emphasizes the importance of considering such price varia-
tions into the proposed charging models. The proposed V2G
optimization model in [59] takes this point into consideration
along with the driving pattern of the EV fleet; the aggregator
centrally is in control of the entire process.

Energy markets are governed by same principles that reg-
ulate all markets, such as supply-and-demand law. Often,
a single EV cannot accommodate power demand at certain
instants of time, so a sufficient number of EVs has to be
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dedicated to participating in the market so as to support
frequency regulation; participate in spinning reserve service;
or otherwise. Each application entails different participation
rules and a minimum power capacity as outlined by [88].
The reference tackled the communication issue of the model
by introducing so-called coalition server that facilitates the
information exchanging among EVs and provide an abstract
about their related information. There were many coalition
formation strategies that were put under simulation testing for
a comparison purpose. Furthermore, [89], [90] emphasized
on the importance of a mediating party to facilitate the com-
munication between the EVs and ISO, who is in charge of fre-
quency regulation, to make such an aggregation scheme fea-
sible. Basically, there are twomain stakeholders for which the
V2G ancillary service transactions are transferred-namely,
the grid system operator and the EV owner. The EVs are
suitable for frequency regulation because of their rather short
ramp-up time and negligible costs during idle times [90].
The grid system operator is concerned about availability and
reliability of the V2G service, and the EV owner is more
concerned about the return on investment.

The aggregator role can be performed by an external
entity to the grid system operator, or it can be fulfilled
by the grid system operator. Apart from that, the reference
claims that there is an inverse proportionality between the
reliability-availability requirements and the revenue gained
from utilization of EVs in the V2G scheme due to the fact
that the aggregator needs to cumulate more EVs to meet
these requirements, which in turn affects the revenue share of
each EV. This aggregating scheme was conceptualized in [7],
where the V2G mode is not considered. Instead, preferred
operating point (POP) supplies the reserve in a range between
zero and the maximum charging power of EVs. There were
two optimization algorithmswere addressed: a one-day ahead
of time algorithm that operates in a normal energy trading and
frequency regulation and another algorithm that manages EV
charging process in accordance with the trading outcomes.
The former optimizes charging rates and periods to reduce
costs, and the latter enhances profit from selling regulating
power. The authors used artificial EVs time series and actual
market data to assess the algorithms, which resulted in a sig-
nificant cost reduction for several fleet structures. Typically,
V2G has a fixed price for injected energy into a grid, which
imposes a certain number of hours for EVs to be available
for V2G process, thereby raising concerns of EV users about
contract terms. Also, the uncertainty of EVs availability intro-
duces some ambiguity about the profitability of V2G process
that can manifest as a reduction in the net profit since the
contracted price is high. Consequently, EV users see a high
cost for utilizing EVs, which in turn affects the V2G process
badly.

The frequency regulation is a process that prevents any
power-related violations to electric grids. The computed gross
revenue ranges from $1000 to $5000, based on a market sam-
ple price in 2002, depending on the driving habits. After that,
authors in [28] extended the work to cover V2G concept in a

case study conducted for California energymarket. The paper
addressed the basic concepts of V2G and its capacity, power
market, generation regulation control, and EV economic cal-
culations. The revenue relies on the service to which EVs
provide. For instance, energy revenue is simply calculated
from the energy dispatched price, while spinning reserve and
regulation services include different variables in the revenue
equation. It turned out that V2G is not suitable for bulk power
applications due to the fact that EVs are not economically
feasible compared to conventional generation schemes. That
being said, the most profitable scheme is to utilize V2G
in spinning reserve and frequency regulation. Nevertheless,
the local electric network would saturate if only three percent
of local cars shift to V2G process. The previous reference was
extended in [13], where electric grid source was compared
to EV fleet source to shed lights on pros and cons of each
scenario. The electric grid has a high capital cost and a low
production cost, whilst it’s quite the opposite for the EV
fleet case. The reference, also, covered the implementation
procedure, business model and the transition process towards
EVs application.

In [91], a single-level EV was used to support frequency
regulation in energy market, which was proven a valuable
source for ancillary services. These findings were confirmed
in [88] in which the short response of an EV fleet is of a
great advantage that can be exploited to provide ancillary
service. The estimated revenue was in a range of $1200 to
$2400 under the assumption that each EV participates in a
15-h duration a day on average and the set price is double the
normal market price. The frequency regulation was the main
ancillary service considered in [92] that examined a business
model at several EVSOCs in different time during a day in the
German electricity market. The revenue incurred at current
market conditions was lower than investment costs, thereby
rendering the case infeasible. Instead, it would be profitable
to charge EV batteries immediately.

A study in [93] included a fleet of 50 EVs inwhich each EV
contributes only for four hours a day. The estimated revenue
per an EV is only $40 per year, while [88] uses substantially
optimistic assumptions with regard to the set price and EVs
availability, which resulted in exaggerated revenue ranging
between $1200 to $2400 a vehicle. Nevertheless, the two
studies were held in different markets under different condi-
tions which leads to inconclusive results [92]. The communi-
cation architecture that governs the EVs and the system oper-
ator plays a major roles in setting the economic feasibility of
the provided ancillary services [94]. The paper compared two
communication architectures: deterministic and aggerative.
The former sets a direct communication line between EVs
and a system operator, while the latter has an aggregator as
an intermediary between the EVs and the system operator.
The deterministic architecture limits the bidding process only
to the EVs that are in the charging station, as the system
operator is fully aware about all available EVs. Conversely,
the aggregator places bids all the time under the assumption
that the statistically available EVs’ number is enough in
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the aggregative architecture. The final outcome revealed that
the aggregative approach improved the EVs reliability and
availability factors, which in turn rendered the EVs ancillary
services feasible at the cost of reducing the collected revenue
per EV.

Aside from the previous studies about EVs’ profitabil-
ity, these studies had many impractical assumptions [48].
A large-scale deployment of EVs only justify adopting a new
control architecture between EVs in distribution networks.
This might not be reachable in the near future, so the whole
researches might not be realized in long time. Moreover,
charging manufacturers have no intention to penetrate emerg-
ing EV market because they lack of large-scale production
and they focus on short-term objective. The downside here
is that these manufacturers don’t utilize charging optimiza-
tion algorithms, as they have no incentives to do so. The
deployment of EVs, however, is attractive for utilities, as it
spares them investment costs. Unfortunately, it was found
that many industry key players invest in EV batteries just to
capture knowledge and expertise that are to be used in other
industries. Of course, this would delay the realization of EVs
adoption in electric networks.

Electricity market as many other markets has uncertainties
at different levels, one of them is bidding prices of deploying
V2G into grids. Authors in [79] accounted for uncertainty of
ancillary service prices and their associated deployment sig-
nals. Fuzzy sets were employed to model such uncertainties
whereby a fuzzy linear program for an EV aggregator was
formulated to coordinate the provision of ancillary services.
Simulation outcomes revealed that because of the fuzzy opti-
mization technique, the aggregator profit rose and the profit
error (difference between actual profit and expected profit)
did really decrease. Also, the fuzzy optimization compared to
deterministic optimization, improved the final SOC of EVs a
bit and reduced subtly the average peak load resulted from
EV adoption. Unlike many researches, the authors in [83]
presented a complete communication layout of all concerned
stakeholders involved in the V2G process to efficiently man-
age and monitor charge/discharge process and ancillary ser-
vice provision in a model that strives to maximize net profit
value and meet the grid energy requirements. The EV users
underlying driving assumptions play an important role in
setting the profit value and ensuring the benefit of the model.
Many papers consider simple assumptions for driving pat-
terns, but this model considered more realistic assumptions
that resemble actual drivers’ behavior, which means more
accurate estimate of incurred profit per user based on opti-
mization of charging schedule. The authors conducted several
case studies that presented net profit values because of the
model proposed.

C. POLICIES AND REGULATIONS
State of art business models along with pilot projects were
reviewed in [95] for V2G service in smart grids. The pilot
projects indicated that the value from consumer perspective
is related to lower energy consumption and lower bill prices,

whilst it is more concerned with reducing demand load peaks
and improving system reliability from system operator view-
point. Essentially, an EVs aggregator should be employed
in smart grids so as to turn a business model profitable by
integrating many smart grid services with enough EV users
to reach break-even point. The authors in [96] commented
on the policy issue of V2G in the Nordic region and the
need to set appropriate policies and standardized regulations
pertaining to aggregators, distribution system operator (DSO)
positions, and electricity markets to boost the EV market for
V2G process. Socio-cultural factors shall be studied quantita-
tively and qualitatively for enhanced understanding of hidden
aspects that influence a business model in different ways.
The authors in [97] highlighted the criticality of common
standards and policies between manufacturers to help the
growth of EVs deployment. EVs usage as flexible loads in
a day-ahead market is not profitable as the authors in [98]
claim. A case study held in Denmark showed that the EVs
should participate in ancillary service provision to incen-
tiveze the use of the V2G service.

A successful business model is a combination of proper
blend of policies, experts’ judgment of dominating factors,
and impeding barriers. A roadmap was created in [99] to have
a better understanding of opportunities of the emerging EVs
smart charging technology within emerging environmental
conditions so as to bring forth suitable business models.
Moreover, the authors listed main conclusions about the busi-
ness models to be devised. Researchers agreed that there
should be a balance between hardware and software sides of
the battery chargers for the sake of proper business model.
Standards and policies must be there beforehand to facilitate
a wide-spread deployment of EV charging, especially fast
DC chargers. Generally, the viewed business models agree
and disagree on certain points, but they intend to develop
a business model that suits the EV charging at large-scale
deployment level.

Apart from the cost issues of V2G implementation, lack
of standardization of hardware and software composing the
V2G system is one of the major barriers against adopting EVs
at large scale. Different approaches followed by Asian and
European/American manufacturers deter many players from
engaging into this industry, resulting in limited scalability of a
business model. Consequently, it mandates a large pool of EV
users of that business model to be profitable, which might not
be possible at this stage of the V2G technology. The authors
in [99] investigated previous pointes in forming a business
model guideline to be implemented in Swiss market so that
key players are convinced to penetrate this market and turn
it profitable. Briefly, the reference suggested a three-stage
model to implement the V2G. A closed charging environment
with limited number of EV users is the first stage, as it might
not be feasible to integrate with other systems due to the lack
of standardization. Supposedly, the EV users would gradu-
ally gets higher and then technology would become mature
enough to make standardized protocols and procedures, mak-
ing a flexible businessmodel amust. The three-stage roadmap
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TABLE 2. Services of electric vehicles in vehicle-to-grid system.

comprises demand response, bidirectional charging, and open
market. The open market stage represents the ultimate form
of modeling in which EVs not only sell energy to grids,
but also to all forms of electric networks (e.g., smart grid,
microgrid, etc.). Furthermore, service providers shall opt for
other revenue sources in order to break even, as the returned
investment per user is small. Ancillary service is mainly an
additional revenue source, such as peak shaving, frequency
regulation, and so on. The services provided by EV users
fall generally into two categories: base load energy supply
service and ancillary services. The energy supply service
is not favoured by many authors [28] due to the fact that
it requires gathering a large number of EVs for long time,
which would restrict the EVs usability as vehicles. Also,
the cyclic charge/discharge of batteries might result in pre-
mature battery replacements, which add on the cost of the
EVs. The whole scenario might not be feasible after all. Thus,
the ancillary services are preferred because of their short
ramp-up time feature that averts the downsides of the energy
supply service. Table 2 lists the EVs’ service types and their
associated characteristics.

A thorough study of many business models was done
in [100] to come up with proposals of that reflect what con-
sumers want in a business model. A Dutch sample online
survey revealed that V2G business model shall be character-
ized by the following: emphasis on functional attribute rather
than financial, aggregator is supplied by utility companies
opposed to car companies, functional attributes of customers
are more important than financial counterparts, and V2G
service is used by EV owners at private stations at homes.
Surprisingly, the aggregation service is preferred from utility
companies, which adds a new source of revenues for them.
Also, EV users are more interested in the functional service
than the financial payback to which they are subject. A pro-
posed business model incorporating previous findings shall
be devised for best outcomes.

D. OBSTACLES TO V2G
High investment cost is one of themajor hurdles encountering
EVs adoption, which might impede the progress of inte-
gration. Hence, there should be a well-formulated business
model that enables the users to recover their investment costs

and charge their EVs at rather acceptable prices; this is the
topic of [101]. The reference formulated a business model
to assess three scenarios along with case studies through
which the business model is proved profitable. These scenar-
ios represent different situation that EV users would often
face in the daily driving pattern. EV users could need to
use charging service at home (private home charging), pub-
lic places (traffic hot spot charging) such as malls, and in
highways (highway charging). Of course, each case needs
different charger specifications that suit the associated driv-
ing pattern. In each case, the required capacity of charging
stations is computed such that the charging service operators
cover their costs. Mainly, the private home charging would be
profitable if the EV users incur lower costs than the regular
combustible engine vehicles. This happens only if the EVs
users drive for long distance mileage; charge at rather low
prices during night times; and take advantage of subsidies of
EV purchases.

As a result, the private home charging is speculated to
be one of the early adopted charging stations. In regard
with the hot spot charging stations, there has to be enough
number of EVs (roughly tens of EVs) in that zone so as to
break even, while the number of EVs should be hundreds or
even thousands for the highway charging stations to become
profitable. Unexpectedly, absence of cyber insurance raises
EVs charging costs, as it secures infrastructure information
that is increasingly proportional to the charging cost and
inversely proportional to the incurred profit [102]. Moreover,
the reference proposed a learning algorithm that helps EVs
drivers in decision-making process, such as buying cyber
insurance, charge or discharge in a timely fashion. The learn-
ing algorithm showed that it can reduce the charging cost
and increase the discharging profit as the same time. Smart
charging strategies are also valuable approaches to reduce the
charging cost for V2G [99].

In [103], the authors confirmed the notes highlighted
in [101], EV users deter from V2G services because of the
high contracted cost they experience caused by the uncer-
tainty of the EVs availability, through a survey composed of
two parts: one for EV and another for V2G, and it proposed
two approaches to overcome this issue. One is to cancel
contract requirements totally and allow EV users to provide
the V2G service at will, following a pay-as-you-go-basis to
eliminate part of the prohibitive associated cost and make the
service more attractive. A different approach, also, is that an
aggregator provides upfront payment to EV users in order
to alleviate the uncertainty associated with the V2G process.
EV batteries, also, could be an obstacle to EVs deployment
into grids due to forbidden capital cost and projected cost
throughout batteries life cycle. The main reason according
to [101] is the high cost per kWh of EV batteries, so incurred
revenue does not result in profit making scenario. The authors
in [102] investigated the feasibility of reusing batteries after
being retired from EV services to reimburse part of capi-
tal cost. In fact, the paper presented a business model of
several stakeholders that are subject to taking advantage of
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the re-used batteries (second-life batteries). Having done
qualitative case studies, the model came up with deciding
factors are to be analyzed in order to re-use implement
secondary-life batteries. Batteries ownership, inter-industry
partnership, and government support are the deciding factors
through which an entity can decide to adopt secondary-life
batteries. At early stage of the secondary-life battery market,
it is essential to have government supports through incentives
for various projects and policies related to battery liability and
energy storage. Existing business models do not support the
secondary-life battery concept, so end-of-life battery strategy
has potentials to create suitable business models for such con-
cept. Battery degradation rates is a dimension of EV batteries
in which most literature do not take into consideration [101].

Hence, authors articulated the battery degradation factor
into a business model through policies that regulate the bat-
tery usage to prolong their functionality, so the battery degra-
dation factor can be assumed incorporated in the business
model. The authors in [101] approached the battery problem
actively trying not only to include the battery degradation
factor into a mode, but also to extend the battery life through
certain procedures. The developed algorithm assessed the bat-
tery degradation factor and recommended some techniques to
prolong battery life, thereby improving business model out-
comes. Nevertheless, [102] stated that the battery degradation
factor is detrimental to economic feasibility of a business
model under certain charging mode. It was found that the
business model is economical if the battery degradation rate
was ignored, and vice versa. In addition, a distributed wind
generation system was simulated to offset such a battery
degradation factor, resulting in an economic business model.
The authors found that under smart charging mode, the busi-
ness model was economical, and the battery degradation rate
was much lower than that in uncoordinated charging mode.
Also, intelligent energy system in the presence of renewable
energy sources was recommended in [101] to compensate for
the battery deteriorated life cycle.

The rate at which EV batteries capacity is measured can be
accelerated with acceptable accuracy for efficiency purpose.
This case was investigated experimentally in [104] resulting
in a reduction in measurement time by 90%with proper error
rate, so overall efficiency was improved significantly. Battery
charging station has external factors that might indirectly
impact the battery life cycle, thereby affecting the business
mode at hand. For instance, the battery station location, size,
and charging techniques would alter the business model in
such away that thewhole scenario can be turned upside down.
Hence, authors in [101] discussed this matter and proposed a
model that approached the battery charging station optimal
planning methods. The model opted to maximization of net
present value throughout the project life cycle. The model
was applied to case studies that showed the optimal model
help balancing demand-supply rate, so operators can reap
profits from the optimal planning model. EVs batteries, also,
experience a cost reduction attributed to imposed policies
regarding batter life span and battery swap practice.

E. MARKET STRUCTURE
Traditionally, business models resemble the conventional
power generation models whose stakeholders involve trans-
mission system operator (TSO), DSO, energy supplier, and
final customer. These different parties are fixed regardless of
the electricity market within which they operate. A new mar-
ket envisioned in [105] introduced a new actor to the model
known as charging system provider (CSP) whose role is to
supply all required elements except for the energy needed.
In other words, CSP’s business is governed by so-called
business-to-business offers concept that is concerned more
about purchasing charging stations; preparing electrical con-
nections of the charging stations to the grid; provision of
energy management business; provision of information tech-
nology system for billing system; maintaining the charging
stations and IT systems. Hence, CSP is an enterprise that is
mainly engaged in the electrical infrastructures and system
markets, and whose main business is in preparing designs
and selling energy management systems, without participat-
ing in generation, transmission, or distribution of electricity.
The model, also, gave further details about selling energy
management system called charging point manager CPM that
can function either as a retailer or as an EV owner. The
former is about selling energy in public areas like malls,
and the latter is more about buying energy for its own EVs.
There were many mathematical equations that constituted the
cost-revenue model to realize the anticipated profits from
the ancillary services that would be provided. This model
is applicable under certain assumptions pertaining to energy
cost and amount offered for selling. Unlike traditional mod-
els, according to the authors this envisioned model facilitates
the integration of all parties in the V2G business. A compari-
son is made in Table 3 that addresses this model and the other
models presented earlier in [94].

Presence of EVs according to [105] can alter the way that
an electricity market is perceived in such a way that new
models can be generated. Essentially, it is vital to settle the
mobility case of EVs to finalize the business model. That is,
EVs can be either charged at fixed charging points, called
retailer-to-charging-point, or can be charged freely in net-
works, called retailer-to-EV. It all boils down to whether DSO
view an EV user as a static load or movable load. The former
facilitates DSO interactions with EVs at the expense of diffi-
culty in customer behavior prediction, while the latter is quite
the opposite. Furthermore, different charging schemes were
simulated to analyze both models noticing that the retailer-to-
charging-point is more compatible to public parking spaces
and charging stations. On the other hand, the retailer-to-EV
model can be used otherwise.

An intermediary party is vastly outlined in the lit-
erature, especially parking garage operators mentioned
in [1], [6], [8], [106], [107]. Although the parking garage
operators scheme seem proper for VGI, the related studies are
only technical-operational-related aspects, or only specific
related to local solutions. For instance, the authors in [106]
used a greedy scheduling procedure to control the charging
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TABLE 3. Vehicle-to-grid system architecture.

process in parking garage areas. The algorithm was econom-
ically assessed, but the whole business model and opportunity
cost were ignored. On the contrary, authors in [6] considered
locally generated power from solar sources to charge EVs,
forbearing from energy market concept. The business model
started grasping attentions in the VGI context literature in
which authors in [6], [97], [108] emphasized on this point.
They forecasted the EVs scattering pattern over a decade
and contrasted that with EVs’ mobility behavior to show
that extra demand peaks could be averted via smart charging
techniques. The behavioral factors could be detrimental to
the effectiveness of smart charging techniques, knowing that
end users will not contribute to grids stability or renewable
energy integrations if there are no motives. The user accep-
tance of smart charging was outlined in [108], where network
stability and renewable energy integration were found to
be the most influential factors for user acceptance. More-
over, the financial compensation was investigated to second
unselfish motives like network stability. In [109], authors
extended the previous papers work to explore the VGI case
with the parking garage operators as mediators and assess
the case using actual data. Optimal logical control algorithm
was introduced in [46] as a smart charging technique to
optimize V2G process. This algorithm was tested with other
six traditional optimization charging strategies (e.g., un-i/bi-
directional smart charging) to find out the approach with
the lowest charging cost. In short, optimal logical control
algorithm reduced the charging cost by 47.94 % compared
to a simple charging strategy, which indicates the gain of
adopting such algorithm that would turn business models
profitable.

IV. POWER GRID IMPACTS
The grid impacts of EV deployment has been investigated
extensively in the literature. The various charging rates and
dynamic behaviors of EVs complicate these impacts fur-
ther. This pushed researchers to put their efforts on studying
these effects, including voltage drop, stability, system and

equipment overloading, phase unbalance, and so on so
forth [110]. These impacts are offset by the potential oppor-
tunities of the EVs, but the need for mitigating techniques
is vital [21]. In order to develop the mitigating techniques,
a profound knowledge in power system analysis, power
system components, power electronics, and many other
power-related fields is essential. The information presented
in Table 4 indicates the diverse and deep know-how needed,
and it elaborately addresses the grid impacts issues and chal-
lenges.

The charge/discharge scheme directly affects the degree
to which these impacts are harmful. For instance, the dumb
charging technique has more noticeable effect than that of
smart charging. Moreover, there are different techniques,
algorithm, and optimization approaches that alleviate these
power grid impacts significantly as listed in Table 5. These
potential impacts are elaborated further in this section to
address the system vulnerability in such cases.

A. LOAD PROFILE IMPACT
Large-scale penetration of EVs to an electric network burdens
it further such that the EVs charging might coincide with load
profile peak-hours load, worsening the load profile status.
The EVs additional load should be anticipated earlier to
account for it and set necessary mitigation scenarios. In order
to make such anticipatory information, exclusive data of each
and every EV usage should be available [111]. Besides, some
information is required, like the time at which an EV charger
starts functioning and the amount of energy required, and thus
the collective evaluation of EVs integration effects on the load
profiles are accurately considered [112].

Many case studies were conducted to investigate the EVs
deployment impact on electric network load profiles. Many
electric networks around the world were considered for this
study; for example, the network outlined in [109], where
USA grid load profile is put under test of EVs impact with the
assumptions that EV users can charge anywhere anytime to
account for worst case scenario. National Household Travel
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TABLE 4. Grid impacts.

TABLE 5. Techniques to mitigate grid impacts.

Survey (NHTS) had gathered EVs related travel data that
shaped the analysis in this work. The data covers travel-
ers’ trips, travel distance, start-end-time of trips, start-end-
location of trips. The results showed that the EV charging
demand overlaps with the load peak hour and late afternoon
peak hours, which corresponds to work arrival time and home
arrival time, respectively. The solution proposed in [109] was
a delayed control scheme to avoid such peak hours increase.

Moreover, German grid was studied to assess its readi-
ness for EVs deployment in 2030 in [113]. Three distinct
storage usage scenarios were studied: unmanaged (dumb)
charging usage, grid stabilizing storage usage, and for-profit
storage usage. Interestingly, the results revealed that a million
EVs that are under uncontrolled charging scheme would not

impact the grid by more than 1.5 % load peak increase, but
the whole conventional cars (42 million cars) would roughly
double the load peak in case of replacing them with EVs.
Also, a million EVs could reduce the load peaks if they are
used as storage units.

The authors in [114] addresses Western Australian electric
network resilience for EVs deployment in three different
charging scenarios that represent multitariff scheme. The
assumption holds for this study is that all new vehicles come
to service are EVs to enhance the adoption rate. The grid
can tolerate additional loading of 200,000 EVs during peak
hours in uncontrolled charging scenario. The study, also,
showed that the utilization of multiple tariff scheme or smart
charging scheme in which EVs charging times are shifted
to valley hours enable the grid to accommodate additional
900,000 EVs. Nevertheless, the multiple tariff scheme comes
at a price, the network component would keep overloading
at nonpeak hours. Distribution transformers, for example, are
utilized fully during peak hours, and they are cooled down
at other hours to prolong their lifetime periods. The multiple
tariff approach does not allow the transformers to cool down,
as they are overloaded at nonpeak hours, so they deteriorate
fast. Thus, one should balance the multiple tariff scheme with
economic implications for improved outcomes.

Estonia power grid experienced a large scale of EVs inte-
gration that reached 30 % of the total number of cars [115].
The impact on the grid were insignificant for both con-
trolled and uncontrolled charging approaches. It was only 5%
increase in load peak for uncontrolled charging, while it is
reduced to 4% for controlled charging. Furthermore, the con-
trolled charging scheme disperses the EVs load overnight
hours, thereby flattening load profile. In [116], the authors
addressed Flemish urban grid load profile is put under test
of EVs impact considering three different scenarios for slow
charging: uncoordinated charging, residential off-peak charg-
ing, and EV-based off-peak shaving. The paper test both LV
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and MV systems for slow charging modes and fast charging
option, where both systems specifications were addressed for
analysis purpose. It turned out that the load profile impact
is less sensitive with fast charging option than that of slow
charging, as the fast charging option accounts to a small
portion of EVs’ group, especially if battery size is large.
In fact, the number of EVs that can be added to an existing
system considering the load profile of the fast charging option
is reduced by 10 % or less.

On the contrary, the slow charging modes form the basis
for home charging stations, so the majority of EVs charging
approach is of a slow charging mode. The EV penetration
capacity is influenced strongly by the selected slow charging
mode with the considered load profile, which could vary
between 40 % to 100 %. On one hand, the EV-based off-peak
shaving mode has the least impact against the load profile,
thereby allowing the highest EV penetration level. On the
other hand, the off-peak residential charging mode impacts
the load profile the most among the three slow charging
modes. This is attributed to the fact of the matter that simul-
taneous charging at the start of the off-peak period could be
detrimental.

A case study was discussed in [117] of a Greek distribution
network was tested for fast charging case to analyze its effect
on a load profile. In this paper, the fast charging (static and
dynamic) is to be tested for full scale, as opposed to [114]
that assumed the fast charging adoption is minimal. Also,
the authors presented a methodology to estimate the fast
charging demand and compute their impacts on the load
profiles. The results showed that the load profile would be
affectedmuch; thus distribution networks need to be designed
in accordance with such scenario. Smart charging was pro-
posed as a potential solution to the existing grid to avoid
reinforcement.

Moreover, uncoordinated/coordinated charging schemes
with 30 % and 100 % EV penetration rates were tested on
an Egyptian network in [118] to observe daily load profiles.
The results had two sides: higher penetration rates result
in severer load profile impact, thereby adversely affecting
network components, and the coordinated charging mitigates
such effects substantially, resulting in a smoother load profile.
Generally, one of the impediments of EVs is the charging
duration that might render it impractical. The advent of elec-
tronic infrastructure brought about development in charger
efficiency and effectiveness, but this development is still
minor. The authors in [119] tested so-called ultrafast charging
mode at DC stations against slow charging mode at private
stations and fast charging at public stations, as well. The slow
charging mode has three types-namely, unregulated, regu-
lated, and regulated with V2G intervals. The three charging
modes were tested on a Bosnia and Herzegovina MV grid to
evaluate the way they affect several power-related concepts
including load profiles. The results revealed that the degree
to which an EV charging process impacts the load profile
relies on the charging mod as well as the EV penetration
rate. Also, it was found that the unregulated slow charging

is the worst charging mode among other types since it raised
the load peaking substantially, impacting the load profile
badly. The fast charging and ultrafast charging, on the other
hand, were much more moderate in such impacts. That being
said, the regulated charging (regulated and V2G intervals)
would shift the peak loads to night times, thereby minimizing
the load profile adverse impact significantly; hence, the EV
penetration rate could be increased.

Traditionally, many research papers evaluate the limits to
which electric grids are subjected in terms of EV penetra-
tion rates to anticipate the effects. Instead, [111] used real
transportation statistics to realize actual EV demands and all
its ramifications. Additionally, the EVs speed was modeled
with four driving courses of road, highway, urban, and traffic
jam periods. The three charging standards were considered
to account for different load peak timings depending on the
different charging rates of these standards and their associ-
ated load profile pattern for such scenarios, and the results
showed that the EVs escalated load profiles in G2V mode;
however, the V2G mode lessened such impact much. In addi-
tion, the authors in [111] based its EVs behavior pattern on
the 2009 National Household Travel Survey to model EVs
mobility parameters. The resultant load profiles from the
simulated cases suffer fromEVs penetration coincidencewith
load peaks during a day, around hour 19 in that particular case.
However, this increase does not surpass 14.5 % of the load
peak without EVs penetration. Also, the general view about
load profile increase is that it is not critical since the power
factor of domestic charger stations is over 0.95.

Typically, the bad effects accompanying EVs integration
to electric grids are resolved through proposed schemes and
algorithms to lessen such impact, such as smart charging,
valley-filling algorithm, etc. Demand side management can
be the answer for settling the EV integration shortcomings.
A decentralized control algorithm was proposed in [120] to
alleviate EVs integration impacts. The reference addressed
the effects of EV integration, and it proposed the algo-
rithm to control house appliances, including EVs, to flat-
ten load profiles at distribution transformers level. There
were many cases and their associated strategies through
which the authors concluded that the algorithm would lessen
the EVs adverse impacts, thereby flattening the load pro-
files. Also, so-called active distribution network was coupled
with V2G and demand management technique in [121] to
find optimal dispatching technique of EVs. Alternatively,
authors in [122] claimed that an optimal EV charging con-
trol integrated with utility demand response would allay the
load profile negative effects. The charging control method
is constrained with TOU and direct load control (DLC).
It was noticed that an uncontrolled charging mode raises
load profile peak by more than 50 %, which would introduce
several power-related impacts against the network. Hence,
TOU+DLC and TOU+DLC+optimal control charging work
on shifting the peak loads to off-peak times.

Nevertheless, the optimal control technique is essential to
assure load profile flattening, as the TOU+DLC alone would
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still generate sudden load peaks the EVs charging rates is
subject to sudden changes while EVs are plugged in to reach
their SOCs. The TOU and the game theory concepts were
merged in [123] to take users psychology into consideration,
which was superior to the traditional TOU strategy in terms of
load profile flattening. Furthermore, the Korean electric net-
work was simulated in [124] to take different EVs integration
scenarios that entail EVs specifications, EVs driving patterns,
charging rates, and charging locations in 2020. Under several
charging scenarios, the reference shows that the load profile
would be impacted badly, leading to adverse effects on the
grid reliability measures. The TOU tariff system, however,
could resolve this issue, where EVs load is shifted from peak
hours to nonpeak hours. Similarly, authors in [125] discussed
the impact of TOU on users’ behavior during peak hours in
the presence of EV charging. The study was conducted at
two different seasons (winter and summer) whose load pro-
files are different. Moreover, the study considered different
penetration rates and different charging schemes to account
for normal and fast charging approaches. Advanced metering
infrastructure (AMI) is essential to display real-time electric-
ity prices for TOU deployment. The paper merely focuses
on customer behavior in terms of EVs penetration rate in
response to TOU pricing. However, the customer behavior
investigations based on many factors: seasons, EV penetra-
tion rate, and EV charging approach, which makes it chal-
lenging to set such pricing tactic. The results showed the
importance of TOU to flatten load profiles and avoid new
peaks through proper price setting. Renewable distributed
generation was suggested as a method to meet the peak-hour
requirements in order to shave peak loads in [65], [126].

Optimization techniques were employed in [127] to
smoothing the load profile in the simulated case. The pro-
posed strategy is composed of two stages: an aggregator opti-
mizer uses Bee Algorithm (BA) to compute optimal charging
of each EV, followed by distributing this calculated charging
power among EVs using fuzzy logic controller (FLC); this
approach was compared to constant power (CP) charging
and constant time (CT) charging techniques. The resultant
outcomes indicated that the load profile of this approach
is smoother than both the standard methods (CP and CT),
proving its superiority.

Alternatively, smart charging is a good candidate to miti-
gate load profile peaking. Authors in [58] used an aggrega-
tor profit maximization technique to optimize EVs charging
times, thereby avoiding simultaneous peaks.

Peak loads can be treated (shaved) by many means, one
of the most widely adopted solution is utilization of EVs
batteries (V2G) [48]. An effective approach was formulated
in [90] to utilize EVs batteries for travelling and load peak
shaving purposes. A dynamical strategy was outlined to con-
trol discharge rate so as to use the batteries capacity for peak
shaving service. This strategy measures the influence of EVs
battery capacity on peak shaving performance with so-called
a peak-shaving index, which is the ratio between the EVs
injected power to the customer maximum power demand.

Basically, the peak load support varies in accordance with the
load profile drift. The peak shaving service is proportional to
the magnitude of the load peak at hand. The whole scheme
was verified in a practical distribution system in Australia.
The results showed that the peak shaving strategy provided
the maximum support during the peak load instants. The V2G
controlling side is challenging and complex. In [123], authors
proposed a special substation topology that enables EVs to act
as energy sources during demand peak times. This substation
is an integrated AC-DC that enables EV charging and EV
utilizing for peak shaving intentions. The power converter
topology was analyzed for EVs discharging up to medium
voltage level.The authors concluded that the microgrid proto-
type can sustain peak loading with the aid of V2G for a short
time. Other techniques used optimized charging approaches
without the EVs batteries [128], [129].

Aside from the complexity associated with the number of
variables considered in studies, the results usually are more
accurate. Authors in [130] proposed a fuzzy-logic scheme
that imitates the EV driver decision-making process for
charging. The study aims to improve the EVs load profile esti-
mation by incorporating a huge database of field -recorded
driving patterns, parking times, and parking locations. The
lack of enough data for EVs urged the authors to assume that
the drivers’ behavior and their lifestyle remain unchanged by
shifting to EVs. It was shown that an EV with a large battery
capacity improves confidence in making the next trip without
the need for re-charging, and hence its impact on the load
profile is more lenient than EVs with small battery capacities.

B. VOLTAGE PROFILE AND PHASE UNBALANCE IMPACT
EV integration to grid draws additional power, which in turn,
causes voltage drop that might violate the regulated voltage
limits in the system. Also, EVs that are an AC-based and a
single-phase charge mode lead to phase unbalance; another
quality issue caused by EV adoption. A full power system
analysis is to be implemented to test the voltage profile intact-
ness. TheChinse voltage regulations (7% at 10 kV)were used
in theMonte Carlo Simulation implemented in [131] to assess
the EV charging on system voltage regulations. Uncontrolled
charging scheme, penetration rate of 60% ormore, resulted in
violation of the named voltage limit (7 %) in many sectors in
the network. However, the V2G model maintains the voltage
limits even at 90 % of EVs penetration rate, because of the
load levelling being used in V2G approach that exhibits lesser
voltage differences between peak and off-peak hours.

Generally, any EVs penetration rate that is 50 % or beyond
would violate the voltage deviation limit of 7 % as stated
in [132]. Smart charging is the answer to maintain all volt-
age nodes within limits. Moreover, a Bosnia and Herze-
govina MV grid was scrutinized in terms of voltage profile
considering different EVs penetration rates at three charg-
ing modes: unregulated, regulated, and regulated with V2G.
Also, the voltage constraint imposed was within 10 % of
the nominal voltage value. The MV network experienced a
violation for unregulated charging scheme, but the regulated
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schemes (with/without V2G) improved the performance
significantly [119]. The voltage profile status is an increas-
ing function of the EV penetration rate. The LV network,
on the other hand, is subject to similar voltage profile
impacts as investigated in [133]. The approach and method-
ology followed in [119], [133] still hold for [134] except for
the network voltage level of testing. In fact, LV network
would not experience any voltage profile violation if EVs
penetration rate is low for unregulated charging scheme,
but it can support higher rates for regulated slow charging
scheme. Of the MV and LV networks, the voltage profile
impact is more pronounced on the LV network since they
are directly connected to the EVs charging stations; this is
clear from the [133] and [119]. Also, coordinated charging
displayed superior performance over uncoordinated charging
as a function of EVs penetration rate for voltage profile factor
in [116], [118], [135]–[142].

A case study of Bogota, Colombia network was conducted
in [143] to investigate the effects of EVs integration (between
10 % to 100 %) on the voltage profile. The voltage profile
gained at 100 % EVs penetration rate was as low as 82 % of
the nominal value, leading to unhealthy network. However,
the low voltage values were attributed to the distance of the
end point from the distribution transformer. In other words,
the network is still sound if the distribution system spans short
distances.

A distribution model was formulated in [117] to test its
voltage profile soundness for motor-based appliances that
might be exposed for abnormal voltage values. The study
considered many scenarios for different number of EVs to
paint a thorough picture of the EVs voltage effects. The sim-
ulation results indicated that the feeder voltage gets depressed
as the EVs penetration rate escalates, and it is more profound
at feeders’ end points. The depressed voltage profile impacts
the home appliances, especially the motor-based ones.

In the contrary, [10] claimed that EVs charging does not
affect the network voltage limits. Actually, the reference
stated that EV penetration rate does not violate the voltage
deviation tolerance by more than 1 % only, and the only
issue accompanies a wide EV integration to grid is system
component overloading conditions. Furthermore, [144] drew
a conclusion that voltage acceptable ranges are not crossed by
EV charging, but system components could experience slight
overloading conditions. Interestingly, fast charging might be
more severe than normal charging mode as illustrated in [10].
The paper outlines a case study inOntario, Canada to examine
the voltage profile in both cases, and the finding was that
current system shall be upgraded. Moreover, load side man-
agement can help keeping voltage limits within acceptable
measures.

Certain control methods and algorithms have been
proposed to deal with voltage issues resulted from EV
integration into grids. One of these solutions is the dis-
tributed voltage control approach [120] that controls not
only the EVs load type, but also the household loading.
Through many cases considered, it was clear that at certain

EV penetration rate, the voltage constraint limits are violated,
but the proposed controller does really help improving the
voltage profile, thereby gaining high potentials in alleviat-
ing EVs grid-integration bad impacts against voltage profile.
Linear programming optimization technique was practiced
in [138], which maintained voltage profile within acceptable
limitations compared to standard EV penetration procedure.
Authors in [140] suggested TOU scheduling, which shifts
additional EV loads to off-peak hours, to mitigate the voltage
drop caused by large EVs penetration rates. According to the
authors, the optimal time to start off-peak shifting resides
between 11 pm and 12 am; this time selection is a tradeoff
between both utility and customer benefits. Interestingly,
the TOU enabled a 30 % of EVs penetration rate to existing
network. A controlled charging algorithm was proposed to
minimize voltage variations at different nodes in order to
reduce the whole voltage variation of the entire network.
The algorithm aided minimizing the voltage profile signifi-
cantly for the whole network. Coordinated charging, delayed
charging, off-peak charging, intelligent scheduling, and smart
charging were some of the techniques recommended in [135]
to tackle the voltage profile deviation issue.

The authors in [140] made several interesting findings
about the voltage profile impact that were inferred frommany
researchers. The residential EV chargers affect the secondary
wires more than the primary ones in terms of voltage varia-
tions. Also, the size of the chargers play an important role in
quantifying the voltage drop. The voltage drop is positively
dependent on the charger size. In fact, the charger size is
linearly proportional to the voltage drop rate. For example,
a 5-kW charger would entail double the voltage drop of a
2.5-kW charger. In regard with the electric distance of res-
idential chargers from distribution transformers, it is directly
proportional to the voltage drop.

In [122], the authors showed that TOU+DLC charging
and TOU+DLC+optimal control charging reduces the volt-
age profile degradation significantly, especially the latter
approach. This is because the optimality minimizes the max-
imum power for individual EV user for charging scheduling.
The conventional paradigm of an EV in V2G system is to
view it as a load in the charging mode and as an energy source
in the discharging mode. An algorithm presented in [145]
which considered variability of battery performance over
time, so a variable objective function governed the power
transfer in the V2G process. The connection voltage point and
the coordination of charge/discharge process of EVs com-
pose the underlying variable objective whose constraints are
SOCs, charge/discharge time, and connection point voltage.
A case study proved the advantage of this approach through a
tight control of the nodal voltage at the connection points,
which in turn aid maintaining the voltage profile within
limits.

Uneven distribution of EV chargers in residential network
could cause a severe phase unbalance condition owing to a
diversity reduction as the EV number rises, leading to many
bad consequences, such as harmonics, nuisance tripping,
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etc. [137], [146]. Voltage imbalance is prominent at the distri-
bution feeders end due to the long distance from the main dis-
tribution stations [147]. A particular Phase (a) was selected
to be the sole connection point for all EVs in a grid to eval-
uate the impact of a single-phase charging scheme on phase
unbalance issues. The outcome outlined in [148] showed that
a severe unbalance condition arose, which needs special con-
sideration upon adopting EV charging. Also, a real 12.47 kV
network was studied in [142] to investigate unbalance voltage
effects under many EVs penetration rates ranging from 10 %
to 80 % along with single and double AC level 1 and AC
level 2 charger types. The authors in [119], [133] found that
fast charging shall not be used at LV side, as it impacts voltage
balance factor badly, and this can be alleviated by dedicating a
separate circuit for the fast charger. Also, slow charging shall
be evenly distributed at all phases to avoid such impacts. The
findings did not go off from expectations in having a direct
proportionality between the unbalanced voltage and the EVs
penetration rate. The peak and off-peak hours, also, play a
major role in affecting the voltage unbalance, leading to a
compound effect if combined with high penetration rates.

In contrast, authors in [116] stated that the impact of such
a single-phase charging scheme is negligible for both voltage
and current unbalance, and the phase unbalance still remains
within acceptable ranges. This discrepancy is attributed to
the diversity factor assumption in the reference. Few active
chargers mean higher diversity, and vice versa. Either way,
the phase balance remains within the limits, as the total
impact of the diversity and the number of active chargers that
are in two opposing directions is acceptable.

Solutions suggested were smart charging, gird reinforce-
ment, and grid optimization to mitigate the unbalance effects.
Flemish LV network was selected in [116] to study the effect
of a 100 % EVs integration in terms of voltage profile and
voltage unbalance as well. There were many charging sce-
narios for the analysis-namely, uncoordinated, uncoordinated
with voltage drooping, peak shaving, and peak shaving with
voltage drooping. The behavior of each technique differs for
voltage profile and voltage unbalance. The voltage droop was
found that it eliminates the voltage that is below 85 % of
the nominal value, enhancing the voltage profile thoroughly.
Nevertheless, in accordance with EN50160 standards, volt-
age profile should not fall below 90 % for certain num-
ber of times, which is not met in the voltage droop case.
On the contrary, the peak shaving technique does meet the
EN50160 standard requirements, thereby attaining improved
voltage profile. In general, the voltage droop approach does
help reducing the voltage profile and voltage unbalance, but
it needs a prior coordination in EV charging simultaneity,
which is provided by the peak shaving technique. Therefore,
the two approaches can assure EVs integration without an
advanced charging coordination without any violations. This
implies there is no need for the peak shaving approach if the
coordination has already been done. Importantly, the charging
duration is different for both cases. The voltage droop case
slightly impacts the charging duration, but this is not the case

for the peak shaving technique, as the standstill time is fully
utilized.

Advanced optimization techniques were employed to fur-
ther investigate this factor, for instance GA was utilized
to examine the voltage unbalance caused by PHEV fleets
in [149]. The PHEV was modeled as a voltage-controlled
node in order to not only allow for active power exchange, but
also reactive power exchange for voltage support. The main
objective of this study is to optimize the number of EVs being
connected at all phases before start violating the voltage phase
unbalance limitations. The simulation showed that PEVfleets
can degrade the bus voltage unbalance if the fleets act as
loads. On the other hand, the voltage unbalance would be
improved should the GA is applied. Kyoto protocol seeks
to reduce CO2 emission for environmental concerns, and
Republic Korea intends to replace 10% of the total number of
vehicles by EVs. This provoked many situational researches
to evaluate the integrity of the Korea Electric Power Corpora-
tion (KEPC). Voltage sag and voltage unbalancewere the core
topics in [150] to assess KEPC with these two indices. Addi-
tionally, a number of EVs penetration rates was taken into
consideration for slow charging scheme only. The resultant
measures showed that voltage unbalance is more common
than voltage sag, and it is more sensitive to EVs penetration
rate. Actually, at 10 % penetration rate, the voltage unbalance
limits are exceeded, while limits exceeded at 20 % for the
voltage sag case. The referenced standard for both indices is
the IEEE standards.

TheMalaysian LV networkwent through an analytical test-
ing in [151], [152] for voltage profile and voltage unbalance
impacts as EVs are integrated into the grid. The scenarios
considered for the voltage unbalance were unbalanced EVs
charging and an evenly distributed charging, while controlled
versus uncontrolled charging were the modes for the voltage
profile assessment. The evenly distributed charging mode
showed improved performance compared to the unbalanced
charging scheme, where the given power network saturated
for a small EVs integration rate for the unbalanced charging.
Moreover, the controlled charging scheme suffers from no
issues for both voltage limits and voltage unbalance.

The Dutch network, also, went through an analysis test
in [153] for voltage drop and voltage unbalance. It was con-
cluded that a 15 % to 20 % EV penetration would bring the
network to its extreme limits. Demand side management was
suggested as a proposal to lessen such effects. Tariff-based
charging scheme takes advantage of variable prices to shift
the peak load to off-peak hours, thereby improving voltage
profile. The tariff-based charging was considered in [148] to
study its effectiveness for voltage unbalance through differ-
ent scenarios. Ultimately, the network suffer from voltage
unbalance at certain EV penetration level, so the tariff-based
technique was proven to allay this impact significantly.

The discrepancy between the researchers for the impact
of both voltage profile and unbalance phase condition stem
from different factors that govern each proposed study,
such as network strength, EV charging characteristics,
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EV penetration rate, EV connection point, and so on. The
control of EV penetration rate can keep the system voltage
within limits, and proper loadmanagementmodel can prevent
phase unbalance from violating the regulations [21].

C. SYSTEM LOSS IMPACT
EVs integration to grid draws more power from generation
plants through transmission line system which contributes
more into system losses; power utility entities suffer the
most as they bear most of this burden. Coordinated charging
is essential to lessen the resultant power losses that might
appear significantly at as low as 10 % of EV penetration
rate [137]. Extensive literature work has been accomplished
to investigate this problem.

Danish distribution grid was tested to evaluate EV pene-
tration effect in [154]. The power system analysis was con-
ducted at the normal case, followed by a gradual increase of
EV penetration rate up to 50 % in the uncontrolled charg-
ing approach. Significantly, the system losses rose to 40 %
more compared to the base case. The controlled charging,
on the other hand, would decrease the system losses by 10 %.
In addition, a case study in [155] applied the same approach
on residential and industrial areas to explore EV charg-
ing on power system losses, reaching a conclusion that the
worst-case scenario occurs not during the load peak hours as
expected. Instead, it happens during off-peak hours because
most of the EVs are presumably charging at night times; the
worst-case scenario gives a 40% increase in losses. Likewise,
the same findings were stated in [132], [156], which boil
down to system losses rise as EV penetration rate increases.
Load side management can be used to lessen system losses as
done in [156]]. The paper used real-time control technique to
reduce losses based on controlling the EVs charging process.
Additionally, the paper investigated the transformer losses
associated with EV deployment in which winding loss and
core losses (hysteresis losses and eddy current losses) were
addressed. A detailed case study on an Australian grid was
held in which 1200 radial-configured nodes network is tested
with an EV integration at 45 V level There was a range of
transformer loadings along with many EV penetration levels
for this study. A detailed transformer model is finalized, and
a regular Australian residential load profile is utilized in the
paper along with different EVs penetration rates that could
reach 42 %. Transformer losses (mostly contributed from
winding copper losses), reached 300 % for a high penetration
rate. Core losses, on the other hand, show less variation, but
they still add significant losses contribution.

Bosnia and HerzegovinaMV grid experienced three charg-
ing modes as mentioned before in [119], [133] to analyze
the network from energy losses perspective. As expected,
losses are driven by the EV penetration rate (i.e., there is
a positive proportionality between the penetration rate and
the losses). Also, V2G can slightly increase the losses due
to the fact that it prolongs the charging time, but regulated
charging would improve the energy losses a bit. V2G, coordi-
nated charging, and smart charging would alleviate the losses

degradation a bit as pointed out in [135], [138], [157], [158].
Furthermore, the case in Bogota, Colombia network claimed
that losses are a function of a number of simultaneous EV
connections in a distribution system, battery capacities and
charger specifications, conductor parameters and the section
length, residential demand behavior, and the distribution sys-
tem configuration [143]. At 100 % EV penetration level,
the power loss is as high as 0.82 pu, leading to a 25%overload
to the Columbian network, which in turn jeopardizes the grid
stability.

An interesting relationship was formulated in [117]
between feeder power losses and the number of EVs con-
nected. It was found that the total power losses increase
exponentially as the number of EVs increase, thereby lim-
iting the allowed number of EVs in grids substantially.
Conversely, [159] stated that the network losses behave
in a linear manner with an increase EV penetration rate.
Moreover, the losses are a function of current flow and line
resistance, which means the conductor length is essential in
considering the losses. Power losses were mitigated using
linear programming-based optimization strategy in [138].
Authors in [159] quantified the power losses increase for a
Hungarian network as a consequence specific EV integration
rates for uncoordinated charging mode and delayed charging
mode. It was shown that the power losses could increase to
nearly 50% and 35% for uncoordinated charging and delayed
charging, respectively, which clearly highlight the superior-
ity of the delayed charging approach. The authors in [134]
support the previous findings in a case study in an Egyptian
network. Optimization techniques would help alleviating the
network power losses as demonstrated in [145] in which the
EVs connection voltage and the scheduled charge/discharge
rate were the objective function of the proposed model. This
technique was proven successful in limiting the power losses
in the provided case study.

Typically, EV penetration increases transmitted power,
thereby raising system losses. Thus, coordinated EVs charg-
ing, distributed generation units, and otherwise are practical
solutions to this issue. Fast charging could have more impact
than the normal charging mode as revealed in [9]. The pro-
posed solution is to utilize load side management to better
control the associated losses.

The control over the system losses due to EV penetration
is not easy because of the stochastic nature of residential
households as well as the EV penetration rate, so optimiza-
tion techniques come into play. In [158], the authors pro-
posed an optimization model whose objective function is to
minimize system losses caused by adopting EVs charging
scheme. The paper uses stochastic programming for optimal
coordinated charging load profile along with minimal sys-
tem losses. The absence of accurate data of housing house-
holds urged utilizing such stochastic programming technique.
Moreover, the same reference stated that the system losses
can be reduced, and grid load factor can be increased at
the same time using stochastic programming of controlled
EV charging. However, the grid reinforcement is inevitable
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at some cases. A feasibility study held in Ontario during
off-peak hours in [160] to optimize grid parameters of EVs
charging in terms of system losses. Under different statistical
figures and assumptions, the study revealed that about 6 % of
EVs in Ontario region, or 12.5 % of EVs in Toronto, which
are equivalent to nearly 500,000 vehicles that can be realized
by 2025 without any additional transmission or generation
investments.

D. SYSTEM COMPONENT IMPACT
Additional load follows a large fleet integration of EVs
requires generating plants to transmit large amount of power
to load sides. This might cause an overload condition to
the power system and its components (e.g., transformers
and cables) since it might not be designed to cater for such
additional EVs loading, which could place restrictions on
adopting EVs widely. Many researches were carried out to
explore this aspect that are mainly summarized as follows.

1) DISTRIBUTION TRANSFORMER
Distribution transformers are essential components of power
system which are prone to damages due to overloading con-
ditions. Early studies showed that transformers are impacted
adversely in the presence of PHEVs charging. For instance,
a case study in Southern California was performed in [161] to
assess transformers performance under the stress of uncon-
trolled charging. In [162], the authors analyzed all trans-
former losses caused by accommodating additional EV loads,
such as core loss, copper loss, and primary/secondary voltage
deviation. The study stated a 30 % of EVs integration rate is
enough to overload the transformer beyond its rated limits.
Also, a thermal model was formulated to compute hot spot of
winding temperature and transformer loss of life (LOL). The
results indicate that the level-1 charger type has a little effect
on the transformer loading, but the level-2 charger might
render transformers failure because of excessive temperature
rise. The paper suggested smart charging and load manage-
ment to contain the impacts. The previous findings were
supported in another study that indicated the superiority of
the AC level 1 charger over the AC level 2 charger [122]. The
authors in [163] contradicted this result in Morelia, Mexico
network, where a scenario involves a 10 % EV penetration
rate with AC level 2 charger. The transmission transform-
ers were not affected, and the scenario was assumed safe
for the transformers in the grid. The maximum number of
EV deployment level for an existing network was simulated
in [164] to set the maximum limitations of that particular net-
work. Likewise, [165] examined the Ottawa distribution grid
ability to accommodate specific numbers of EVs. An opti-
mization strategy to maximize the EVs deployed into the grid
was adopted, too. Also, the example given in [166] reached to
an aggressive result claiming that transformers lifespan can
be degraded by 93% because of PHEV charging. Time-series
model was used to represent the aging factor of transformers
as PHEVs penetrate grids. The test system model comprised
three houses, a transformer, and a distribution substation,

which form the specific scenario for the transformer lifespan
calculation. A different study stated that a PHEV penetration
rate that is as low as 10 % could force transformers to over-
loading conditions [154].

The distribution transformer life span due to thermal aging
factor is statistically modeled in [167] using ambient temper-
ature, initial SOC, and the EVs charging starting time. The
model indicated that the transformer LOL is highly dependent
on the effective load and the temperature at each instant of
time, so varying results are expected throughout the year.
Transformer capacity in Toronto network was under inves-
tigation in [168], where the worst-case scenario of integrated
EVs is employed during minimum, medium, and maximum
load hours in order to set boundaries of safe power operation
process. Noticeably, ambient temperature is vital in determin-
ing the system capability to accommodate EVs integration
into the grid, which is directly related to the number of
deployed EVs. The charger size is another factor to consider.
In fact, the study claimed that chargers that are sized 10 kW
or more, necessities a system upgrade to have the ability of
taking EVs safely.

Other references compared and contrasted uncoordinated
charging and coordinated charging for transformer impact
purpose. The authors in [119], [133] addressed three charg-
ing modes: slow charging, fast charging, and private charg-
ing stations, and the slow charging has three types-namely,
unregulated, regulated, and V2G. The regulated charging
had the minimal impact, followed by the regulated charging.
In regard with fast charging mode, the impact is much lower
than that of the slow charging owing to the small share of
fast charging stations as compared to the dominant share
of the slow charging stations. The fast charging small share
point is backed up by [116], [169] and the source proposed
peak shaving strategy to fight additional load brought up by
EVs integration. The peak shaving approach is implemented
with/without fast charging option, and the results conform to
the early findings (i.e., fast charging effect is limited).

Furthermore, the smart charging strategy was employed
to alleviate the impact on the transformers. The results were
more noticeable in [170] for AC level 2 scheme, where the
aging factor reduced by 48.9 % and 74.8 % for VT and
AZ, respectively. On the other hand, the reduction in AC
level 1 case was only 12.8 % and 49.4 % for VT and AZ,
respectively. Similarly, authors in [154] concluded the same
results with the emphasis on a high EV penetration applies
more stress on transformers lifetime. Indeed, a high penetra-
tion rate could escalate the aging factor up to 10,000 times
the normal situation [171]. Conversely, it was stated in [170]
that existing transformers could take additional loading of
EVs penetration in most cases. Under uncontrolled charging
approach, the AC level 1 charging approach has a slight effect
on transformers, whilst level 2 could lead to transformers fail-
ure owing to extreme operating temperature in case of a high
EV penetration rate. The transformers can be alleviated of
these effects through appropriate load management and shift-
ing EVs charging periods to off-peak hours. Furthermore,
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FIGURE 11. Infrastructure of PHEV charge control and demand
management [174].

a simple case study was conducted in [172] that includes five
homes and two PHEVs and concluded that no transformer
overloading conditions experienced except for all PHEVs
charging simultaneously at peak times with level 2 charg-
ing. In [173], authors conducted similar simulations with an
addition of PHEVs and only few cases resulted in overloaded
transformers. The undergoing model for transformers aging
assessment was a hot spot winding temperature model that
included harmonic currents effect for more accurate results.

Demand side management can be employed to con-
trol transformers loadability under EV charging scenario.
Authors in [174] tested transformers loading under several
EV charging scenarios to look closely to peak hours that can
be alleviated much simply by applying demand side manage-
ment technique rather than installing new transformers to take
up additional loading caused by EVs. The proposed strategy
is a combination of AMI that monitors residential loads,
EV controlling unit, and remotely-controlled switches for EV
outlets and residential loads as depicted in Fig. 11. In addi-
tion, de-centralized demand side management was proposed
in [175] that is formulated as a convex optimization problem
that is solved by so-called water-filling algorithm. The con-
cept behind this work is that the load profile of low voltage
side of the transformer is flattened so as to avoid excessive
overloading. Also, load side management in conjunction with
off-peak EVs chargingwere suggested to prolong transformer
lifespan and avoid many technical complications that would
otherwise be manifested because of uncontrolled EVs charg-
ing on transformers. A case study in Southern California was
performed in [170] to assess transformers performance under
the stress of uncontrolled charging and to propose potential
solutions that are smart charging and load side management.
In fact, smart charging reduces deteriorated transformer aging
factor and decreases uncertainty of PHEVs charging [175].

TOU charging scheme is another form of regulated charg-
ing to which [176] based its research in which a time-varying
price approach and its impact on distribution transformers
aging factor is studied. A transformer thermal aging model
represents the transformer aging factor at different EVs inte-
gration rates to simulate the rate of change of the transformer

aging factors with different EVs deployment levels. It was
shown that at high EVs penetration rate, the transformer aging
factor accelerated excessively. However, the V2G option with
the TOU scheme provides an economic advantage to end-
users, but this might be offset by the technical shortcom-
ings on a selected network. The authors introduced two
optimization techniques to balance the end-user’s economic
benefits and the transformer aging degradation factor, which
are subject to further researches. A mix of TOU charg-
ing derivatives were listed in [177] looking for the mini-
mum transformer LOL. A hierarchical charging with TOU
showed the lowest transformer LOL among other options.
On the other hand, a centralized scheme with valley-filling
strategy was the worst scheme impacting the transformer
LOL. A wide spectrum of charging strategies was addressed
in [161] for investigation of transformer hot-spot temperature
and aging factor under different EVs penetration scenarios.
The charging strategy list consists of uncontrolled, TOU,
valley filling, valley filling with time slot rejection, valley fill-
ing with modified time slot rejection, and forced cool-down
period. It was proven that the uncoordinated charging and
TOU charging were the most negative strategies, whereas the
forced cool-down period strategy was the one with the lowest
adverse impact.

Some charging strategies can be combined for enhanced
outcomes, such as the one presented in [122] that offered
a different combination seeking optimal transformer per-
formance. TOU+DLC method and TOU+DLC+optimal
control charging method were scrutinized for transformer
LOL index. The optimal control option works to shift EVs
loading and reducing the total residential loading, thereby
prolonging the transformer life cycle. Smart charging,
TOU-midnight, and Photo Voltaic (PV) rooftop option were
mixed altogether in different configurations for transformer
LOL analysis in [178]. The transformer LOL is at its min-
imum for either TOU-midnight charging or smart charging
were considered. PVs are another generation source that
would balance the increasing demand of EVs, and this paper
showed that the LOL of the two charging schemes mentioned
before could be reduced by 75 % upon adopting PV pan-
els. Strictly speaking, the transformer LOL are only within
their annual limits if both TOU-midnight and smart charging
were combinative. A different study in [143] claimed that
transformers LOL are retained if at least 10 % of capacity
margin is imposed. The previous studies approached LOL
qualitatively, but [179] developed a risk assessment method
to quantify risks associated with transformer LOL. An EV
brand effect was investigated in [180], where Tesla S and
Toyota RAV were considered for dual charging power level
2 type using TOU pricing approach. The resultant outcomes
are in favour of Tesla S brand since it impacts the trans-
former LOL in a lesser extent compared to Toyota RAV.
The paper, also, mentioned that the charging in one clus-
ter during off-peak times is of more damaging effects than
charging upon home arrival. The EV generation model is an
additional criterion that is used to examine the influential
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impacts on transformers. The reference used TOU charging
scheme in order to target off-peak hours for improved out-
comes, and it concluded that an energy consumption factor
is the driver behind favoring specific EV brands-generation
over other brands so that the transformers LOL is remain
intact [138]. Other references recommended regulated charg-
ing for its benefits of reducing transformers adverse impacts
of EVs deployment [134]–[136], [143], [151], [152], [159].
The effect of adopting PV and battery storage systems on the
transformer LOL were investigated in [181], [182] in which
they claim that the transformers LOL are prolonged upon
these setups.

Alternatively, algorithms could be utilized to resolve the
EVs deployment issues against transformers. Rule-based
charging algorithm was proposed in [183] to tackle such an
issue. Basically, it determines the lowest charging power
levels of residential EV stations during peak hours. The con-
sequences of this algorithm were analyzed on the distribution
transformers to assess the feasibility of such algorithm. It is
important to note that one of the assumptions considered
for this study is to limit the arrival/departure trip of an EV
to only one a day. Of course, different results would come
out if different assumptions were considered. The authors
in [127] adopted a two-staged optimization techniques: BA
and FLC. The transformer peaks were reduced substantially,
and consequently the listed approach outperformed the stan-
dard methods (i.e., CP and CT).

Elaborate models can approximate system performance
to a great extent of accuracy. One of the transformer mod-
els was presented in [184], where a relationship linking the
transformer winding temperature to the charging station load
profiles through a group of dynamic thermal energy mod-
els. This set of models consider a variety of factors for
an acceptable performance; these factors include ambient
temperature, EVs integration rate, power quality, and base
load. Consequently, this set of models were used to evaluate
the transformer LOL and to settle the transformer capacity
and connection configuration. A pilot study was conducted
on a network in Taiwan, where a direct relationship exists
between a transformer capacity and connection configuration
at one side and the transformer hot-spot temperature. The
hot-spot temperature is acceptable if a given transformer is
oversized. The proposed model, however, takes the economic
side into consideration, so no unnecessary oversizing is
exercised.

Additionally, the authors in [185] adopted a model that
tests thermal aging factor of transformers on a Portugalian
network. This model embraces certain influencing factors
like battery SOC, randomness of EVs chargers, charging
modes, etc. The model addressed a problem in that net-
work pertaining to oversized transformers and their durability
against high EVs deployment rate. The outcomes were not
challenging, as these oversized transformers cannot tolerate
a certain EVs penetration rate. Hence, other means should
be sought to mitigate the transformers LOL factor, such as
off-peal tariff charging scheme. This work was extended

to power transformers in [186] that reached to the same
conclusions except for the slow charging, even if it is utilized
fully, preference over fast charging, which contradicts with
many claims of some other references. Transformer LOL and
its linkage to EVs deployment level was the core of [187] that
studied this relationship with a mathematical model describ-
ing the statistical pattern of EVs along with the transformer
thermal model in order to quantify the transformer LOL
well. There were four charging scenarios and several EVs
integration rates through which the paper tested the trans-
former LOL: uncontrolled charging, off-peak charging, smart
charging, and uncontrolled public charging. The reference
concluded that the transformer LOL mainly relies on two
factors-namely, load value and timely temperature.

Furthermore, of all the charging schemes tested, the smart
charging showed the most favorable scheme, as the trans-
former LOL was impacted the lowest. Energy management
system can be modeled to prolong the transformer life span
and minimize the transformer damage cost as addressed
in [188]. The model revolves around shifting EVs charging
schedule to valley hours so as to lessen the impact on the sup-
plying transformers, leading to extended life cycle and lower
damage cost. Models usually assign optimization techniques
for one objective function for simplicity, but [189] developed
a co-optimization centralized model in which the transformer
LOL and the EV drivers charge/discharge decision are opti-
mized, so overall operational cost is reduced. The model
took transformer thermal temperatures, LOL, and accelerated
aging factor into consideration for improved model perfor-
mance. For the sake of comparison, a decentralized model
was formulated such that it could be implemented by energy
management system, where EV users optimize their own
EVs. At V2G mode, both models show a long LOL, as EVs
inject so much power into grid that peak hours are lessened.
However, the centralized approach causes overloading at high
EVs penetration rate, and the decentralized one dictates a
transformer upgrading. Hence, the decentralized approach
did prolong the transformer LOL, proving its benefits to
transformers operation.

Deterministic models do not always reflect the actual sys-
tem behavior because of the probabilistic nature of many
variables involved. EVs integration to grid is no exception,
and this matter was tackled in [190] proving that probabilis-
tic models outperform the deterministic ones in presenting
the system performance under EVs penetration case. Prob-
abilistic models can be viewed from charging strategy per-
spectives, such as regulated and unregulated charging for
improved performance. TOU charging and dumb charging
were considered in [191] for a probabilistic modeling of EV
drivers’ daily pattern to find safe penetration level that will
not harm network transformers. Both scenarios failed to keep
loads below transformers ratings at 50 % penetration level.
Besides, the dumb charging exceeded the transformer ratings
at several penetration levels, but the TOU charging was worse
than the dumb charging at the selected time slots. Seemingly,
EV drivers chose to charge their vehicles at that particular
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instant of time because of the economic advantage, resulting
in an increase in transformer overloading. Conversely, a study
made using the probabilistic load flow analysis within the
British Colombia power network stated that only transform-
ers that run near their rated capacity get affected by the
uncoordinated charging [192].

2) TRANSMISSION CABLE
What arteries to human body, is what cables to power grids.
Hence, the integrity of cables forms a cornerstone of the
whole power system reliability, and it can get affected sev-
erly by uncontrolled EV integration [193]. A different set
of EV penetration rates of coordinated charging, uncoordi-
nated charging, unbalanced charging, and evenly distributed
charging in [151], [152] tested a Malaysian network to check
the integrity of thermal limits of feeder conductors. The
outcomes were conforming to the norms that the coordinated
charging is provides the best chance for feeder conductors
thermal capacity, followed by the evenly distributed charging.
Also, a higher EV penetration rates, entails worse feeder
thermal capacity. In addition, [159] had compared the unreg-
ulated charging compared to the delayed charging, and the
results were challenging. The delayed charging mode offers
more than 20 % capacity margin over the unregulated charg-
ing, increasing the feeder buffer significantly. The delayed
charging was recommended also in [134] over its uncoordi-
nated charging counterpart. These findings were found in [9]
in a Canadian distribution system where fast charging and
normal charging schemes were employed to evaluate their
impacts on line loading condition at different penetration rate
stages (zero level up to 30 % level). It turned out that uncon-
trolled charging impairs the existing cable system, especially
for fast charging mode. In fact, the cables can take only
15 % for fast charging and up to 25 % for normal charging,
so the reference concluded that existing cable systems shall be
upgraded to hold high EV penetration rates. Also, the paper
proposed load side management solution to control overload-
ing conditions.

The case study outlined in [136] studied underground
cables and overhead lines under the assumption that the fast
charging stations can draw power from a 20 kV medium
voltage substation. The 400 V cables, stemming from the
secondary side of that substation, supplies the fast charging
stations, and it goes through remarkable overloading during
EVs penetration times. Hence, the cable systems are to be
reinforced to adopt EV loading. However, the 20 kV overhead
lines are in no danger of cable overloading, and it can support
EV charging substation. Moreover, Finnish distribution grid
was studied in the context of EV charging load using real
load profile data in [144]. The principal conclusion is that the
EV penetration rate influence on medium voltage and low
voltage cable systems are subtle. In the same manner, fast
charging mode would load cables substantially, especially at
large scale EV deployment. The fast charging mode against
the slow charging mode at several EV deployment rates was
the topic of [133] in which the tested cable system was sound

for the slow charging mode at both coordinated charging and
uncoordinated charging. The reason for the limited effec-
tiveness of the coordinated charging is that the percentage
of slow charging stations is small compared to the whole
network. That being said, the regulated charging stations
without the fast charging option domake a difference in terms
of loading the cable system,which emphasized the substantial
effect of the fast charging mode on electric networks. Also,
the authors in [133], [135] pointed similar notes regarding
the fast charging mode. Moreover, [153] proposed DSM to
reduce the impact of EVs deployment, thereby increasing
cable capacity for set EV integration rates.

TOU is another charging tactic used to regulate the
large-scale EV deployment, and it was tested in [136] on
residential, commercial and industrial networks at several
EV penetration levels. The bottom line is that TOU frees
the feeders at different networks substantially (at least 10 %
capacity), which proves its superiority over the uncoordinated
charging.

Cable system does not only suffer from the EVs deploy-
ment, but also from the charging stations that pollute the
selected system. Cables in accordance with [194] are prone
to skin effect and proximity effect caused by the exposure to
high frequency harmonics that deteriorate the life expectancy
of the cable system. The bad power quality measures mean
unevenly distributed current among the three-phase system,
resulting in a high neutral current value. The regulated charg-
ing may lessen such effects greatly. Power system comprises
transmission lines, subtransmission lines, and distribution
lines that function to deliver energy to load centers. The
technical specifications and design approaches differ due to
differences in loading, voltage drop, length, etc. Transmission
lines and subtransmission lines were investigated in [163] to
explore the effect of uncoordinated EV charging on a high
voltage grid of Morelia, Mexico. Moreover, a 10 % of EVs
penetration rate was considered with AC level-2 charger for
the study. The transmission lines experienced 35 % loading,
while the subtransmission lines had an increment at some
lines of nearly 36 %, which is substantial especially if these
lines are already overloaded.

EVs are driven by probabilistic measures as mentioned
before, which in turn puts an emphasis of probabilistic
approaches for analysis to have more realistic and more
accurate results. The authors in [190] took this note into
consideration when it evaluated the feeder effects of nine
UK LV networks. The deterministic approach had no feeder
capacity violation at any EV penetration level, which does
not conform to the rest of researches in the literature. On the
other hand, the probabilistic approach stated that at 70 %
of EVs penetration rate, some feeders start exceeding their
normal rated capacities. Indeed, the deterministic approach
cannot show the technical problems frequency and their asso-
ciated consequences, and it has the tendency to under/over-
estimate these impacts. Furthermore, such uncertainties were
scrutinized in [195] all together with utility service providers
and users’ perspectives. A four-quadrant PQ plane two-stage
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model was employed to allay feeders load peaks during the
day. The first step pertains to utility service provider in
which feeders’ total energy supplied is balanced with the
voltage critical values using an optimization technique and a
Bootstrap strategy to reduce the feeders load peaks. On the
other hand, clients’ perspectives were emphasized in the
second-stage of the model to allocate a fair share for each EV
using active power and reactive power capacity of PQ-plane
to meet feeders limits. The feeders overload conditions were
improved substantially with this model compared to a simple
heuristic approach.

E. HARMONIC IMPACT
Power electronics form the basic infrastructures to EV charg-
ers, which contributes to downgrading system power qual-
ity indices upon switching these electronic components;
this could result in component de-rating to counter severe
harmonic distortion [196]. Voltage total harmonic distor-
tion (THD) was measured in [89] for EV charging, resulting
in less than 1 % increment, so system power quality is intact.
Moreover, the mentioned paper needs further comprehensive
study to confirm these findings, which brings [197] into pic-
ture, where dynamic factors of EV charging are taken into
consideration, such as charging time uncertainty, charging
durations, and charging locations. A Monte Carlo Simulation
was conducted to make the assessment, and the results were
similar to the previous reference (i.e., negligible EV charg-
ing harmonic impact on power grid). The neutral to ground
voltage, though, could rise to the point where stray voltage
incidents are pronounced.

Nevertheless, authors in [198] showed that EVs fast charg-
ing injects rather significant amount of harmonics into the
grid. The study revealed that for few EV fast charging
units, THD reaches 11.4 % (compared to 8 % maximum
value for up to 40th harmonic contents in accordance with
EN50160 standard). Active filters solution was proposed to
resolve the harmonic issue, where the voltage THD was
reduced to be only 5.6 %. Similarly, in both [199], [200]
authors showed that unacceptable THD limits precipitated
by uncontrolled charging scheme. For example, a case study
was held in [127] with different EVs penetration rate scenar-
ios, and it revealed that a charging rate of 18 EVs during
peak hours can introduce a voltage THD of about 45 %,
which is far away beyond the standard limits. This extreme
case represents a 100 % EV penetration rate to account for
worst case scenario. Uniform charging could significantly
improve the performance, but introducing smart charging
is a must to resolve the issue. The reference, also, used
so-called decoupled harmonic power flow (DHPF) algorithm
that considers system component nonlinearities that are the
major source of harmonics. The authors in [201] made a
case study of a Jordanian grid to test EV penetration rate
on system voltage harmonic profile. The harmonic spectrum
under analysis range from third harmonic until 25th har-
monic, in which right scenarios were assumed for assessment
that include different EV penetration rates, seasons, load peak

status, and EV charging status. All of the eight scenarios
maintain the voltage THD within standardized limits (5 %
for total voltage distortion and 3 % for individual voltage
distortion).

Moreover, power-quality (PQ)methodologywas employed
in [197] to analyze and assess the harmonic impacts due to
EVs grid integration to electric networks. Several factors
were considered for influencing the charging activities of
EVs. EVs were considered as a home appliance, so the
PQ method evaluates all home appliances for the harmonic
contributions, where harmonic orders were presented for
different harmonic levels. Oak Ridge National Laboratory
made a statistical estimate of the soled EVs in a specific
timeline that formed the basis of this study assessment.
Consequently, the final results indicated that the EVs charg-
ers have negligible harmonic contribution impacts up to
2022. A different study in [196] based its results on the
2009 National Household Travel Survey to simulate EVs
mobility parameters found that both voltage THD and current
THD measurements fall within acceptable ranges according
to IEEE519 standard. Usually, the initial odd harmonic levels
are dominant if no precautions were made beforehand, which
agrees with the outcomes in [202] that held an analytical
study on New Zealand network. The study showed that the
voltage harmonics did not affect the grid, but the third and
ninth harmonic levels are of a concern to make.

The charging level could have a direct relationship to the
harmonic quantities injected into grids in which it could be
largely detrimental. The level 2 charger and level 3 charger
were assessed in [203] to find out their associated impacts.
The level 2 charger was found to fall within acceptable range,
but the level 3 charger was off the set standardized measures.
Seemingly, any large-scale EV integration would impact the
selected grid adversely.

Individual harmonic order is one way to evaluate the har-
monic impacts. However, it is not feasible to find the integral
impacts in reference to the base frequency with the individual
harmonic order approach, so total harmonic distortion (THD)
comes into play. The THD was utilized in [204] at certain
EVs penetration rates to test a different scenario case study on
different power system components, such as overhead trans-
mission lines, underground cables, transformers, etc. There
were some interesting findings that highlight the harmonic
impacts on electric networks. Frequent switching of charger
stations worsens the harmonic impacts, so a higher SOC
battery would be less damaging in terms of harmonic effects.
Furthermore, transformers do not only suffer from harmonics
level produced by EVs, but also act as source of harmonics
that flow back to the charger stations, so the charger stations
should be located at farthest points from transformers. Cables,
on the other hand, are the most susceptible component to
the harmonic distortion, so they should be well protected.
The authors in [146] compared the controlled charging ver-
sus uncontrolled charging in which the controlled charging
mode shows superiority in terms of lesser harmonic impacts.
Also, controlled charging made THD insignificant in [135].
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Besides controlled charging, smart charging andV2G accord-
ing to the same reference could be the answer to mitigate the
harmonic impacts on grids that are attributed to rectifiers in
the charger substations.

It is noteworthy to consider on-peak hours and off-peak
hours for studying the harmonic effects. The difference
could be so huge that even 50 % of EV integration rate is
THD-acceptable for off-peak hours for a selected network,
but it is not for on-peak hours as mentioned in [205]. The
THD uses the fundamental frequency current/voltage value
as a reference, which makes the THD index variable over a
cycle, leading to a probable misleading conclusion. On the
contrary, total demand distortion (TDD) index uses the max-
imum current/voltage value as a reference point, so it is
preferred for usage as explained in [196]. It was noticed that
THD indices tend to increase at the end of a fast charging
cycle owing to a reduction in the current value, resulting
in biased conclusions. Nevertheless, the authors noticed that
the THD and TDD indices were within the IEEE519 stan-
dard values for voltage harmonic measurements, but indi-
vidual harmonic levels were deviating away from right
readings.

The different outcomes of researchers of the influence
of such harmonics on the grid attributed to the different
EVs specifications and systems under studies. Apart from
these differences, many solutions could resolve the prob-
lem like filters (passive or active) [196], [204]. Also, it was
claimed in [203] that different EV chargers introduce differ-
ent harmonic levels that are out of phase and have levelized
magnitude values, so it is possible to have harmonic cancel-
lation, or even eliminate such harmonics using PWM in these
chargers.

F. STABILITY IMPACT
Stability is the resilience of a system when there is a dis-
turbance of any kind. Of course, EVs integration to grid is
a disturbance on its own, so its effect is to be examined
closely. Although many power system problems have been
studied in terms of EV integration, system stability impact
study remains almost unattended.

Authors in [206] claimed that grids with EV charging
demand is more susceptible to disturbances in terms of both
magnitude deviation and time required to reach equilibrium
state. This is because of the harmonics injected and reactive
power consumed by the electronic components of the EV
charger. The simulation ran with different fault conditions
for PHEV/no PHEV scenarios for comparison purpose. In the
same way, [207] supports these outcomes and represents the
EV load behavior as both a constant power and negative
exponential components. The paper investigates the grid volt-
age stability condition accompanying EV charging process,
which is downgraded significantly. Generally, the conclu-
sion drawn from literature is that EV charging harms grid
stability severely. Nevertheless, authors in [201] examined
voltage stability on a Jordanian grid at different situations:
without EV, with EVs charging, and with EVs discharging.

The conclusion is that the grid voltage stability is barely
harmed.

Voltage stability is one aspect of the grid stability indices
that is defined as the ability to maintain steady nominal volt-
age values at all buses after a disturbance. Power electronics
form the building block of EVs charger system and that
has the vast majority of instability contribution. EV loads
according to [201] have nonlinear characteristics, drawing
huge amount of power in a short duration, that could drive
electric networks out of its stability measures; knowing that
electric systems are usually operated near their stability lim-
its. The source emphasizes on the load type of EV loads
and its importance to anticipate the impact against voltage
stability. If EVs can be assumed as constant impedance load
type, there would be no impact regardless of the number of
penetrated EVs. However, it is not possible to predict the EV
load type prior to EVs integration process, so the authors
in [70] suggested a wide area controller technique to dampen
instability oscillation resulted from charge/discharge process.
Authors in [207] presented a static load model for EVs that
comprises a battery energy storage and a charger unit for
voltage stability study, which is a major gap in EV-related
stability studies. The reference characterized the EV loads
as a combination of negative exponential loads and constant
power loads. Interestingly, the constant power component
is dominant if the voltage is regulated around the nominal
value at the point of common coupling (PCC). That being
said, the exponential component portion increases as the volt-
age drop rises. A case study conducted revealed the impor-
tance of accurate EV load model for static voltage stability
study.

In addition, the EV integration into a grid would reduce
the loading margin the most compared to other load models
(i.e., P, I, and Z), which in turn would put the whole system
security in jeopardy. It is noteworthy to mention that the
current practices in modeling EV loads with constant power
or constant current models would yield less accurate stability
results. An important point to keep in mind regarding stability
is the physical location at which a system is tested. That is,
the weakest link of the system is analyzed differently from
the strongest link to have a broad view of the system stability
spectrum. This indicates also the importance of accounting
for spatial distribution of loads when studying stability issues,
EV load in particular. This concept was incorporated in [208]
for voltage stability analysis on two networks: a suburban
residential network in Melbourne, Australia, and a semi-rural
residential network in Townsville, Australia. Both networks
were examined with the same methodology, which involves
the worst-case scenario and the best-case scenario. The
worst-case scenario is when EVs are added in order from the
weakest bus to the strongest, while the best-case is the other
way around. Both scenarios could lead to completely different
results with the same number of EVs, which was actually
proven in both networks. In fact, in the suburban residential
network, adding one EV to the weakest bus is equivalent to
adding 45 EVs to the strongest bus; even adding more EVs
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to strongest buses could improve voltage stability measures.
Power-voltage curve tool is effective in evaluating the voltage
stability of a network. A continuation power flow (CPF) and
the power-voltage curve were used to compute the maximum
load factor before the voltage collapse in different segments
of the selected network in [209]. Consequently, it was shown
that at 10 % EVs penetration rate, there is no voltage stability
violation; however, if any segment became unavailable for
any reason, the voltage stability would suffer. Hence, large
EV number integration to a grid would increase the stability
risks substantially.

Frequency stability is another aspect of network stability,
which is governed by the balance between load and gen-
eration, so adding EVs to existing loading would theoreti-
cally impact the frequency stability. Frequency response was
examined in [201] during a disturbance event for 14 different
scenarios on a Jordanian grid. It was shown that in summer
season, the frequency stability is more prone to unstable
conditions than that in winter season because of the large
loading during the summer, which pushes the network to its
limits. Similarly, disturbances affect peak hours more than
off-peak hours for frequency stability domain. The frequency
could increase or decrease depending on the instant at which
the EVs penetrate. In other words, peak times have differ-
ent manifestation than off-peak times in terms of frequency
response. However, there was no violation with the frequency
response as per National Electric Code (NEC) for this par-
ticular application. Regarding voltage stability, there was no
effect at all on the examined network on the voltage stability
condition.

Other resources put an effort not only to address the
stability issues associated with EV charging, but also to pro-
pose solutions to eliminate, or at least mitigate the impacts.
In [70], authors tried to allay generators of the grid com-
ponents from operational perspective. That is, a wide-area
controller (WAC) provides auxiliary control signals to these
power components to improve stability measures. Genera-
tor damping factor can be improved through some algo-
rithms that optimize auxiliary control signals, such as particle
swamp utilized in this study. Indeed, WAC can dampen oscil-
lations resulted from charge/discharge switching activities
more effectively than generators with power system stabiliz-
ers. Unlike most of the literature that tested the bad impact
of EVs charging on networks stability, the authors in [210]
discovered that EV charging could enhance grid transient sta-
bility. Transient stability of a proposed systemwas testedwith
superconducting magnetic energy storage device (SMES)
controller under 3-φ LG fault as well as 1-φ LG fault states.
The results were illustrated through load angle response and
voltage response that showed the SMES can enhance the tran-
sient stability of the network. Furthermore, fast charging was
considered in [211] for transient stability of several EV inte-
gration scenarios that all proved the significant effect of such
EV integration. Authors in [212] used stochastic Lyapunov
function to model the power system stability near equilibrium
point.

V. CONCLUSION
This paper comprehensively reviews the application aspects
of EVs in the power network field. The charge/discharge
modeling is preceded by the capacity evaluation stage in
which the EVs mobility effect on available power capacity
is addressed. Several sources viewed the matter at hand with
different approaches: deterministic, probabilistic, or other-
wise with distinct performancemeasures. The centralized and
distributed charging models were compared and contrasted
through many papers along with many case studies that shed
light on practical considerations for both models. The interac-
tion of EVs with deregulated electricity markets is analyzed
throughout algorithms, models, and case studies to propose
suitable business models that incorporate the dynamic nature
of the deregulated markets. The slow pace of power network
upgrading process and the associated costs make it practically
impossible to accommodate EVs integration at large-scale
without violating some of the grid constraints, especially for
weak networks. The paper highlights the potential effects of
EV integration on power grids at different rates for different
cases. The main electric network components and factors
were covered, including, transmission cables, distribution
transformers, load factor, stability, and others. Moreover,
the reviewed sources suggested some of the techniques tomit-
igate such detrimental impacts in order to facilitate adopting
the EVs into grids.
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